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Targeting cyclin-dependent kinase 1 (CDK1) but
not CDK4/6 or CDK2 is selectively lethal to
MYC-dependent human breast cancer cells

Jian Kang', C Marcelo Sergio', Robert L Sutherland'?" and Elizabeth A Musgrove'*"

Abstract

Background: Although MYC is an attractive therapeutic target for breast cancer treatment, it has proven
challenging to inhibit MYC directly, and clinically effective pharmaceutical agents targeting MYC are not yet
available. An alternative approach is to identify genes that are synthetically lethal in MYC-dependent cancer. Recent
studies have identified several cell cycle kinases as MYC synthetic-lethal genes. We therefore investigated the
therapeutic potential of specific cyclin-dependent kinase (CDK) inhibition in MYC-driven breast cancer.

Methods: Using small interfering RNA (siRNA), MYC expression was depleted in 26 human breast cancer cell lines
and cell proliferation evaluated by BrdU incorporation. MYC-dependent and MYC-independent cell lines were
classified based on their sensitivity to siRNA-mediated MYC knockdown. We then inhibited CDKs including CDK4/6,
CDK2 and CDK1 individually using either RNAi or small molecule inhibitors, and compared sensitivity to CDK
inhibition with MYC dependence in breast cancer cells.

Results: Breast cancer cells displayed a wide range of sensitivity to siRNA-mediated MYC knockdown. The sensitivity
was correlated with MYC protein expression and MYC phosphorylation level. Sensitivity to siRNA-mediated MYC
knockdown did not parallel sensitivity to the CDK4/6 inhibitor PD0332991; instead MYC-independent cell lines were
generally sensitive to PD0332991. Cell cycle arrest induced by MYC knockdown was accompanied by a decrease in
CDK2 activity, but inactivation of CDK2 did not selectively affect the viability of MYC-dependent breast cancer cells.
In contrast, CDK1 inactivation significantly induced apoptosis and reduced viability of MYC-dependent cells but not
MYC- independent cells. This selective induction of apoptosis by CDK1 inhibitors was associated with up-regulation
of the pro-apoptotic molecule BIM and was p53-independent.

Conclusions: Overall, these results suggest that further investigation of CDK1 inhibition as a potential therapy for

MYC-dependent breast cancer is warranted.
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Background

The MYC oncogene is one of the most commonly amp-
lified oncogenes in human breast cancer and contributes
to its formation and development [1-3]. MYC gene amp-
lification has been found in approximately 15% of breast
tumours, while more than 40% of breast cancers over-
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express MYC protein, indicating that gene amplification is
not the only cause of MYC over-expression [4,5]. MYC
over-expression results in a number of cellular changes,
including transcriptional amplification [6,7] and increased
protein biosynthesis [8]. MYC-stimulated cell cycle pro-
gression has also been well studied. Cyclin-dependent ki-
nases (CDKs), including three interphase CDKs (CDK2,
CDK4 and CDK®6) and a mitotic CDK (CDK1), are critical
regulators of cell cycle progression in mammalian cells
[9]. Increased cyclin E-CDK2 activity appears to be a prin-
cipal mechanism contributing to MYC-induced G;-S phase
transition in breast cancer cells [10,11], possibly through
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suppression of the CDK inhibitor p21 [12,13] and induc-
tion of the CDK phosphatase CDC25A [14]. Although
cyclin D1 and CDK4 are putative MYC target genes, and
required for MYC-mediated transformation in keratino-
cytes [15,16], the proliferative effect of MYC in breast
cancer cells appears to be independent of cyclin D1/
CDK4 activation as evidenced by the absence of cyclin
D1 up-regulation and CDK4 activation upon MYC
induction [11].

The key role of MYC activation in the pathogenesis of
breast cancer and the high incidence of MYC deregula-
tion make MYC an attractive therapeutic target in breast
cancer. However, transcription factors such as MYC
are challenging to target directly and clinically-effective
pharmaceutical agents targeting MYC are not yet available
[17,18]. Nevertheless, cancer cells develop dependence
on other genes and pathways in order to overcome anti-
tumorigenic effects, such as apoptosis and senescence,
that result from activation of MYC. These dependencies
may provide novel therapeutic options for targeting MYC
addiction. Consequently, an alternative approach which
has recently received great attention is to identify genes
that are synthetically lethal in MYC-dependent cancers.
Genome-wide RNAi screens for synthetic lethality in
MYC over-expressing cells highlight the potential of
targeting cell cycle kinases for MYC-dependent cancers
[19,20]. Other studies using a candidate approach also
identified several cell cycle kinases as MYC-synthetic le-
thal genes in different types of cancer, including CDK2
[21], CDK1 [22] and aurora-B kinase [23]. Since cellular
context and tissue type affect the biological functions of
MYC [24] and thus presumably affect these synthetic le-
thal interactions, we investigated the therapeutic potential
of specific CDK inhibition in MYC-driven breast cancer.

Aberrant CDK activation induces unscheduled prolifera-
tion and leads to genomic and chromosomal instability in
cancer cells [25]. Consequently, CDK inhibition has been
considered as a potential therapeutic strategy for cancer
treatment, and a series of CDK inhibitors have been devel-
oped. Disappointingly, CDK inhibitors have yet to demon-
strate significant clinical advantages as sole agents [26].
Accumulating evidence suggests that tumour cells have a
selective dependence on specific CDKs, therefore, identifi-
cation of specific genetic contexts in which tumour cells
are the most likely to be responsive to CDK inhibitors, is
required to improve effectiveness of CDK inhibitors in
clinical trial [25].

In this study we used an RNAi approach to identify
MYC-dependent breast cancer cell lines and then inhib-
ited CDKs including CDK4/6, CDK2 and CDK1 individu-
ally by either RNAi or small molecule inhibitors in both
MYC-dependent and MYC-independent cells. We found
that targeting CDK1 rather than CDK4/6 or CDK2 select-
ively reduced the viability of MYC- dependent breast

Page 2 of 13

cancer cells, suggesting a potential therapeutic value of
targeting CDK1 for MYC-driven human breast cancer.

Methods

Cell lines, cell culture and reagents

The cell lines used in this study: AU565, BT20, BT474,
BT483, BT549, HCC1143, HCC1500, HCC1569, HCC1937,
HCC1954, HCC38, HCC70, Hs578T, MDA-MB-134,
MDA-MB-175, MDA-MB-361, MDA-MB-436, MDA-
MB-453, MDA-MB-468, SKBR3, and ZR751 were obtained
from ATCC, Rockville, MD, USA. MCE-7 cells were ob-
tained from Michigan Cancer Foundation, Detroit, MI,
USA. The cell lines HBL100, MDA-MB-157, MDA-MB-
231 and T47D were obtained from EG&G Mason Research
Institute, Worcester, MA, USA.

The cell lines AU565, BT20, BT474, BT549, HBL100,
Hs578T, MCF-7, MDA-MB-134, MDA-MB-157, MDA-
MB-175, MDA-MB-231, MDA-MB-361, MDA-MB-436,
MDA-MB-453, MDA-MB-468, SKBR3, T47D and ZR571
were cultured in RPMI 1640 medium supplemented with
10% heat-inactivated fetal bovine serum (FBS), 6 mM L-
glutamine, 20 mM HEPES and 10 pg/ml human insulin
(CSL-Novo, North Rocks, NSW, Australia). The remaining
cell lines were cultured in RPMI 1640 medium supple-
mented with 10% heat-inactivated FBS, 6 mM L-glutamine,
1 mM sodium pyruvate and 20 mM HEPES. The MYC
over-expressing MCF7 cells have been previously described
[11,27] and were cultured in the same conditions as the
parental cells.

The CDK4/6 inhibitor PD0332991 was purchased
from Selleck Chemicals (Houston, TX, USA), CDK2 in-
hibitor SNS-032 from Symansis (Auckland, New Zealand)
and CDK1 inhibitors, RO-3306 and CGP74514A, from
Calbiochem (San Diego, CA, USA).

Cell proliferation and apoptosis analysis
Bromodeoxyuridine (BrdU) incorporation was assayed
using the Cell Proliferation ELISA, BrdU (colorimetric)
Assay system (Roche, Dee Why, NSW, Australia). Prolifera-
tion was also assessed by AlamarBlue (Life technologies,
Mulgrave, VIC, Australia). Cell cycle analysis was performed
by flow cytometric analysis of propidium iodide-stained,
ethanol-fixed cells. The apoptotic cell population was de-
termined by staining methanol-fixed cells with the M30
CytoDEATH antibody (Enzo life Sciences, Farmingdale,
NY, USA).

siRNA transfection

The MYC siRNA pool contained equimolar concentra-
tions of siMYC-17 (5'-GGACUAUCCUGCUGCCAAG-
3’, Catalogue number D-003282-17-0050) purchased from
Dharmacon (Lafayette, Colorado, USA) and MYC silencer
(5'-GAGCUAAAACGGAGCUUUU-3’, Catalogue num-
ber s9130) purchased from Ambion (Austin, TX, USA).
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Gene-specific siRNAs including cyclin D1 (L-003210-00),
CDK2 (L-003236-00)), CDK1 (J-003224-13) and On-Target
Plus Non-Targeting siRNA control (D-001810-10), as well
as siTOX transfection control (D-001500-01), were pur-
chased from Dharmacon. siRNA transfection was per-
formed by reverse transfection, where cells were seeded
directly onto plates containing transfection reagents and
siRNA mixture.

Western blot analysis

Protein lysates were harvested as described previously
[11]. 10 to 30 ug of lysate was separated using NuPage
polyacrylamide gels (Life technologies, Mulgrave, VIC,
Australia) prior to transfer to polyvinyl difluoride mem-
branes. The membranes were incubated with the follow-
ing primary antibodies: CDK1 (P34), CDK2 (M2), cyclin
A (C-19), cyclin D1 (DCS-6), E2F1 (KH95) and MYC
(9E10) from Santa Cruz Biotechnology (Santa Cruz, CA,
USA); BIM, cyclin E1, cyclin E2, phospho-CDK2 (Thr160),
phospho-pRB  (ser795) (Cell Signaling, Danvers, MA,
USA); p21©PY/Watl 1557KP1 and pRB from BD Pharmingen
(San Diego, CA, USA), B-Actin (AC15) from Sigma
(St Louis, MO, USA). The secondary antibodies were
horseradish peroxidase-conjugated sheep anti-mouse or
donkey anti-rabbit antibodies (Amersham, Rydelmere,
NSW, Australia), and specific proteins were visualized by
chemiluminescence (Perkin-Elmer, Rowville, VIC, Australia).
Densitometry was performed using the software Image].

Statistical analysis

All experiments were repeated at least three times. All
numerical data are expressed as mean + SEM. Statistical
analyses were done by one-way ANOVA or linear re-
gression using PRISM 6 (GraphPad, San Diego, CA).
Error bars on all graphs represent the standard error of
the mean between measurements. P <0.05 was consid-
ered significant.

Results

SiRNA-mediated MYC knockdown identifies
MYC-dependent breast cancer cells

With the aim of assessing the dependence of human
breast cancer cells on MYC function, we suppressed
MYC expression through siRNA-mediated inhibition
and then evaluated cellular proliferation. Twenty-six hu-
man breast cancer cell lines encompassing a spectrum
of breast cancer phenotypes were transfected with a
pool of two distinct siRNA species targeting different se-
quences within the MYC gene. For each cell line we
tested different types of lipid transfection reagents and
lipid concentrations, and titred the cell numbers plated
for transfection (Additional file 1: Table S1). Optimized
transfection conditions satisfied the following criteria:
(1) Transfection with non-targeting siRNA control did
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not reduce cellular viability by more than 20%, compared
to mock-transfected cells, indicating that these cells could
be transfected without significant non-specific toxicity;
(2) Transfection with a siRNA causing cellular toxicity led
to a reduction in viability by more than 80%, compared to
transfection with siCON, indicating that high transfection
efficiency could be achieved. Western blot analyses con-
firmed that at a concentration of 10 nM siRNA, MYC
expression was effectively decreased by 76.4% to 98.4% in
all the cell lines tested (Additional file 1: Figure S1). BrdU
incorporation was used a measure of the relative inhib-
ition of cell proliferation in order to compare sensitivity
to MYC knockdown across the panel of cell lines. As
depicted in Figure 1, depletion of MYC decreased BrdU
incorporation in a concentration-dependent manner in
the majority of breast cancer cell lines, and the maximum
inhibition occurred at 10-50 nM of MYC siRNA. How-
ever, the cell lines displayed a broad range of sensitivity to
MYC RNAI in terms of the degree of inhibition achieved.
The sensitivity of individual cell lines to MYC knockdown
at 10 nM is listed in Additional file 1: Table S2. Transfec-
tion of 10 nM MYC siRNA resulted in a marked reduc-
tion of BrdU incorporation, by more than 75%, in five of
twenty-six breast cancer cell lines (Hs578T, HCC1954,
MDA-MB-134, AU565 and SKBR3). These cell lines were
classified as highly MYC-dependent. BrdU incorporation
was decreased by 50-75% in eleven cell lines (HCC1143,
BT549, BT474, MDA-MB-436, MDA-MB-231, MDA-
MB-453, HCC70, T47D, MDA-MB-361, MCF-7 and
HBL100) and by 25-50% in six cell lines (ZR751, MDA-
MB-468, BT483, HCC1937, HCC38 and HCC1569). In
contrast, the BrdU incorporation of four cell lines (MDA-
MB-175, MDA-MB-157, BT20 and HCC1500) was re-
duced by less than 25%, in the presence of 10 nM MYC
siRNA. Since this group of cell lines was the least MYC-
dependent, for simplicity we refer to them as MYC-
independent.

Sensitivity to siRNA-mediated MYC knockdown is
correlated with MYC expression

To characterize the molecular features of MYC-dependent
breast cancer cells, we analysed the baseline MYC signal-
ling activity. Sensitivity to MYC knockdown (ie. 100%
minus the relative BrdU incorporation) was signifi-
cantly correlated with MYC mRNA (R =0.59, P =0.0014,
Additional file 1: Figure S2A) and protein expression level
(R=0.57, P=0.0022, Figure 2A and Additional file 1:
Table S2). Phosphorylation of MYC at threonine 58 and
serine 62 is critical for stabilization of MYC protein [28],
and there was a significant correlation between MYC
phosphorylation status and responsiveness to MYC deple-
tion (R =0.56, P =0.0029, Figure 2A and Additional file 1:
Table S2). Although no overall correlation was observed
between MYC gene copy number and sensitivity to MYC
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Figure 1 The effects of siRNA-mediated MYC knockdown on cell proliferation in a panel of 26 human breast cancer cell lines. Cells
were transfected with either pooled MYC siRNA (siMYC) or Non-targeting siRNA control at the indicated concentrations and BrdU incorporation
measured after 72 hours. Data are expressed as the percentage of BrdU incorporation in the cells transfected with MYC siRNA relative to the cells
transfected with control siRNA. Based on their sensitivity to MYC depletion at 10 nM siRNA, breast cancer cells were classified into MYC-highly
dependent (blue colour: Hs578T, HCC1954, MDA-MB-134, AU565 and SKBR3), dependent (red colour: HCC1143, BT549, BT474, MDA-MB-436.
MDA-MB-231, MDA-MB-453, HCC70, T47D, MDA-MB-361, MCF-7, HBL100, ZR751, MDA-MB-468, BT483, HCC1937, HCC38 and HCC1569) and
MYC-independent cells (green colour: MDA-MB-175, MDA-MB-157, BT20 and HCC1500) with inhibition of proliferation by more than 75%, 25-75%
and less than 25%, respectively. Data are mean + SEM analysed in triplicate experiments.

siRNA, two cell lines with MYC gene amplification,
AU565 and SKBR3, displayed a high sensitivity to MYC
depletion (Additional file 1: Figure S2B). In addition, there
was no significant correlation between baseline expression
of the cell cycle effector proteins, cyclin D1, cyclin E1
and E2, cyclin A, CDK2 and the CDK inhibitors (p21, p27
and p16), and sensitivity to MYC siRNA (Additional file 1:
Figure S2C). We also noted that the inhibitory effect
of MYC siRNA on cell proliferation was not dependent on
retinoblastoma protein (pRb) status, as five pRb-deficient
cell lines (BT549, MDA-MB-436, HCC70, MDA-MB-468
and HCC1937) were all responsive to MYC depletion,
implicating both pRb-dependent and pRb-independent
mechanisms underlying MYC-stimulated cell cycle
progression.

Breast cancer cell lines have been classified into three
broad subtypes based on the expression of the intrinsic
genes: luminal, basal A or basal B [29,30]. There was
no significant correlation between molecular subtype
and sensitivity to MYC knockdown (Additional file 1:
Table S4). Although the median value of sensitivity of
ER-negative breast cancer cells was higher than that
of ER-positive cells, the difference between these two sub-
types did not reach statistical significance (Figure 2B).
Similarly, although all seven HER2-amplified cell lines
were MYC-dependent, and as a group had a tendency
to exhibit higher sensitivity to MYC knockdown than
non-HER2 amplified cell lines (Figure 2C), there was

no statistically significant difference between HER2-
amplified and non-HER2 amplified cells.

MYC-dependent breast cancer cells are not sensitive to
CDK4/6 inhibition

CDK4/6 inhibition has been proposed as a therapeutic
strategy in breast cancer, particularly in ER-positive breast
cancer [31,32]. To determine the relationship between
dependence on CDK4/6 activity and MYC dependence
in breast cancer cells, a panel of twenty-six breast cancer
cell lines was treated with either cyclin D1 siRNA or
the CDK4/6 inhibitor PD0332991 (Additional file 1:
Figure S3). Western blot analyses confirmed that at a con-
centration of 2 nM siRNA cyclin D1 expression was sub-
stantially decreased in all the cell lines tested (Additional
file 1: Figure S3A). Consistent with the finding by Finn
and colleagues [32], ER-positive cells were more sen-
sitive to cyclin D1 knockdown and PD0332991 treat-
ment than ER-negative cells. Eight cell lines demonstrated
resistance to both cyclin D1 knockdown and PD0332991
(< 25% inhibition). Although two cell lines (BT20 and
AU565) were relatively insensitive to cyclin D1 siRNA
(< 25% inhibition) but sensitive to PD0332991, and one
cell line, MDA-MB-436, was resistant to PD0332991 but
showed response to cyclin D1 knockdown (Additional
file 1: Table S3), overall sensitivity to PD0332991 was
significantly correlated with sensitivity to cyclin D1
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Figure 2 Characterization of MYC dependence in human breast cancer cells. (A) Protein expression levels of MYC and phospho-MYC at T58
and S62 in a panel of 26 human breast cancer cell lines were analysed by Western blotting and quantitated by densitometry. The correlation
between sensitivity to MYC siRNA (siMYC) and MYC protein expression level or MYC phosphorylation level was assessed. Sensitivity to MYC siRNA was
determined by inhibition of BrdU incorporation after MYC depletion at 10 nM siRNA for each cell line in the panel and summarized in Additional file 1:
Table S2. Higher numbers indicate higher sensitivity, i.e. sensitivity to MYC siRNA = 100% - relative BrdU incorporation. Sensitivity to MYC RNAI across
ER- and ER + subtypes (B), and HER2- and HER2+ subtypes (C) were compared. R = Pearson correlation coefficient, P = the corresponding P-value.
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knockdown (R =0.65, P=0.0003, Figure 3A), confirm-
ing cyclin D1 as a major activator of CDK4/6 in regu-
lation of breast cancer cell cycle progression.

Subsequently, cell sensitivity to MYC depletion and
sensitivity to cyclin D1 or CDK4/6 inhibition were com-
pared (Figure 3). Overall no significant correlation was
observed between the responsiveness to MYC RNAi and
cyclin D1 RNAI (Figure 3B) or MYC RNAi and PD0332991
(Figure 3C). Interestingly, eight of nine PD0332991-
resistant cell lines were responsive to MYC depletion while
three of four MYC-independent cell lines were sensitive to
PD0332991.

CDK2 inactivation accompanies cell cycle arrest by MYC
depletion but is not selectively lethal to MYC-dependent
breast cancer cells

Since CDK2 activity is a principal target for MYC stimula-
tion of G;-S progression, we investigated whether differ-
ences in CDK2 activity might account for the differential
effects of MYC depletion in breast cancer cells. We
assessed CDK2 activity using phosphorylation of CDK2

at threonine 160 [33] in MYC-dependent and MYC-
independent cells. Western blot analyses demonstrated that
CDK?2 activity was decreased in 7 of 9 MYC-dependent
cells (HCC1954, MDA-MB-134, AU565, SKBR3, BT474,
MDA-MB-361 and ZR751), but not in MYC-independent
cells (HCC1500, MDA-MB-157 and MDA-MB-175), after
MYC knockdown (Figure 4A). CDK2 is activated by bind-
ing of cyclin E or cyclin A. Although MYC depletion did
not affect cyclin E1 expression, cyclin E2 expression was
reduced by MYC RNAI in 5 of 9 MYC-dependent cell lines
(HCC1954, MDA-MB-134, Au565, SKBR3 and ZR751).
Similarly, except HCC1569, 8 of 9 MYC-dependent cell
lines displayed down-regulation of cyclin A expression
upon MYC depletion, whereas there was no change of cyc-
lin A expression in MYC-independent cell lines. During
the G;-S phase transition, pRb is successively phosphory-
lated by cyclin D1-CDK4/6 and cyclin E/A-CDK2 com-
plexes, resulting in E2F1 activation and the expression of
E2F target genes that promote cell cycle progression [34].
Analysis of the phosphorylation status of pRb at serine
795, a site targeted by CDK2 and CDK4 [35], revealed that
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Figure 3 MYC-dependent breast cancer cells are not selectively sensitive to CDK4/6 inhibition. A panel of 26 human breast cancer cell
lines were transfected with either pooled cyclin D1 siRNA (siCyclin D1) or Non-targeting siRNA control for 3 days or treated with CDK4/6 inhibitor
PD0332991 for 2 days and cell proliferation measured by BrdU incorporation. Sensitivity to cyclin D1 siRNA, MYC siRNA or PD0332991 was
determined by inhibition of BrdU incoporation at 2 nM cyclin D1 siRNA, 10 nM MYC siRNA or 0.25 uM PD0332991, respectively, for each
cell line in the panel and summarized in Additional file 1: Table S2 and S3. Higher numbers indicate higher sensitivity. (A) The correlation between
sensitivity to cyclin D1 knockdown and PD0332991. (B) The correlation between sensitivity to MYC siRNA and cyclin D1 siRNA. (C) The correlation
between sensitivity to MYC siRNA and PD0332991. Data are mean + SEM analysed in triplicate in duplicate experiments. R = Pearson correlation
coefficient, P=the corresponding P-value.

there was a sustained decrease in pRb phosphorylation in  phosphorylation, E2F1 expression was still reduced follow-
MYC-dependent cells after MYC knockdown. Accordingly,  ing MYC knockdown (Figure 4A). In contrast, three MYC-
a significant decrease of E2F1 expression was observed independent cell lines did not show a significant decrease
after MYC siRNA treatment. Interestingly, in BT549 in either pRb phosphorylation or E2F1 expression following
cells, which have undetectable pRb expression and pRb ~ MYC knockdown (Figure 4A). These observations indicate
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Figure 4 CDK2 inactivation mediates cell cycle arrest by MYC depletion and is not selectively lethal to MYC-dependent breast cancer
cells. (A) Cells were transfected with either pooled MYC siRNA (siMYC) or Non-targeting siRNA control (siCON) at 2 nM or 10 nM. Cell lysates were
collected at 72 hour post-transfection and then subjected to Western blotting. 3-ACTIN was used as loading control for whole-cell lysates. (B) Cells
were transfected with either pooled CDK2 siRNA (siCDK2) or Non-targeting siRNA control (siCON) at 10 nM. 72 hours after transfection, cell proliferation
was measured by BrdU incorporation. Data are mean + SEM analysed in triplicate experiments. (C) A panel of 17 human breast cancer cell lines were
treated with CDK2 inhibitor SNS-032 at a series of concentrations for 48 hours followed by measurement of BrdU incorporation. The correlation
between sensitivity to MYC siRNA and SNS-032 was assessed. Sensitivity to MYC siRNA was determined by inhibition of BrdU incorporation at 10 nM
MYC siRNA and sensitivity to SNS-032 determined by the ICs, value for each cell line shown in Additional file 1: Table S2 and S3, respectively.

R = Pearson correlation coefficient, P =the corresponding P-value.

that in MYC-dependent cells, a decrease in CDK2 activity Given the relationship between MYC dependence and
is a common event upon MYC depletion, and leads to a  CDK2 activity, we therefore assessed whether target-
subsequent decrease of pRb phosphorylation and E2F1 ac-  ing CDK2 could block the proliferation of three MYC-
tivity, contributing to MYC RNAi-induced cell cycle arrest. ~ dependent breast cancer cell lines. In SKBR3 and AU565,
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siRNA-mediated CDK2 knockdown decreased BrdU in-
corporation by 35.4% and 25.8%, respectively, whereas the
relative BrdU incorporation in BT549 cells only dropped
by 7.2%. Strikingly, the MYC-independent cell line, MDA-
MB-175, showed a 33.2% decrease in BrdU incorporation
upon CDK2 depletion (Figure 4B). CDK2 siRNA did not
induce cell apoptosis in any of the cell lines tested (data
not shown), which was in agreement with the previous
observation of lack of cell death after CDK2 inhibition in
several cancer cell types [36]. In contrast to the modest
inhibitory effect of CDK2 knockdown on cell cycle pro-
gression, SNS-032, a CDK inhibitor with relatively high
affinity for CDK2, 7 and 9 [37], caused a marked in-
hibition of cell proliferation (Additional file 1: Figure S4).
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Surprisingly, an inverse correlation between sensitivity
to MYC RNAi and sensitivity to SNS-032 was observed
(R=0.49, P=0.05, Figure 4C), i.e. MYC-dependent cells
are likely to be more resistant to SNS-032 than MYC-
independent cells.

CDK1 inhibition selectively reduces viability of
MYC-dependent cells

We next investigated whether MYC-dependent cells are
more sensitive to CDK1 inhibition than MYC-independent
cells. As shown in Figure 5A, siRNA-mediated CDK1
depletion significantly reduced cell viability in the three
MYC-dependent breast cancer cell lines AU565, SKBR3
and BT549, but did not affect cell viability of the MYC-
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independent cell line MDA-MB-175. Moreover, CDK1
depletion increased cell apoptosis by 2.2-fold in AU565,
2.3-fold in SKBR3 and 3.1-fold in BT549 cells, but did not
induce apoptosis in MDA-MB-175 cells (Figure 5B). Cell
cycle profiles revealed that siRNA-mediated CDK1 knock-
down blocked the cell cycle in the G,/M phase and
induced apoptosis in AU565, SKBR3 and BT549 cells
but did not significantly affect cell cycle progression
in MDA-MB-175 cells (Additional file 1: Figure S5A).
Similar results were obtained by using two structurally
distinct CDK1 inhibitors, RO-3306 [38] and CGP74514A
[39]. MYC-independent cells MDA-MB-175 were more
resistant to cell death (Figure 5C) and cell cycle arrest
(Figure 5D) induced by RO-3306 and CGP74514A
than three MYC-dependent cell lines, indicative of re-
duced sensitivity to CDK1 inhibition in MYC-independent
cells.
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CDK1 inhibitor-induced cell apoptosis is MYC-dependent

To investigate whether the observed selective CDK1-
induced cell death was dependent on MYC status, we
suppressed MYC expression by transfection of MYC
siRNA in three MYC-dependent cells (AU565, SKBR3
and BT549 cells) and subsequently treated cells with
the CDK1 inhibitor RO-3306 or CGP74514A. Depletion
of MYC decreased RO-3306-induced cell apoptosis by
12.5%, 13.7% and 15.7%, and CGP74514A-induced cell
apoptosis by 10.3%, 10.8% and 12.3% in AU565, SKBR3
and BT549 cells, respectively (Figure 6A). Furthermore,
we stably transfected MCF-7 cells and MDA-MB-175 cells
with a plasmid expressing MYC or a control plasmid and
then measured the effect of MYC over-expression on cell
response to RO-3306 and CGP74514A. As expected, in-
creased cell apoptosis was observed in the presence of
CDK1 inhibitor upon MYC over-expression (Figure 6B),
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suggesting CDK1 inhibitor-induced cell apoptosis is par-
tially MYC-dependent.

To determine how the CDK1 inhibitor induced cell
apoptosis in MYC-dependent cells, we examined the
protein expression of components of the intrinsic apop-
tosis pathway in BT549 cells transfected with either
MYC siRNA or control siRNA, followed by treatment
with RO-3306 or CGP74514A. The protein expression
level of BIM, a pro-apoptotic BCL-2 family member, was
up-regulated in cells treated with CDK1 inhibitors, and
cells transfected with MYC siRNA showed lower BIM
expression than cells transfected with control siRNA
in the presence of CDKI1 inhibitors (Figure 6C left
panel). Similar results were also observed in the other
two MYC-dependent cell lines AU565 and SKBR3
(Additional file 1: Figure S5B). Conversely, increased
BIM expression was observed in MCF-7 cells (Figure 6C
right panel) and MDA-MB-175 cells (Additional file 1:
Figure S5B) over-expressing MYC in response to CDK1
inhibitors compared to the control cells, supporting a
functional role of BIM in CDK1 inhibitor-induced apop-
tosis in MYC dependent-cells. The expression level of
another pro-apoptotic protein, p53, was also up-regulated
in AU565 and SKBR3 cells treated with CDK1 inhibitors
and MYC knockdown prevented increase of p53 expres-
sion by CDKI1 inhibitors (Additional file 1: Figure S5B),
whereas MYC overexpression in MCF-7 cells (Figure 6C
right panel) and MDA-MB-175 cells (Additional file 1:
Figure S5B) induced p53 expression upon treatment with
CDK1 inhibitors. Notably, in BT549 cells which carry a
mutant p53 gene, p53 expression in either MYC-depleted
cells or the control cells was not affected by CDK1 in-
hibitors (Figure 6C left panel), suggesting that CDK1
inhibitor-induced apoptosis in MYC-dependent cells is
p53-independent.

Discussion

MYC is a pivotal regulator of cell growth in breast cancer
[27]. In transgenic mouse models with inducible MYC,
withdrawal of MYC expression induces breast tumour re-
gression, indicating these tumours are addicted to MYC
function for tumour maintenance [40-42]. We herein
exploited this oncogenic addiction to assess the depend-
ence of human breast cancer cells on MYC function
through an RNAi approach. Depletion of MYC blocked
proliferation of 85% of breast cancer cell lines (22/26 cell
lines), which were classified as MYC-dependent breast
cancer cells while 15% of cell lines (4/26 cell lines) showed
resistance to MYC RNAi and were therefore classified
as MYC-independent cells. We further identified that
MYC-dependent breast cancer cells possessed high MYC
protein expression and high MYC phosphorylation level,
suggesting an elevated MYC signalling activity in these
cells. Through identification of a MYC transcription gene
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signature, several studies have uncovered an enrichment
of MYC-driven transcription programs in basal breast
cancer [43-45]. More recently, Horiuchi et al. reported
that triple negative breast cancer exhibited increased
activity of the MYC pathway [46]. However, we did not
found a significant difference between ER + and ER- cells
in MYC dependence, although ER- cells tend to be more
sensitive to MYC depletion than ER + cells. Instead, our
data showed that all HER2-amplified cell lines were
dependent on MYC function, raising the possibility of a
biological link between MYC and HER2 pathways. As a
downstream target of HER2 signalling, MYC mediates
HER2-driven proliferative activity in breast cancer cells
[47]. MYC amplification has also been significantly associ-
ated with HER2 amplification in human breast tumours
[48]. Although patients with MYC/HER2 co-amplified
breast tumours have worse outcomes than patients with
single gene amplified tumours [49], the predictive value of
MYC amplification in the response to adjuvant trastuzu-
mab in HER2-positive breast tumours is still unclear [50].
Nevertheless, our finding implicated a therapeutic poten-
tial of MYC inhibition in HER2-amplified breast cancers.

Since directly targeting MYC remains a challenge in
clinical practice, either targeting components of the MYC
pathway, or using a synthetic lethal strategy have been
suggested as new options for MYC-dependent malignan-
cies [17]. In this study we assessed the therapeutic poten-
tial of specific CDK inhibition in MYC-dependent breast
cancer cells. CDK4 has been identified as a key MYC tar-
get gene in mammals [16]. CDK4-deficient mice were re-
sistant to skin tumour development induced by MYC [15],
whereas mice lacking cyclin D1 expression and conse-
quently lacking CDK4 activation still developed mammary
tumours induced by MYC activation [51], strongly arguing
that the requirement for CDK4 activity in MYC-induced
tumorigenesis is affected by cellular context and tissue
type. In agreement with in vivo observations, our study
identified a distinct response pattern to MYC inhibition
compared to cyclin D1-CDK4/6 inhibition in breast can-
cer cells. Studies here and by others [32] demonstrated
that cells with luminal ER-positive subtype and a func-
tional pRb pathway were more sensitive to cytostatic ef-
fects of cyclin D1 and CDK4/6 inhibition. In contrast, the
response to MYC depletion was not dependent on pRb
status and was not significantly correlated with the mo-
lecular subtypes present in the panel of cell lines. Overall,
our data suggested that CDK4/6 inhibitors are unlikely
to be useful in the treatment of MYC-dependent breast
tumours.

Activation of CDK2, another interphase CDK, is in-
volved in MYC regulation of G;-S phase transition. As a
major event downstream of MYC activation, CDK2 acti-
vation can also suppress MYC-induced senescence [52],
which raised the possibility of CDK2 as a potential
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therapeutic target for MYC-dependent cancers. Consist-
ent with our previous results [11,27], this study demon-
strated that depletion of MYC reduced CDK2 activity in
MYC-dependent cells but not in MYC-independent
cells, indicative of a role of CDK2 inactivation in MYC
inhibition-induced cell cycle arrest. This occurred in the
absence of changes of cyclin E1 expression. Despite
our previous study showing cyclin E2 was up-regulated
through cyclin D1 but not MYC in MCE-7 cells [53], we
noted that cyclin E2 expression was reduced following
MYC RNAi in 5 of 9 MYC-dependent cell lines, suggest-
ing cell type and genetic context-dependent regulation
of cyclin E2 expression in breast cancer cells. Although
CDK?2 inactivation has been reported to induce apoptosis
in MYCN-amplified neuroblastoma cells [21], in this
study, siRNA-mediated CDK2 depletion failed to induce
apoptosis in breast cancer cells. Inhibition of CDK2 by
either siRNA or an inhibitor, reduced cell proliferation of
both MYC-independent and MYC-dependent cells, and
MYC-independent cells possessed relatively high sensitiv-
ity to a CDK2 inhibitor, SNS-032. Therefore, our data do
not support a synthetic lethal interaction between CDK2
inactivation and MYC activation in breast cancer cells.
Unlike CDK4, CDK6 and CDK2 which are redundant
for the mammalian cell cycle, CDK1 is essential for cell
division and sufficient for driving the cell cycle in all cell
types [25,54]. CDK1 regulates chromosome condensation
and microtubule dynamics to facilitate the transition from
G, to M phase. Goga et al. reported that CDK1 inhibition
resulted in a synthetic lethality in mouse lymphoma and
hepatoblastoma with MYC hyper-activation [22]. We
showed here that breast cancer cells were also selectively
sensitive to CDK1 inhibition. The different sensitivity did
not appear to be related to CDK1 expression, since CDK1
expression did not vary markedly between the cell lines
used here, consistent with previous data showing that there
are not large variations in CDK1 expression in breast can-
cer cell lines [55]. Instead, the sensitivity to CDK1 inhib-
ition appeared to reflect a synthetic lethal interaction
between MYC and CDK1 [22,46]. One potential mechan-
ism for this synthetic lethal interaction is that loss of
CDK1 leads to substantial mitotic catastrophe [56], which
possibly increases MYC-induced replication stress, and
subsequently activates checkpoint signalling, resulting in
cell death. Thus cells harbouring MYC hyper-activation
might be more vulnerable to mitotic disruption. Indeed,
several MYC synthetic lethal genes identified in recent
studies, including aurora-B kinase, CHK1/2 and SUMO-
activating enzyme, are all involved in maintaining mitotic
fidelity [20,23,57]. Moreover, high-throughput screens
display enrichment of the components of the mitotic spin-
dle among MYC synthetic lethal candidates [19,20]. There-
fore, specific targeting of CDK1 might be effective for
breast tumours dependent on MYC activation and this
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synthetic lethal strategy may overcome some problems
with side effects induced by CDK1 inhibition.

Previous studies showed that up-regulation of BIM ex-
pression was required for MYC overexpression-induced
apoptosis [58] and contributed to cell death induced by
the CDK inhibitor purvalanol A in breast cancer cells
[46]. Consistent with these studies, we found that CDK1
inhibitors induced BIM expression and that elevated
BIM expression was associated with increased sensitivity
to CDK1 inhibitors in cells with high MYC expression.
p53, however, appears to be dispensable for increased
cell apoptosis induced by CDK1 inhibitors, although loss of
p53 has been reported to reduce cell apoptosis associated
with MYC overexpression [59]. p53-independent apoptosis
was also observed in MYC-overexpressing mouse embryo
fibroblast cells treated with purvalanol A [22]. Therefore,
specific apoptotic pathways appear to be involved in CDK1
inhibitor-induced MYC-dependent cell death, providing a
mechanistic insight into MYC-CDKI1 synthetic lethality in
breast cancer cells.

Conclusions

This study identified that MYC-dependent breast cancer
cells possess high MYC expression and high level of
MYC phosphorylation, and are sensitive to inhibition of
CDK1, but not CDK4/6 and CDK2, suggesting that high
MYC expression in breast cancer cells is associated with
selective synthetic lethality induced by CDKI1 inhibition.
Since understanding the role of individual CDK activities
in specific tumour subtypes is essential to improve effi-
cacy of CDK inhibitors in clinical practice, selective
inhibition of CDK1 warrants further investigation as a
potential therapy for MYC-dependent breast cancers.
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