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Abstract

Background: The combination of virotherapy and chemotherapy may enable efficient tumor regression that would
be unachievable using either therapy alone. In this study, we investigated the efficiency of transgene delivery and
the cytotoxic effects of alphaviral vector in combination with 5-fluorouracil (5-FU) in a mouse mammary tumor
model (4 T1).

Methods: Replication-deficient Semliki Forest virus (SFV) vectors carrying genes encoding fluorescent proteins were
used to infect 4 T1 cell cultures treated with different doses of 5-FU. The efficiency of infection was monitored via
fluorescence microscopy and quantified by fluorometry. The cytotoxicity of the combined treatment with 5-FU and
alphaviral vector was measured using an MTT-based cell viability assay. In vivo experiments were performed in a
subcutaneous 4 T1 mouse mammary tumor model with different 5-FU doses and an SFV vector encoding firefly
luciferase.

Results: Infection of 4 T1 cells with SFV prior to 5-FU treatment did not produce a synergistic anti-proliferative
effect. An alternative treatment strategy, in which 5-FU was used prior to virus infection, strongly inhibited SFV
expression. Nevertheless, in vivo experiments showed a significant enhancement in SFV-driven transgene (luciferase)
expression upon intratumoral and intraperitoneal vector administration in 4 T1 tumor-bearing mice pretreated with
5-FU: here, we observed a positive correlation between 5-FU dose and the level of luciferase expression.

Conclusions: Although 5-FU inhibited SFV-mediated transgene expression in 4 T1 cells in vitro, application of the
drug in a mouse model revealed a significant enhancement of intratumoral transgene synthesis compared with 5-FU
untreated mice. These results may have implications for efficient transgene delivery and the development of potent

cancer treatment strategies using alphaviral vectors and 5-FU.
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Background

Several preclinical studies in recent years have demon-
strated therapeutic synergy between viral vectors and
chemotherapy [1,2]. As reported previously, chemical
compounds might be acting as adjuvants for the applied
genetic vaccines [3] and/or could enhance the infectivity
and gene transfer efficiency of the viral vector [4]. Among
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the potential therapeutic viruses, alphaviral vectors are
good candidates for cancer therapy because of the high
level of transgene expression and their ability to mediate
strong cytotoxic effects through the induction of p53-
independent apoptosis [5,6]. The advantages of alphaviral
vectors also include a low specific immune response
against the vector itself, the absence of vector pre-
immunity and a high level of biosafety [7,8].
Alphaviruses are enveloped viruses that belong to the
Togaviridae family and contain a positive-strand RNA
genome. The classic vectors for the expression of heter-
ologous genes were developed primarily based on Semliki

© 2014 Zajakina et al, licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain

Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,

unless otherwise stated.


mailto:anna@biomed.lu.lv
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/

Zajakina et al. BMC Cancer 2014, 14:460
http://www.biomedcentral.com/1471-2407/14/460

Forest virus (SFV) and Sindbis virus (SIN) replicons. In
these vectors, a heterologous insert replaces the structural
genes under the control of the 26S viral subgenomic pro-
moter [9,10]. The vector RNA can be packaged into re-
combinant alphaviral particles in cells via co-transfection
with a helper RNA encoding structural genes (capsid and
envelope). Upon infection, the vector RNA replicates and
generates a high level of expression of the heterologous
gene. The vector cannot propagate because it lacks the
genes encoding the required viral structural proteins.
Replication of the recombinant alphaviral genome, which
occurs on the cytoplasmic membrane, causes cellular
apoptosis, even in the absence of viral structural gene
expression [11].

Due to the rapid induction of apoptosis in infected
cells, treatment with natural oncolytic alphaviral vectors
results in tumor regression [12-15]. Administration of
replication-deficient vectors encoding reporter or immu-
nomodulator genes, such as cytokines or growth factors,
has also been demonstrated. This leads to successful
tumor inhibition or complete regression in animal models
[16-19]. Nevertheless, the application of alphaviral immu-
nogene therapy in a clinical study using Venezuelan
equine encephalitis (VEE) virus (VEE/CEA) in phase I/II
demonstrated insufficient anti-tumor efficacy in patients,
most likely due to the inefficient induction of anti-tumor
immune responses in patients with end-stage disease [20].
Moreover, the alphaviral vectors were administered to pa-
tients after standard treatment (usually chemotherapy),
which may significantly reduce the efficiency of alphavirus
infection and transgene expression. Remarkably, the ma-
jority of the successful preclinical studies using alphaviral
vectors were performed in animal cancer models that did
not involve pretreatment with chemical drugs. Therefore,
the effect of combined chemotherapy and alphaviral ther-
apy has not been comprehensively studied.

The efficacy of virotherapy depends on specific tumor
targeting and the level of viral replication [21]. It has
been reported that the application of classical chemical
drugs, e.g., 5-fluorouracil (5-FU) and gemcitabine, in
combination with oncolytic herpes or adenoviral vectors
make cancer cells more prone to virus infection and rep-
lication [4,22], thereby enhancing the therapeutic effects
of the viral vector. Alternatively, the viruses may improve
the chemotherapy outcomes. For example, Newcastle dis-
ease virus has been shown to assist in overcoming cis-
platin resistance in a lung cancer mouse model [23].
Moreover, the use of herpes simplex virus following doxo-
rubicin treatment was demonstrated to eradicate che-
moresistant cancer stem cells in a murine breast cancer
model [24]. Also co-administration of reovirus with doce-
taxel synergistically enhanced chemotherapy in a human
prostate cancer model [25], allowing reduced doses of che-
motherapeutics to be used. Furthermore, the combination
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of an asymptomatic low dose of 5-FU with recombinant
adenoviruses produces a synergistic effect in various cell
lines and in vivo tumor models [26-30]. Although the de-
tailed molecular mechanism underlying the therapeutic
benefits of the combined treatment remains unknown,
such a treatment has already demonstrated promising re-
sults in a clinical setting [31,32].

Whether the synergistic anti-tumor effect can be
achieved using a drug combination that includes alpha-
viral vectors has been poorly investigated. One study
showed that application of a Sindbis vector with oncoly-
tic properties in combination with the topoisomerase in-
hibitor irinotecan in SCID mice bearing human ovarian
cancer resulted in prolonged animal survival [33]. The
authors highlight the role of natural killer cells in the
induction of the anti-cancer effect by the combined treat-
ment. Targeting of different anti-cancer mechanisms in-
volving immune cell activation could lead to effective
combinatorial therapies, though these would have to be
evaluated in immunocompetent tumor models.

Using a 4 T1 mouse mammary tumor model, we in-
vestigated the efficiency of combined 5-FU and SFV vec-
tor treatment. We focused on the inhibition of cell
proliferation and efficiency of transgene delivery under
combined treatment in vitro and in vivo.

Methods

Cell lines and animals

BHK-21 (baby hamster kidney cells) and 4 T1 cells (me-
tastasizing mammary carcinoma from BALB/c mice) were
obtained from the American Type Culture Collection
(ATCC/LGC Prochem, Boras, Sweden). BHK-21 cells were
propagated in BHK - Glasgow MEM (GIBCO/Invitrogen,
Paisley, UK) supplemented with 5% fetal bovine serum
(EBS), 10% tryptose phosphate broth, 2 mM L-glutamine,
20 mM HEPES, streptomycin 100 mg ml™ and penicillin
100 U ml™". The 4 T1 cell line was cultured in Dulbecco’s
minimal essential medium (GIBCO/Invitrogen) supple-
mented with 10% FBS, 2 mM L-glutamine, streptomycin
100 mg ml™ and penicillin 100 U ml™. Specific pathogen-
free 4- to 6-week-old female BALB/c mice were obtained
from Latvian Experimental Animal Laboratory of Riga
Stradin’s University and maintained under pathogen-
free conditions in accordance with the principles and
guidelines of the Latvian and European Community laws.
All experiments were approved by the local Animal Pro-
tection Ethical Committee of the Latvian Food and Vet-
erinary Service (permission for animal experiments no.
32/23.12.2010).

Production of SFV (SFV/EGFP, SFV/DS-Red, SFV/EnhLuc)
and SIN (SIN/EGFP) recombinant virus particles

The pSEV1 [9] and pSinRep5 [10] vectors were used in
this study. The enhanced green fluorescent protein (EGFP)
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gene was introduced into both vectors under the 26S
subgenomic promoter. The EGFP gene was cut out of
the pEGFP-C1 plasmid (Clontech, CA, USA) with Nhel
and Hpal restriction endonucleases, treated with T4
DNA polymerase (Thermo Scientific, Lithuania) to blunt
the DNA ends and ligated with the pSFV1 and pSinRep5
vectors, which were cleaved with Smal and Pmll, re-
spectively. Additionally, a pSFV1/DS-Red construct car-
rying the red fluorescent protein gene (DS-Red) [34]
was generated. The DS-Red gene was amplified by
PCR (primers: 5'-ATTAGGATCCACCGGTCGCCAC
CATG-3" and 5'-TATCCCGGGCTACAGGAACAGG
TGGTG-3") using the pDsRed-Monomer-C1 plasmid as a
template (Clontech, CA, USA). The PCR fragment was
cleaved with BamHI and Smal and ligated into a pSFV1
vector cleaved with the same enzymes. An SFV vector
carrying the firefly luciferase gene was used for the in vivo
experiments [35].

The resulting plasmids were used to produce recom-
binant virus particles as previously described [35]. pSFV-
Helper [9] and pSIN-DH-EB helper [10] were used to
produce the SFV and SIN particles, respectively. The DNA
template was removed by digestion with RNase-free DNase
(Fermentas, Lithuania). The viral titers (infectious units
per ml, iu ml™') were quantified by infecting BHK-21
cells with serial dilutions of viral stock and analyzing
EGFP or DS-Red expression via fluorescence micros-
copy on a Leica DM IL microscope (Leica Microsystems
Wetzlar GmbH, Germany). For the in vivo application,
SFV/EnhLuc viral particles (v.p.) were concentrated, and
the viral titer was quantified by Real-time PCR as previ-
ously described [35].

Infection of cell lines with recombinant virus particles
Cells were cultivated in 24-well plates at a density of
2 % 10° cells per well in a humidified 5% CO, incubator
at 37°C. For transduction, the cells were washed twice
with PBS containing Mg** and Ca** (Invitrogen, UK).
Next, 0.3 ml of the solution containing the virus particles
was added. The SFV/EGFP, SFV/DS-Red and SIN/EGFP
virus particles were diluted in PBS (containing Mg>*
and Ca®*") to achieve a multiplicity of infection (MOI) of
10. The cells were incubated for 1 h in a humidified 5%
CO, incubator at 37°C. The control cells (uninfected)
were incubated with PBS (containing Mg>* and Ca*").
After incubation, the solution containing the virus was
replaced with 0.5 ml of growth medium. The cells were
gently washed with PBS and transferred to fresh medium
every day.

MTT cell proliferation assay

The cytotoxicity was quantified using the MTT (3-[4,5-
dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide)-
based cell viability assay. Cells were infected in 24-well
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plates as described above, and proliferation was analyzed
0, 1, 2, 3, 4 and 5 days after infection. The medium was
replaced with 0.3 ml of solution containing 0.5 mg ml™"
MTT (Affymetrix, Cleveland, USA) dissolved in D-MEM
without phenol red (GIBCO/Invitrogen, UK) supple-
mented with 5% FBS. The cells were incubated for 2 h
in a humidified 5% CO, incubator at 37°C. After incuba-
tion, the formazan crystals were dissolved by adding
0.3 ml of MTT solubilization solution consisting of 10%
Triton X-100 and 0.1 N HCI in anhydrous isopropanol.
The absorbance was measured using a microplate spec-
trophotometer (BioTek Instruments, Winooski, USA) at
a test wavelength of 570 nm and a reference wavelength
of 620 nm. Cell viability (%) was obtained using the fol-
lowing equation: Percent cell viability = (test 570 nm —
620 nm)/(control 570 nm — 620 nm) x 100, where the
control is the value obtained from uninfected cells (the
standard error of the control was less than 3% for days
0-3 and less than 6% for days 4-5 in three independ-
ent experiments).

Fluorescence-activated cell sorting (FACS) analysis

Cells were infected on 6-well plates with SEV/EGFP and
SIN/EGEFP virus particles at an MOI of 10 as described
above (1 ml of virus-containing solution was used for
the infection). The infected cells were harvested 24 h
after infection. Detached cells were harvested from the
cell medium by centrifugation, and attached cells were
trypsinized. The collected cells (approximately 10°) were
washed with PBS and resuspended in 1 ml of PBS. For
propidium iodide (PI) staining, the cells were incubated
with 10 pl of 50 pg ml™ PI solution (Becton Dickinson
Biosciences, San Jose, California, USA) and immediately
processed for FACS analysis. EGFP and PI fluorescence
was measured using a FACSAria II (Becton Dickinson
Biosciences, San Jose, California, USA). The FACS data
were analyzed by BD FACSDiva 6.1.2 software. Unin-
fected cells were used as a negative control for both the
PI and EGFP FACS analysis and contained approxi-
mately 1-2% PI-positive cells in 4 T1 culture.

Fluorometry of infected/reinfected cells

Cells were seeded on 24-well plates and infected with
SFV/EGFP as described above. After 24, 48 and 72 h,
the infected cells were reinfected with the SFV/DS-Red
virus. DS-Red fluorescence was measured 24 h after
each reinfection using a fluorometric plate reader (Tecan
Infinite M 200, Austria) with an excitation wavelength of
535 nm and an emission wavelength of 590 nm. The
fluorometry data were expressed as the percentage of the
reinfected cell fluorescence units relative to the fluores-
cence units obtained from the control cells infected with
SFV/DS-Red alone (positive control, 100%). The experi-
ments were performed in triplicate.
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Treatment of cells with 5-FU

5-FU powder (Sigma, St. Louis, MO, USA) was dissolved
in DMSO at a concentration of 70 mg ml™* and further
diluted in filtered water to 7 mg ml™. 4 T1 cells were
seeded in a 24-well plate (2 x10° cells per well). The
next day, the cells were treated with medium containing
5-FU at 13, 26, 65 or 130 pg ml™". Every day for 5 days,
the cells were gently washed with PBS to remove dead
and detached cells, and fresh medium containing 5-FU
was added. The control cells were not treated with
5-FU. The MTT cell proliferation assay was performed 0,
1, 2, 3, 4 and 5 days after the start of 5-FU treatment.
The presence of DMSO traces did not affect 4 T1 cell
proliferation.

Induction of tumor nodules

A 4 T1 mouse mammary tumor model was established
as previously described [35]. Briefly, 4 T1 tumor cells
were resuspended in PBS at a final concentration of
2.5x10° cells mlI™". Two hundred microliters of the
4 T1 cell suspension were subcutaneously injected above
the right shoulder blade of the mice. After 10 days, the

obtained tumor volumes reached at least 1000 mm?®.

5-FU treatment and SFV/EnhLuc injection in vivo

5-FU powder (Sigma, St. Louis, MO, USA) was dissolved
in DMSO at a concentration of 300 mg ml™ and then
diluted in filtered water to 30 mg ml™'. 4 T1 tumor-
bearing mice (n>5) were treated with 5-FU at different
doses (40, 150 or 400 mg kg™') via peroral administra-
tion 4 times over a period of 8 days (every other day).
One hour after the last 5-FU treatment, the mice were
inoculated either i.t. (intratumoral) or i.p. (intraperito-
neal) with 200 pl (4 injections of approximately 50 pl
each) or 300 pl of SFV1/EnhLuc particle-containing
stocks (6 x 10° v.p. ml™), respectively. As a control,
4 T1 tumor-bearing mice not treated with 5-FU were it
or ip. inoculated with the same dose and volume of
SFV1/EnhLuc.

Analysis of luciferase gene expression in mouse organs
and tumors

The Luc gene expression level was estimated by measur-
ing luciferase enzymatic activity in tissue homogenates
24 h after SFV/EnhLuc virus administration. The tumors
and organs were excised and manually homogenized in a
1x concentration of ice-cold lysis buffer (Cell Culture
Lysis buffer, Promega) containing a protease inhibitor
cocktail (10 pl per 1 ml of lysis buffer) (Sigma, St. Louis,
MO, USA). After homogenization, the samples were
centrifuged for 10 min at 9000 x g, and the protein con-
centration was determined in tissue lysates using the
BCA Protein Assay Kit (Pierce™ BCA Protein Assay Kit,
Thermo Scientific, UK). Luciferase activity was measured
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by adding 100 pl of freshly reconstituted luciferase assay
buffer to 20 pl of the tissue homogenate (Luciferase Assay
System, Promega, USA) and then was quantified as rela-
tive light units (RLUs) using a luminometer (Luminoskan
Ascent, Thermo Scientific, UK). The RLU values were
expressed per mg of protein in the lysates. As a negative
control, 4 T1 tumor-bearing mice were inoculated with
PBS, and the maximal negative values were subtracted
from the presented results.

The efficacy index of the 5-FU and SFV combined
treatment was calculated using the formula (RLU in
5-FU treated mice/RLU in 5-FU non-treated mice)/
(tumor weight in 5-FU treated mice/tumor weight in
5-FU non-treated mice). For example: the efficacy
index = (3497925.0/1397062.5)/(681.3/690.9) = 2.5. The effi-
cacy index thus reflects the level of SFV expression
(increase in RLU) and the effect of the 5-FU treatment (re-
duction in tumor weight).

Analysis of FITC-dextran accumulation

The first group of 4 T1 tumor-bearing mice (n = 3) was
treated with 150 mg kg™* 5-FU as described above and
the second group (n = 3) was untreated with 5-FU. Next
day after the last 5-FU treatment the mice from both
groups were inoculated i.v. with 120 ul of FITC-dextran
2000 kDa solution (40 mg ml! in PBS) (Sigma). Two
hours later tumors were collected and incubated over-
night in 4% paraformaldehyde. After cryoprotection in
20% sucrose tumors were frozen in OCT compound
(Sigma). Cryosections (10 um) were prepared and the in-
tensity of FITC-dextran leakage was visualized by fluor-
escent microscopy. Pixels of images were measured by
Image] software.

Analysis of IFN-alpha in tumor lysates

Two groups of 4 T1 tumor-bearing mice (n=6 each)
were either treated or non-treated with 150 mg kg™
5-FU as described above. One hour after the last 5-FU
treatment, three mice from each group (n = 3) were in-
oculated i.t. with 200 pl (4 injections of approximately
50 pl each) of SFV1/EnhLuc particle-containing stocks
(6 x 10° v.p. ml™). 18 hours after the virus administration,
4 T1 tumors were isolated and frozen in liquid nitrogen.
Frozen tumors were manually homogenized with homo-
genization hammer and tissue powders were resuspended
in 500 pl of PBS. To provide better tumors homo-
genization, two freeze-thaw cycles were performed. After
homogenization, samples were centrifuged for 10 min at
5000 x g and the protein concentration was equalized in all
tissue lysates using the BCA Protein Assay Kit (Pierce™
BCA Protein Assay Kit, Thermo Scientific, UK). Expression
of IFN-alpha in 4 T1 lisates was determined using ELISA
Kit for Interferon Alpha (Uscn Life Science Inc., China),
according provided protocol. The obtained data (pg/ml)
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were expressed in % relative to lysates non-treated with
both the 5-FU and the virus.

Statistical analysis

The cell viability and RLU results are presented as the
means + standard error of 3 independent experiments.
The statistical analysis of the results was performed
using Microsoft Excel and Statistica7 (StatSoft, Tulsa,
OK, USA). Statistically significant differences were deter-
mined using Student’s t-test (P < 0.05).

Results

Transduction efficiency and cytotoxicity of alphaviral
vectors in 4 T1 cells

To select the most efficient cytotoxic alphaviral vector
for 4 T1 mouse mammary carcinoma cells, we compared
cell survival and transduction efficiency for two com-
monly used vectors based on SFV and SIN replicons.
4 T1 cells were infected with equal amounts of recom-
binant particles (multiplicity of infection, MOI = 10) en-
coding the EGFP gene. FACS analysis of EGFP-positive
cells was performed at 24 h post-infection. As shown in
Figure 1a (FACS assay), the SFV vector yielded a higher
proportion of EGFP-positive cells (60%) compared with
the SIN vector (38%).

The percentage of EGFP-positive cells measured via
FACS indicates the transduction efficiency and the abil-
ity of the vector to express the gene of interest. However,
alphaviral vectors may provoke cytopathic effects with-
out generating observable transgene expression. This
discrepancy is due to the strong induction of rapid apop-
tosis, which prevents the accumulation of the recombin-
ant product within the cell. To evaluate the immediate
(24 h after infection) cytotoxic effects of alphaviral infec-
tion, 4 T1 cells were stained with propidium iodide (PI),
a membrane-impermeable fluorescent dye that is gener-
ally excluded from viable cells. The percentage of PI-
positive (dead) cells measured by FACS was similar
for the SFV and SIN vectors (7%) (Figure 1a). Never-
theless, the SFV vector provoked a stronger inhibition
of cell proliferation than the SIN vector in 4 T1 cells,
as demonstrated by the MTT cell viability assays per-
formed over the 5 days following infection (Figure 1a).
Despite the strong cytotoxic effect of the SFV vector,
the 4 T1 cell culture (in contrast with other highly
infectable cancer cell lines, e.g., Huh-7, PA1, H2-35,
not shown) survived infection at present conditions,
and cell proliferation was completely restored within
8-10 days.

Repeated infections were next tested as a means of
enhancing the infectivity and cytotoxicity of the alpha-
virus. Remarkably, repeated infection of surviving cell
culture with the same or a different alphaviral vector
(SFV or SIN, respectively) did not produce a significant
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enhancement of transgene production or prolongation
of cytotoxicity. As shown in Figure 1b, the 4 T1 cell
culture infected with SFV/EGFP were less susceptible
to repeated infection with SFV/DS-Red particles encod-
ing the DS-Red fluorescent protein [34]. Only a very
small number of EGFP-negative cells (which did not
express the transgene after the first infection) were able
to express the DS-Red gene, indicating that the cells
could not be doubly infected by both alphaviruses. Simi-
lar results were obtained with the SIN vector and with
other combinations of SFV/SIN and SIN/SFV reinfection
(not shown). Moreover, an MTT cell viability analysis did
not reveal a difference in the cell proliferation patterns of
singly and doubly-infected cells (not shown). We con-
clude that the repeated application of alphaviral vectors
is not an efficient strategy to achieve complete inhibition
of cancer cell proliferation. This effect may be attribut-
able to the overall cellular protein synthesis down regula-
tion [11] and strong induction of an anti-viral response
[36,37] that makes the repeated application of the vector
inefficient.

The SFV vector was selected for further cytotoxicity
analysis in combination with 5-FU.

Combined treatment of 4 T1 cells with SFV and 5-FU

The low efficiency of oncolytic virotherapy in pre-
clinical studies might be associated with anti-vector
immunity or the resistance of tumors to repeated in-
fections. Recently, multiple strategies involving the com-
bination of oncolytic vectors with classic cytotoxic drugs
have proven to be advantageous for certain types of can-
cer (for review, see Wennier et al. 2012) [1]. Here, we an-
alyzed whether the combination of the SFV alphaviral
vector and 5-FU exerts a synergetic effect on cancer cell
proliferation.

To analyze the cytotoxic effect of 5-FU on 4 T1 cells,
cell monolayers were exposed to different concentrations
of 5-FU for 5 days (Figure 2a). After 5 days of incuba-
tion, high concentrations of 5-FU (65 and 130 pg ml™)
resulted in complete inhibition of cell proliferation on
days 5 and 4, respectively. Cells incubated with a low
concentration of 5-FU (13 pg ml™") displayed approxi-
mately 25% viability on day 5, but further incubation did
not lead to complete cell death under these conditions.
For the combined treatment, the highest (130 pg ml™")
and the lowest (13 pg ml™) 5-FU doses were tested.

The notion that recombinant alphaviruses expressing,
e.g., anti-tumor genes and/or inducing anti-tumor im-
mune responses must be applied prior to chemical drug
treatment is rational. Therefore, we first tested whether
5-FU could inhibit the proliferation of cells previously
infected with SFV. As shown in Figure 2b, 4 T1 cells
were infected with SFV/EGFP 2 days prior to treatment
with 5-FU. The kinetics of 4 T1 cell proliferation in the
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Figure 1 Transduction efficiency and cytotoxicity of SFV and SIN alphaviral vectors in 4 T1 cells. (a) 4 T1 cells were infected with SFV and
SIN particles encoding EGFP. At 24 h post-infection, the cells were harvested, stained with Pl and subjected to dual FACS analysis. The x-axis and
the y-axis represent EGFP and P/ fluorescence, respectively. The percentage of living/dead cells and EGFP-positive/negative cells is indicated on
the plot. The FACS data shown are from representative experiments (n = 3). The diagram on the left (MTT assay) demonstrates the cytotoxic effects
of SFV and SIN infection. An MTT cell viability assay was performed every day for 5 days post-infection. The results are presented as the percentage
of viable cells relative to the control (uninfected cells). The error bars indicate the standard error of 3 independent experiments. (b) Repeated
infection of 4 T1 cells. The cells were infected with SFV expressing EGFP (pictures show green fluorescence) and then re-infected 24, 48 and
72 h later with SFV expressing DS-Red (pictures show red fluorescence). Fluorometry of DS-Red fluorescence was performed 1 day after each
re-infection. The diagrams represent the percentage of fluorescence units in re-infected cells relative to control cells (100%), which were primarily infected
with only SFV/DS-Red. The error bars indicate the standard error of three experiments.

combined treatment approach (SFV plus 5-FU) was (130 pg ml™), providing the evidence for infected cell cul-
similar to those of infected 4 T1 cells. The SFV infection  ture resistance to further treatment with cytotoxic agent.

of 4 T1 cells alone resulted in 55% of cell viability on Short pretreatment of cancer cells with 5-FU has re-
day 5 after infection (Figure la, MTT-test, SEV). In the cently been shown to significantly enhance the infectivity
case of combined treatment, the cell viability was not of adenoviruses [30,38]. To investigate the effect of 5-FU
significantly changed and resulted in 50% and 40% via-  on alphavirus infection, 4 T1 cells were pretreated with
bility after treatment with 13 pg and 130 pg of 5-FU on  high (130 pg ml™") and low (13 pg ml™') concentrations
day 5, respectively (Figure 2b). Therefore, the application  of 5-FU for 2 days and then infected with SEV/DS-Red.
of 5-FU after SFV did not significantly influence the sur-  As shown in Figure 3, preincubation of cells with 5-FU
vival of the 4 T1 cell culture, even at the high drug dose  almost completely inhibited alphaviral infection. Moreover,
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Figure 2 Evaluation of 4 T1 cell proliferation after 5-FU treatment and in combination with SFV infection. (a) 5-FU treatment. 4 T1 cells
were grown in cell culture medium (24-well plates) containing the indicated concentrations of 5-FU. The MTT cell viability assay was performed
every day for 5 days. The diagram shows the cytotoxic effect of 5-FU on 4 T1 cells as the percentage of viable cells relative to the control
(untreated cells). (b) Schematic representation of the combined treatment with SFV and 5-FU. The cells were infected with SFV/EGFP particles, and
the medium was replaced 2 days later with medium containing 5-FU. The MTT cell viability assay was performed every day for 5 days. The arrows
designate the day of infection (SFV) and the beginning of the drug treatment (5-FU). The diagram shows the cytotoxic effect of 5-FU following SFV
infection as the percentage of viable cells relative to the control (untreated cells). The error bars indicate the standard error of 3 independent
experiments. The microscopy image shows a 4 T1 cell monolayer at day 5 after treatment with SFV and the highest concentration of 5-FU.

in contrast to the adenoviral vector, a short (2 h) pretreat-
ment of 4 T1 cells with a low dose of 5-FU (13 pg ml™)
slightly inhibited alphaviral infection, with a total de-
crease in fluorescence of approximately 10-15% com-
pared with infected cells not treated with 5-FU (not
shown). Lower 5-FU concentrations (below 13 pg ml™")
had no significant effect on alphaviral infectivity in 4 T1
cells (not shown).

To measure the inhibition of cell proliferation pro-
duced by the combined treatment, 5-FU-pretreated 4 T1
cells were infected with SFV and subjected to cell viabil-
ity analysis over a period of 5 days (Figure 4). Pretreat-
ment of 4 T1 cells for 2 h with a high dose of 5-FU
(130 pug ml™) followed by infection with SFV did not
significantly impair cell proliferation compared with
4 T1 cells that were only infected with SFV (Figure 4b).
On day 5, the cell viability was approximately 52%.
In a similar way, application of a low dose of 5-FU
(13 pg ml™") for 2 h did not provoke a significant en-
hancement of cytotoxic effect of SFV (70% on day 5)
compared to the SFV infection alone (60% on day 5), in-
dicating the absence of synergy between 5-FU and SFV.
Furthermore, prolonged incubation with 5-FU (for 2 days)
also did not produce a significant difference in infected
cell proliferation at either dose tested, comparing to un-
infected cells under similar conditions (Figure 4c). The
cells that were pretreated with a low dose of 5-FU began
to resume cell division (49% cell viability) by day 5,
whereas the cells treated with a high dose reached 24%
cell viability, similar to the controls: cells that were
treated with 5-FU but not infected with SFV (64% and
23%, respectively). Therefore, the treatment strategy, in
which 5-FU was used prior to virus infection, strongly
inhibited SFV expression and did not produce synergistic
cytotoxic effect in 4 T1 cells.

The effect of 5-FU treatment on SFV expression in 4 T1
tumor-bearing mice

To investigate the efficiency of SFV-driven transgene ex-
pression after 5-FU chemotherapy, 4 T1 tumor-bearing
mice were perorally (p.o.) treated with 5-FU and then in-
oculated with SFV/EnhLuc by intratumoral (i.t.) injec-
tion of 3 x 10® virus particles encoding firefly luciferase.
The mice were treated with different doses of 5-FU 4

times, every other day (Figure 5a). The lower dose
(40 mg kg™") resulted in no visible toxic effects or any
significant tumor inhibition; this dose is therefore consid-
ered asymptomatic. The medium dose (150 mg kg™)
produced a minimal tumor size reduction and medium
toxicity (loss of appetite). The high dose (400 mg kg™),
by contrast, yielded significant tumor inhibition and
strong side effects (watery diarrhea, weight loss, hunched
posture). After the last 5-FU treatment (1 h later), the
mice were it. inoculated with SFV/EnhLuc virus parti-
cles, and Luc gene expression was measured 24 h later
via luminometry on tumor lysates. The highest luciferase
activity was detected in the tumors of mice treated with
the highest dose of 5-FU (400 mg kg™*) (Figure 5b), with
increases in transgene production of approximately
50-fold compared with mice not treated with 5-FU and
approximately 14-fold compared with the low dose treat-
ment (40 mg kg ™). Remarkably, this asymptomatic low
dose also produced a statistically significant 3.6-fold in-
crease in luciferase activity (p < 0.05).

Because the low dose improved transgene expression
and had no signs of toxicity, this dose was used to evaluate
the tumor targeting and biodistribution of SFV particles
upon intraperitoneal (ip. 1.8 x 10° v.p.) administration in
combination with 5-FU. As presented in Figure 5c, the
highest levels of Luc gene expression were detected in the
tumors and hearts of mice treated with 40 mg kg™' 5-FU.
Although significantly lower total Luc expression was
observed with ip. inoculation compared with the i.t.
route, the Luc level in the tumors was still 2.1-fold
higher (p <0.05) in i.p. inoculated mice relative to 5-FU
untreated mice. Among the other organs, only the heart
showed an increase in Luc expression after 5-FU treat-
ment (1.4-fold; not significant). Remarkably, there were no
significant changes in vector biodistribution observed in
the case of i.t. administration (not shown). The i.t. inocula-
tion provided no further distribution of the vector to or-
gans in both 5-FU treated and untreated mice, confirming
therefore the enhancement of vector expression specific-
ally in tumor of 5-FU treated animals.

Discussion
One strategy to enhance cancer virotherapy is to
apply viral vectors in combination with standard and
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Figure 3 Inhibition of SFV/DS-Red infection in 4 T1 cells pretreated with 5-FU. 4 T1 cells were treated with high (130 ug mlI™") or low

(13 pg mI™") concentrations of 5-FU for 2 days, then infected with SFV/DS-Red particles. (a) Fluorescence and phase contrast microscopy pictures.
(b) Fluorometric measurement of DS-Red fluorescence in infected cells at 24 h post-infection. The diagram shows the percentage of fluorescence
units measured in the cells pretreated with 5-FU (13 ug ml™" or 130 pg mi™") and then infected with SFV/DS-Red relative to 4 T1 control cells
(100%) that were only infected with SFV/DS-Red. The error bars indicate the standard error of three independent experiments.
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Figure 4 Evaluation of cytotoxicity in 4 T1 cells treated with 5-FU and then infected with SFV. (a) Schematic representation of the
experiment. 4 T1 cells were pretreated with high (130 pg mi~" or low (13 ug mi~") doses of 5-FU for 2 h or 2 days and then infected with
SFV/EGFP particles. (b) 4 T1 cells treated with 5-FU for 2 h and infected with SFV/EGFP particles (solid lines). The dotted lines (red) show the
controls: cells treated with 5-FU for 2 h and then incubated in complete medium for 5 days. The dashed line (green) shows the cells infected with
SFV/EGFP particles. (c) 4 T1 cells treated with 5-FU for 2 days and infected with SFV/EGFP particles (solid lines). The dotted lines (red) show the
controls: cells treated with 5-FU for 2 days (day 0-2) and then incubated in complete medium for further three days. An MTT cell viability assay
was performed every day for 5 days. The diagrams show the cytotoxic effects of 5-FU and SFV/EGFP, which are expressed as the percentage
of viable cells relative to the untreated cells. Arrows indicate the beginning of drug treatment (5-FU) and the day of infection (SFV). Error
bars show the standard error of three experiments. Fluorescent images demonstrate the efficiency of SFV/EGFP expression on the day after

well-studied chemical drugs to promote synergistic ac-
tions and potentially lead to effective therapy outcomes.
Classic alphaviral vectors based on SFV and SIN repli-
cons have been used for in vitro and in vivo cancer gene
therapy experiments and have shown promising results
in different cancer models [39,40]. Nevertheless, the
problems of tumor recovery and the inefficiency of
repeated vector administration remain to be solved.
In this study, we explored the efficiency of SFV-mediated
gene transfer in combination with 5-FU and the possi-
bility of a synergistic cytotoxic effect of the combined
treatment in the highly proliferative 4 T1 mouse breast
cancer model.

5-FU is an antitumor drug typically included in breast
carcinoma chemotherapeutic regimens [41,42]. The cyto-
toxic effect of 5-FU occurs through the inhibition of the
synthesis and functioning of DNA and RNA. Although the
general mechanism of 5-FU action as an anti-metabolite

has been investigated [43], little is known about the intra-
cellular molecular changes that lead to apoptosis in the
presence of 5-FU. Protein kinase R (PKR) has been shown
to be a molecular target of 5-FU-induced apoptosis [44],
suggesting that 5-FU might induce apoptosis via a mech-
anism similar to that of alphaviruses: the double-stranded
RNA intermediates made during alphavirus genome/
subgenome replication also activate PKR, which con-
tributes to the inhibition of protein synthesis [45]. PKR
has also been shown to play an important role in the in-
duction of apoptosis by other drugs, such as doxorubicin
and etoposide [46,47], which have been successfully used
in combination with other viruses [48,49]. Therefore, the
combined treatment with alphavirus and 5-FU presented
herein could potentially produce a synergistic effect due
to the targeting of similar pathways that may work to-
gether to enhance cytotoxicity in cancer cells. Neverthe-
less, this combined treatment showed poor efficiency in
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weights are indicated in the tables. RLU, relative light unit.

Figure 5 SFV expression in 4 T1 tumor-bearing mice treated with 5-FU. (a) Experiment design: Balb/c mice (n=5 in each group) were
subcutaneously inoculated with 4 T1 cells; beginning on day 14, the mice were treated four times with 5-FU, every other day (40 mg kg ™',

150 mg kg~" or 400 mg kg™'). On day 20, after the last 5-FU administration, the mice were it. or i.p. inoculated with SFV/EnhLuc virus particles.
Tumor weight and Luc gene expression were measured 24 h after viral inoculation. (b) Intratumoral Luc gene expression after i.t injection of SFV/
EnhLuc virus particles in 5-FU-treated mice. Luciferase activity was measured in tumor homogenates 24 h after virus inoculation. Tumor weights
were measured prior to homogenization (scale on the right). (c) SFV/EnhLuc virus biodistribution in 4 T1 tumor-bearing mice treated with

40 mg kg™ 5-FU. Luciferase activity was measured in tumor and organ homogenates 24 h after i.p. virus inoculation. The graphs present the RLUs
per mg protein in each organ or tumor (see Methods section). The results are presented as the means + s.e. The average RLU values and tumor

4 T1 cells in vitro. Neither SFV infection with subsequent
5-FU treatment (Figure 2b) nor the opposite strategy of
pretreatment with 5-FU and later infection with SFV
(Figure 4) produced a more efficient inhibition of cell
proliferation compared with SFV or 5-FU alone (Figures 1a
and 2a). Moreover, pretreatment of cells with 5-FU signifi-
cantly inhibited SFV infection and transgene expression
(Figure 3).

The basis for the resistance of the surviving cell popu-
lation to high 5-FU doses and SFV infection in the
combined treatment remains unclear. Cabrele et al. [4]
and others demonstrated stimulation of adenoviral vec-
tor infection via 2 h of low-dose pretreatment with 5-FU
in human colon carcinoma cell lines. In contrast to
adenoviruses, RNA containing alphaviruses replicate
their genome in the cytoplasm. The extremely efficient
alphaviral RNA replication is regulated by the virus-
encoded replicase complex and the specific secondary
structure of the RNA genome [50]. As previously de-
scribed, incorporation of 5-FU metabolites into RNA
may change RNA structure and/or affect tRNA and
rRNA function [43]. It is thus possible that a similar
incorporation of 5-FU metabolites into alphaviral gen-
omic and subgenomic RNAs may likewise alter RNA
secondary structure and inhibit its replication and
translation. The presence of 5-FU and its metabolites
could also inhibit the viral replicase in a similar manner
to that observed in the inhibition of the active center of
thymidylate synthetase by 5-fluorodeoxyuridine mono-
phosphate [51]. We conclude that this combined treat-
ment produces no synergy in the induction of apoptosis
but rather inhibits alphaviral replication and transgene
production.

Several oncolytic viruses have been applied in com-
bined treatments in mouse tumor models [1]. However,
less is known about the efficiency of infection or the kin-
etics of virus persistence under combined treatment in
mice because most studies focused on the significant
therapeutic effects and tumor growth inhibition. The fact
that multiple different combinations of viruses (enveloped,
unenveloped, dsDNA, RNA, ssDNA) and cytotoxic chem-
ical drugs (antimetabolites, antibiotics) all produce syner-
gistic therapeutic effects implies a common non-specific

mechanism underlying such a benefit. Here, we observed a
significant enhancement of intratumoral SFV-mediated
transgene expression in mice treated with 5-FU (Figure 5).
The low dose (suboptimal) of 5-FU provoked a 3.6-fold in-
crease in Luc gene expression, whereas the high dose
(400 mg kg ™', which is close to the maximum-tolerated
dose of chemotherapy regimens) yielded a 50-fold increase.
This positive correlation between 5-FU dose and the level
of Luc expression contradicts the in vitro results; however,
this correlation is in line with the promising results ob-
tained using other viruses in combination with 5-FU in
mouse models [52-54].

5-FU is widely distributed to all tissues, including sites
of active cell proliferation [55]. In addition to the tumor,
the primary target cells are endothelial cells in blood
vessels. Therefore, 5-FU treatment leads to massive cell
death in places with high vascularization (including the
tumor), which may increase tissue permeability to mac-
romolecules and viruses in particular. The high level of
SEFV expression observed following 5-FU treatment
might be explained by the enhanced permeability and
retention (EPR) effect [56,57], which leads to passive
and preferential accumulation and more efficient intratu-
moral distribution of the virus at sites of enhanced vascu-
lar permeability. To compare tumor vascular leakage in
mice treated and untreatedwith 5-FU, we used fluores-
cein isothiocianate-conjugated dextran 2000 kDa (FITC-
dextran 2000), a polysaccharide with a high molecular
mass that is used as a model of permeability and reten-
tion for macromolecular structures such as nanopar-
ticles, liposomes and viruses [58]. FITC-dextran 2000
was injected via the tail vein in 4 T1 tumor bearing mice
and 2 h later the tumor cryosections were subjected to
fluorescence analysis. As shown in Figure 6a and b, the
distribution intensity of FITC-dextran 2000 within the
tumor was significantly higher in 5-FU treated mice
(150 mg kg™') comparing to the untreated control. This
observation supports the idea that 5-FU treatment ele-
vates tumor vascular permeability of macromolecular
structures that might lead to enhanced virus distribution
and high level of transgene production in 5-FU treated
animals. The concept of enhanced virus intratumoral dis-
tribution after drug treatment is also supported by the
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Figure 6 Evaluation of vascular permeability and intratumoral level of IFN-alpha in 4 T1 tumor-bearing mice treated with 5-FU.

(@) Fluorescent microscopy of 4 T1 tumor cryosections demonstrating a FITC-dextran 2000 kDa accumulation in untreated (left) and 5-FU treated
(right) tumors. FITC-dextran 2000 kDa (green) was intravenously-administrated and 2 h later tumors were processed as described in methods. FITC,
fluorescein isothiocyanate. H&E, hematoxylin and eosin staining of cryosections. The 5-FU exhibited morphological changes in tumor sections,
microvessel density was significantly lower than that in the untreated control, large patchy necrosis was visualized. (b) The diagram shows the
data from three tumors, evaluating ten sections per tumor. (c) IFN-alpha response to intratumoral SFV/EnhLuc injections in tumor-bearing mice
treated and untreated with 5-FU. The IFN-alpha level is expressed in % relative to tumors non-treated with 5-FU and virus. Two groups of mice
(n=6) were treated and non-treated with 5-FU, respectively, then a half of each group of mice was subjected to intratumoral injections of SFV/
EnhLuc. The IFN-alpha response was measured in tumor homogenates after 18 h of virus injection. NS — non-significant differences; * - significant
differences (p < 0.05), mean + SD; bar 200 pm.

results of Tseng et al. [59], who demonstrated a signifi- positive effect of the drug treatment (paclitaxel) on virus
cant enhancement in tumor vascular permeability and infection and replication in vitro.

oncolytic Sindbis vector targeting following chemo- Besides the changes in tumor vascular permeability
therapy. Notably, those authors also did not observe a  mediated by 5-FU treatment, an antiviral immune response
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Figure 7 The efficacy index of SFV and 5-FU combined treatment of 4 T1 tumor-bearing mice. The mice were treated with different doses
of 5-FU and then it. inoculated with SFV/EnhLuc virus particles. The efficacy index reflects the correlation of tumor growth inhibition with the

level of SFV expression in 5-FU treated mice. The calculations are described in the Methods section.

has to be considered as a factor which affects the infection.
At the early step of infection alphaviruses are sensitive to
type I IFN production [60,61]. We have examined the
intratumoral level of IFN-alpha in 5-FU treated and un-
treated tumor bearing mice as a response to it. adminis-
trated SFV (Figure 6c). The results indicate a significant
inhibition of IFN-alpha antiviral response in 5-FU treated
tumors, evidencing the innate immunity inhibition by
5-FU that at the same time might lead to enhanced virus
replication.

Therefore, we propose that pretreatment with a cyto-
toxic drug may enhance the efficiency of alphaviral-
mediated transgene delivery through the EPR effect and
the inhibition of antiviral IFN-alpha response. Here we
have demonstrated a significant 3.6-50.0 fold increase in
Luc transgene expression that can be regulated by 5-FU
dose. Although we did not observe any differences in
tumor growth and survival rates (not shown) between
the groups of animals treated with 5-FU and treated
with combination of 5-FU and SFV/EnhLuc, the ob-
served enhancement of intratumoral virus expression
mediated by 5-FU pretreatment has a potential to ad-
vance the alphavirus-driven transgene delivery field. The
insertion of proinflammatory transgenes into the vector
instead of reporter /uc gene could be promising for fur-
ther optimization of SFV-based virotherapy of cancer to
enhance the effect of chemotherapy and to prevent
tumor recurrence and metastasis.

Conclusions

In this study, we describe the enhanced intratumoral
expression of a replication-deficient SFV vector fol-
lowing 5-FU treatment in the 4 T1 mouse mammary
tumor model. To illustrate the efficacy of the combined

treatment, we introduced “the efficacy index”, which re-
vealed a decrease in tumor weight upon 5-FU treatment
that was correlated with an increase in SFV expression. As
presented in Figure 7, the highest efficacy index (89.8) was
observed with the high 400 mg kg™ 5-FU treatment, which
provoked a significant inhibition of tumor growth and the
most efficient intratumoral SFV expression. The applica-
tion of a subtherapeutic dose (40 mg kg™) of 5-FU also led
to a 3.6-fold enhancement of SFV expression upon i.t. vec-
tor administration. Moreover, 5-FU treatment did not
change the distribution of SFV upon i.p. inoculation, allow-
ing preferential vector expression in the tumor and heart
and leading to a 2.1-fold increase in intratumoral SFV
expression.

Although the combined treatment did not show a syn-
ergistic anti-proliferative effect in vitro due to the strong
inhibition of SFV replication by 5-FU, the significant in-
crease observed in intratumoral SFV expression (even at a
low drug dose) might enhance the transgene delivery of
alphaviral vectors and their general therapeutic potential.
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