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Differential regulation of MMPs by E2F1, Sp1 and
NF-kappa B controls the small cell lung cancer
invasive phenotype
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Abstract

Background: E2F1 transcription factor plays a vital role in the regulation of diverse cellular processes including cell
proliferation, apoptosis, invasion and metastasis. E2F1 overexpression has been demonstrated in small cell lung
cancer (SCLC), and extensive metastasis in early phase is the most important feature of SCLC. In this study, we
investigated the involvement of E2F1 in the process of invasion and metastasis in SCLC by regulating the
expression of matrix metalloproteinases (MMPs).

Methods: Immunohistochemistry was performed to evaluate the expression of E2F1 and MMPs in SCLC samples in
a Chinese Han population. The impact of E2F1 on invasion and metastasis was observed by transwell and wound
healing experiments with depletion of E2F1 by specific siRNA. The target genes regulated by E2F1 were identified
by chromatin immunoprecipitation (ChIP)-to-sequence, and the expressions of target genes were detected by real
time PCR and western blotting. The dual luciferase reporter system was performed to analyze the regulatory
relationship between E2F1 and MMPs.

Results: E2F1 is an independent and adverse prognosis factor that is highly expressed in SCLC in a Chinese Han
population. Knockdown of E2F1 by specific siRNA resulted in the downregulation of migration and invasion in
SCLC. The expressions of MMP-9 and —16 in SCLC were higher than other MMPs, and their expressions were most
significantly reduced after silencing E2F1. ChIP-to-sequence and promoter-based luciferase analysis demonstrated
that E2F1 directly controlled MMP-16 expression via an E2F1 binding motif in the promoter. Although one E2F1
binding site was predicted in the MMP-9 promoter, luciferase analysis indicated that this binding site was not
functionally required. Further study demonstrated that E2F1 transcriptionally controlled the expression of Sp1 and
p65, which in turn enhanced the MMP-9 promoter activity in SCLC cells. The associations between E2F1, Sp1, p65,
and MMP-9 were validated by immunohistochemistry staining in SCLC tumors.

Conclusions: E2F1 acts as a transcriptional activator for MMPs and directly enhances MMP transcription by binding
to E2F1 binding sequences in the promoter, or indirectly activates MMPs through enhanced Sp1 and NF-kappa B as
a consequence of E2F1 activation in SCLC.
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Background

Lung cancer, a leading cause of cancer death worldwide,
is classified into non-small cell lung cancer (NSCLC) and
small cell lung cancer (SCLC). SCLC is characterized by
highly aggressive and malignant metastasis. As one of the
main features of SCLC is extensive distant metastasis in
early phase, it remains one of the most lethal cancers,
leading to poor survival with a five-year survival rate of
only 3-8% [1].

Matrix metalloproteinases (MMPs) are the principal
enzyme group involved in the degradation of a number
of extracellular matrices (ECM). Increased levels of MMPs
have been detected in numerous cancers and were cor-
related with tumor aggressiveness [2]. For example,
MMP-1, -2, -7, -9, -14, and -15 were overexpressed in
NSCLC [3-6], and elevated MMP-1, -9, —-11, —-13, and -14
levels were also shown in SCLC [7,8]. Inhibition of MMP
transcription prevented invasion in vitro and decreased
the colonization of the lung cancer cells in an in vivo tail
vein metastasis model [9], indicating that transcriptional
regulation is the main regulatory pathway controlling
the expression of MMPs. Although interleukin 1 (IL-1),
tumor necrosis factor alpha (TNFa), histone acetylation
and deacetylation, and DNA methylation affected MMP
expression [10-13], clinical trials using MMP inhibitors
showed limited benefits to alter the metastatic process
[2,14]. This data suggests a complex relationship be-
tween MMPs and tumor migration. Therefore, investi-
gation of the detailed molecular mechanisms underlying
the regulation of MMP expression and the correlation
with metastasis in cancer, particularly in SCLC, is
warranted.

The E2F1 transcription factor is a well-documented
modulator that functions in the regulation of cell cycle,
proliferation, and apoptosis. Recent reports have sug-
gested a role for E2F1 in promoting angiogenesis and
metastasis through regulation of thrombospondin 1 [15],
platelet-derived growth factor receptor (PDGFR) [16], vas-
cular endothelial growth factor receptor (VEGFR) [17],
and MMP-9, -14, and -15 [9]. Additionally, E2F1 could
promote lung metastasis of colon cancer [18] and regulate
cellular movement by cell-cell and cell-matrix interactions
in yeast [19,20]. Although E2F1 is highly expressed in
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SCLC [21], the role of E2F1 in the process of invasion and
metastasis remains unclear in SCLC.

This study is designed to investigate whether the in-
creased E2F1 participates in the invasion and metastasis
through MMP regulation in SCLC. Our results showed
that E2F1 was predominantly expressed in SCLC and
was an independent and adverse prognosis factor. E2F1
promoted cellular migration through directly modulating
the expression of MMP-16 and transcription factors Spl
and p65 (subunit of NF-kappa B), which in turn regu-
lated MMP-9 expression in SCLC cells.

Methods

Patients

This study consisted of 140 patients (90 SCLC samples,
20 adenocarcinoma samples, 20 squamous and 10 large
cell lung cancer samples) between January 2008 and
December 2010. Tissue samples were obtained from
Qilu Hospital affiliated with Shandong University and
Jinan Central Hospital. Among the 90 SCLC tissue sam-
ples, 88 cases were biopsy specimens and 2 cases were
surgical resections. The clinical data were obtained from
the patients’ files (Table 1). This study was approved by
the Medical Ethics Committee of Shandong University
and all patients provided informed consent when the tis-
sues were donated.

Cell lines

Human SCLC cell lines (H1688 and H446), a human
squamous cell line (SK-MES-1), and a human normal
fibroblast epithelial cell line (HFL-1) were purchased
from Shanghai Cell Library of Chinese Academy of
Science. Human adenocarcinoma cell lines (A549, H292
and H1299) and a human normal bronchial epithelial
cell line (HBE) are stored in our lab.

Immunohistochemistry

Immunohistochemistry (IHC) was performed according
to our previous report [22,23]. The dilutions of antibodies
were 1:50 for E2F1 (Merk Millipore, USA), MMP-7,
MMP-9, MMP-16 (Abgent, China), MMP-2, Spl, p65
(Santa Cruz Biotechnology, USA) and VEGFR (Cell
Signaling Technology, USA). The staining samples were

Table 1 The information and clinical characteristics of patients

Histology Age Gender Smoking Pathological stage
Median Range Male Female Yes No LD¢ ED¢ | ] 1]
A 59.34 47-82 1 9 13 7 10 6 4
s° 6147 45-79 13 7 8 12 9 6 5
LCLC 62.69 53-81 7 3 6 4 5 3 2
SCLC 5557 28-83 68 22 69 21 22 68

A% Adenocarcinoma; S°: Squamous carcinoma.
LDS: Limited Disease; ED®: Extensive Disease.
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scored by two pathologists without any knowledge of the
clinical pathological outcomes. Staining intensity was di-
vided into four grades: 0 as negative; 1 as weak intensity
(less than 10% positive); 2 as moderate intensity (more
than 10% and less than 60% positive); and 3 as strong in-
tensity (more than 60% positive). Grade 0 was considered
as negative expression, and grades 1, 2, and 3 were consid-
ered as positive staining.

siRNA transfection

The siRNAs targeting E2F1, Sp1, and p65, and the scram-
ble control siRNA were designed, modified and synthe-
sized by Invitrogen. The siRNA sequences are listed in
Table 2. siRNA transfection and experiments were per-
formed using Lipofectamine 2000 as our previous re-
ports [22,24,25].

Real time PCR

Total RNA was extracted by Trizol (Sigma, USA). The re-
verse transcription was conducted by a ¢cDNA synthesis
kit (Ferments, USA) and real time PCR was performed
with SYBR Green (TOYOBO, Japan). The primers for tar-
get genes are listed in Table 3.

Western blotting

Cells were lysed in RIPA lysis buffer. A total of 40 pg
protein was separated by SDS-PAGE and samples were
electrophoretically transferred onto nitrocellulose mem-
branes. The membranes were blocked with 5% fat-free
dry milk and incubated with primary antibodies against
E2F1 (1:100, Merk Millipore), Sp1, p65 (1:100, Santa Cruz
Biotechnology), MMP-3, -7, -9, —-14, —15 and -16 (1:200,
Abgent), Vascular endothelial growth factor receptor
(VEGER, 1:1000, Cell Signaling Technology), and Glycer-
aldehyde 3-phosphate dehydrogenase (GAPDH, 1:2000,
Santa Cruz Biotechnology) at 4°C overnight. The mem-
brane was washed and incubated with HRP-conjugated
secondary antibodies for 45 min. The immunoblot bands
were detected by an ECL system, and membranes were
exposed to X-ray films [22].

Table 2 The sequences of siRNA target genes

Target gene Sequences

SIRNAT of E2F1 5-AUGCUACGAAGG UCCUGACACGUCA-3'
SIRNA2 of E2F1 5-AAAGUUCUCCGAAGAGUCCACGGCU-3'
SIRNAT of Sp1 5-AGCCUUG AAGUGUAGCUAU-3'

SIRNA 2 of Sp1 5-GGUAGCUCUAAGUUUUGAU-3'

SiRNAT of p65 5-GATTGAGGAGAAA CGTAAA-3

SIRNA2 of p65
Scramble siRNA

5-GATGAGATCTTCCTACTGT-3'
5-UUCUCCGAACGUGUCACG UTT-3'
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Table 3 The primers of target genes for real time PCR

Target gene Primers
E2F1 F: 5-CATCAGTACCTGGCCGAGAG-3'

R: 5-TGGTGGTCAGATTCAGTGAGG-3'
Sp1 F: 5-CCACCATGAGCGACCAAGAT-3'

R: 5-TGAAAAGGCACCACCACCAT-3'
p65 F: 5-CCCACGAGCTTGTAGGAA AGG-3'

R: 5-GGATTCCCAGGTTCTGGAAAC-3'
MMP-3 F: 5“TGAGGACACC AGCATGAACC-3'

R: 5-CAGGACCACTGTCCTTTCTCC-3'
MMP-7 F: 5-GAGT GAGCTACAGTGGGAACA-3'

R: 5-CTATGACGCGGGAGTTTAACAT-3'
MMP-9 F: 5-TTCCAAACCTTTGAGGGCGA-3'

R: 5-GCAAAGGCGTCGTCAATCAC-3'
MMP-14 F: 5-ATCGCTGCCATGCAGAAGTT-3'

R: 5-TGTCTGGAACACCAC ATCGG-3'
MMP-15 F: 5-GAGATGCAGCGCTTCTACGG-3'

R: 5-GCTTTCA CTCGTACCCCGAA-3'
MMP-16 F: 5“TTCGGGGGTGTTTTTCTTGC-3'

R: 5-GGT GGAAGGTAGCCGTACTT-3'
VEGFR F: 5-AAAGGCACCCAGCACATCAT-3'

R: 5-TCCTTACTCACCATTTCAGGCA-3'

Wound healing analysis and transwell experiments

The wound healing experiment was performed accord-
ing to a previous report [9]. The cells were scratched by
a 10 pl pipette tip and photographed by microscopy at 0,
12, and 24 h. The transwell experiment was conducted
according to the manufacturer’s instruction (BD Com-
pany). A total of 60 ul of matrigel was placed into the
upper chamber and plates were incubated for 3 h at 37°C.
After the matrigel solidified, 1 x 10* cells were plated into
the upper chamber with media containing 1% fetal bovine
serum. Media containing 10% fetal bovine serum was
placed into the lower well. After 72 h, the matrigel was
cleaned and the cells were stained by Gimsa Dye. The cells
that invaded through the chamber were quantified by
counting three fields.

ChlIP-to-sequence

Chromatin immunoprecipitation (ChIP) was conducted
according to the manual supplied by Merck Millipore
Company (ChIP Assay kit, Cat. No.: 17-295). Cells (5 x
10”) were prepared and cross-linked by 1% final concen-
tration of formaldehyde at 37°C for 10 min. Cells were
centrifuged at 2,000 rpm for 4 min at 4°C, and then col-
lected and incubated in SDS Lysis Buffer on ice for
10 min. The genomic DNA was sheared with Sonicate
(36% strengthen, 25 sec and 30 cycle) and the average
length of the fragments generated was 200 bp. Protein
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A agarose beads were added to the samples for 30 min
at 4°C with agitation. Next, E2F1 antibody (4 pg) or
equal amount of normal mouse IgG was added into the
samples, and samples were incubated at 4°C with rota-
tion overnight. The agarose beads were collected by
gentle centrifugation (800 rpm) for 5 min and washed
five times. Reverse cross-linking was performed with
high salt solution (5 M NaCl) and the DNA fragments
were obtained. The cyclin D1 primer was used as a posi-
tive control in real-time PCR. The DNA fragments were
sequenced by BGI Company (http://www.genomics.cn).
The Hiseq2000 50SE sequencing platform was used and
the data analysis algorithm included SOAP2.20 com-
parison and MACS peak calling. Clean data was ob-
tained by filtering the low quality data according to a
certain criteria: the sequences not containing adapter, N
less than 10%, quality values less than 20 and ratio less
than 50%. For the peak value, the filtering was con-
ducted according to the p value obtained by MACS
analysis. The data was discarded when the p value was
higher than 1°°, which ensured the fidelity of the data
and exclusion of false positives.

Construction of the MMP-9, MMP-16, Sp1 and p65
luciferase reporter constructs

Genomic DNA was extracted from H1688 cells, and
MMP-9, MMP-16, Spl and p65 were amplified by PCR
using primer sequences shown in Additional file 1: Table
S1. The PCR DNA fragments were extracted by a Gel Ex-
traction kit (Invitrogen, USA). The PCR fragments and
pGL3-basic luciferase reporter vector (Promega, USA)
were digested with FastDigest Sacl, Nhel or Xhol (Thermo,
USA), extracted and ligated with T4 DNA Ligase (TakaRa,
Japan) to generate the four luciferase reporter constructs.
The binding site mutants were constructed by overlap
PCR and nested PCR, and the primers were listed in
Additional file 1: Table S1. The constructs were con-
firmed through sequencing by BioSune Company.

Transient transfections and luciferase assays

Cells were transiently transfected with 0.5 pg of lucifer-
ase reporters and 0.3 pg of E2F1, Sp1, or p65 expression
vector with Lipofectamine 2000 (Invitrogen). Cotransfec-
tion with 0.02 pg of the pRL-TK Renilla reniformis lucif-
erase served as a normalizing control. Luciferase assays
were performed using the Dual Luciferase Assay System
(Promega).

Statistical analysis

SPSS 17.0 was used as the statistical software. The immu-
nohistochemistry samples were treated with Chi Square
test. The association and statistical difference between
E2F1 lower, moderate, and higher and clinicopathological
variables was analyzed by Spearman’s analysis and x* test.

Page 4 of 13

Univariate survival rate was analyzed by the Kaplan-Meier
method, and the significant were tested by Log-Rank test.
Multivariate survival analysis was performed by using
Cox’s regression. The expression differences among target
genes were analyzed using paired ¢ test. P < 0.05 was con-
sidered to be statistically significant.

Results

E2F1 was highly expressed in SCLC

Although expression of E2F1 had been detected in lung
cancer tissue [21,26-30], its expression was inconsistent
among different populations, especially in NSCLC. There-
fore, we firstly examined E2F1 levels in human lung cancer
tissues in a Chinese Han population. E2F1 expression was
positive in 95.56% (86/90) of SCLC, 50% (5/10) of large
lung cancer cell (LCLC), and 10% (2/20) of adenocarcin-
oma samples compared with the normal alveolar sections.
However, it was not detected in squamous tissues (0/20).
The normal bronchial epithelial tissues with exclusive E2F1
expression served as positive controls (Figure 1A) [31]. In
90 SCLC samples, the numbers of negative, weak, moder-
ate, and strong positive E2F1 staining cases were 4, 11, 23,
and 52, respectively. In adenocarcinoma samples, only two
weak positive staining cases were found. In LCLC samples,
two weak and three strong positive staining cases were
found (Table 4, Additional file 2: Figure S1).

Consistent with these observations, E2F1 was positively
expressed in H1688 and H446 cell lines as well as HBE
cells, which served as the positive control. However, weak
expressions were detected in A549, H1299 and H292 cell
lines compared with SCLC cells. In addition, E2F1 was not
detected in SK-MES-1 and HFL-1 cell lines (Figure 1B).
Therefore, E2F1 expression was predominantly elevated in
SCLC tissues and cell lines, suggesting the importance of
E2F1 in SCLC development and progression.

E2F1 was an independent and adverse prognostic factor
for SCLC patients
E2F1 was highly expressed in SCLC, but not NSCLC.
We next evaluated the association between E2F1 lower,
moderate, and higher expression and clinicopathological
variables by Spearman’s analysis. The results in Table 5
showed that E2F1 was significantly associated with clinical
stage (r = 0.552, P < 0.01). Samples from patients with lim-
ited disease (LD) displayed weakly-expressed E2F1 (13/
30), whereas strong staining of E2F1 was found in patients
with extensive disease (ED, 58/60). X2 test was performed
to evaluate the significant difference between E2F lower,
moderate and higher and clinicopathological variables,
and the results showed that there was significant differ-
ence between E2F1 lower, moderate and higher and clin-
ical stage ()(2 =29.506, P < 0.01, Table 5).

Patient survival time was collected by follow-up and
data showed that the median survival period of patients
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Figure 1 E2F1 highly presented in SCLC. (A) Immunohistochemical staining of E2F1 (1:50 antibody dilution) in normal lung alveolar tissue,
bronchial epithelia, adenocarcinoma, squamous carcinoma, large cell lung cancer, and small cell lung cancer, respectively (Scale bar =50 pm).
(B) Expressions of E2F1 in different lung cancer cell lines by Western blotting. The expression of glyceraldehydes 3-phosphate dehydrogenase

(GAPDH) was used to determine loading differences between the different samples.

displaying lower E2F1 (including negative staining) was
15.67 months, and the moderate E2F1 and higher E2F1
expression groups were 13.74, and 10.21 months, re-
spectively. These results suggested that high level of
E2F1 was correlated with poor survival in SCLC. More-
over, univariate survival analysis revealed that E2F1
(P <0.01, Figure 2A) and clinical stage (P < 0.01 Figure 2B)
were prognosis factors in SCLC patients, while other fac-
tors including gender (P =0.768), age (P = 0.818), smoking
(P=0.827), tumor size (P=0.411) were not significant.

Table 4 E2F1 expression in differential pathological types
of lung cancer tissue

Histology Patients E2F-1
Positive Negative P value
Adenocarcinoma 20 2 (10%) 18 (90%)
Squamous 20 0 (0%) 20 (100%)
Large cell lung cancer 10 5 (50%) 5 (50%)
Small cell lung cancer 90 86 (95.56%) 4 (444%)  <0.01**

Reference: P values reflect E2F1 positive staining differences between
non-small cell lung cancer (including adenocarcinoma, squamous, large cell
lung cancer) and small cell lung cancer, **P < 0.01.

Multivariate analysis provided additional evidence that
higher E2F1 expression proved to be an independent
and adverse prognosis factor in SCLC (HR = 0.461, 95%
CI: 0.230-0.925, P = 0.029) (Additional file 3: Table S2).

Depletion of E2F1 inhibited cell migration and invasion in
SCLC cells

Clinical data analysis showed that highly expressed E2F1
was associated with clinical stage and was an independent
and adverse prognosis factor. Thus, we next examined
whether E2F1 knockdown led to suppression of SCLC cell
migration. As shown in Figure 3A, transfection of siRNA
targeting E2F1 significantly abolished E2F1 expression in
both H1688 and H446 cells. Serum-induced invasion
through matrigel-coated transwell filters was significantly
reduced in cells depleted for E2F1. Cells transfected with
scrambled siRNA displayed similar migration compared
with that of the untreated control cells (Figure 3B). Con-
sistent with the transwell results, wound healing assays
showed that E2F1 knockdown significantly blocked H1688
and H446 cell migration into the wound areas compared
with cells transfected with scrambled siRNA or untreated
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Table 5 The statistical difference between E2F lower, moderate and higher and clinicopathological variables

Variables E2F1 expression Spearman X2 test
—/+ ++ +++ R P X2 P

Age <55 7 1 19 0.103 0334 1.069 0.586
255 8 12 33

Gender Male 9 20 39 0.038 0.725 3.193 0.166
Female 6 3 13

Smoking Non-smoker 4 3 14 0.068 0518 1.829 0411
Smoker 11 20 38

Tumor size <4 cm 9 12 35 0.105 0.325 1.592 0451
24 cm 6 1 17

Clinical stage LD* 13 10 7 0.552 <001 29.506 <0.01
ED* 2 13 45

—/+ represents E2F1 weak expression, ++ represents E2F1 moderate expression, +++ represents E2F1 higher expression, LD* represents limited disease and ED*

represents extensive disease.

control cells (Figure 3C). To further verify the ability of
E2F1 to promote invasion and metastasis, A549 cells (with
lower E2F1 expression compared with H1688 and H446
cells, Figure 1B) were transfected with an E2F1 expression
vector and assayed as described above. The results showed
that enforced expression of E2F1 could promote A549 cell
invasion and metastasis (Additional file 4: Figure S2).
These results suggested the importance of E2F1 in cell in-
vasion and migration.

E2F1 knockdown significantly inhibited the expression of
MMP-9 and -16 in SCLC

Because E2F1 was closely associated with invasion and
metastasis (Figure 3), we next determined whether E2F1
affected invasion and metastasis by regulating the ex-
pression of MMPs. Firstly, we examined the expression
of MMP-2, -7, -9 and -16 in 90 SCLC samples by IHC
staining. As shown in Figure 4A, expression of MMP-7
was detected in 73.33% (66/90) of the specimens, MMP-
9 in 86.67% (78/90) of the cases, and MMP-16 in all
samples (90/90). However, MMP-2 was not shown in
any of the SCLC samples. Because VEGFR expression

was previously identified in SCLC [17,32], we included
VEGER as a positive control. As expected, VEGFR posi-
tive staining in SCLC samples was observed in 95.56%
(86/90) of the cases. These results suggested that MMP-
9 and MMP-16 might play an important role in the
process of invasion and metastasis of SCLC.

Next, we determined whether expressions of MMPs
were affected by E2F1 in SCLC cells. Real time PCR and
western blotting results showed that expression levels of
MMP-3, -7, -14, and -15 were only slightly reduced
when E2F1 was depleted in both H1688 and H446 cells,
but the expression of MMP-9 and -16 were significantly
decreased upon E2F1 depletion (Figure 4B). Based on
the observations that MMP-9 and -16 were expressed at
higher levels in SCLC tumors (Figure 4A), it suggested
that E2F1 may be involved in the invasive potential of
SCLC by regulating the expression of MMP-9 and -16.

E2F1 controlled MMP-16 expression via E2F1 binding sites
in SCLC cells

Since E2F1 could regulate expressions of MMP-9, —-14
and -15 in NSCLC [9], together with the observations

A 100+ . -+- E2F1 lower 00—rataey == Limited disease
t'-"l“ == E2F1 moderate . —— Extensive disease
= 801 L == E2F1 higher = 804 Le
2 L|=n..|..|-|.----|.--.|----a & I"l
< S 604 K
i S |
E = He
g 8407
& @ 20+
P<0.01
LJ A L G L L] L L
0 10 20 30 40 o 10 20 30 40
Survival time (M) Survival time (M)
Figure 2 Survival curve for patients with SCLC. (A, B) Overall survival of patients according to the expression of E2F1 (P < 0.01) and clinical
stage (P < 0.01) by Kaplan-Meier method, and the significant were tested by Log-Rank test.
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H446

J

mentioned above, we performed ChIP-to-sequence to
identify E2F1 target genes in H1688 cell line. As summa-
rized in Additional file 5: Table S3 and Additional file 6:
Table S4, many MMP genes including MMP-1, -14,
-16, =17, =19, -24, and -25 were found to be regulated
by E2F1. MMP-16 was selected for further study due to
its higher expression in SCLC tumor. IHC results re-
vealed that E2F1 was strongly positive in SCLC tumor
where MMP-16 was highly expressed (Figure 5A), indi-
cating that E2F1 was associated with the expression of
MMP-16.

We used Matlnspector analysis to identify two putative
E2F1 binding sites in the MMP-16 promoter. H1688,
H446, and A549 cells (with lower E2F1, Figure 1B and
Figure 5B) were transfected with luciferase constructs
driven by the wild-type MMP-16 promoter or the MMP-
16 promoter with mutated E2F1 binding sites (Additional
file 7: Figure S3A) and an E2F1 expression plasmid. As
shown in Figure 5C, overexpression of E2F1 increased the
activity of the MMP-16 promoter. Furthermore, E2F1
could still activate MMP-16 promoter containing the
mutated E2F1 binding site (mutant 1), but not mutant 2,

indicating that E2F1 could enhance the expression of
MMP-16 and that the sequence (ggtgGGCGggaagaaag,
binding site 2) was required for E2F1-mediated stimula-
tion of MMP-16 promoter activity. These results indicated
that E2F1 stimulated the expression of MMP-16 by bind-
ing the binding site 2 sequence in the MMP-16 promoter.

Sp1 and p65 regulated MMP-9 expression in SCLC cells
Previous studies [8] and our IHC results (Figure 4A)
showed that MMP-9 expression was higher in SCLC and
was significantly affected by E2F1 knockdown (Figure 4B).
Johnson et al. reported that one E2F1 binding site (tcagg
gaggGAAAaaga) was predicted in the MMP-9 promoter
(Additional file 7: Figure S3B) [9]. Then, we first tested
the activity of MMP-9 promoter containing the E2F1
binding site mutant by a luciferase reporter experiment,
and found that this site was not functional (Figure 6A).
However, our results showed that MMP-9 promoter
activity was significantly enhanced when E2F1 was co-
expressed in H1688, H446, and A549 cells (Figure 6A),
indicating that E2F1 regulated MMP-9 expression via
an indirect pathway.
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tisssue (Scale bar =50 pm). (B) Real time PCR and western blotting showed that expressions of MMP-3, =7, =14, =15 were slightly decreased in
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Previous studies suggested that Spl and/or p65 might
be involved in the regulation of MMP transcription
[33-35]. Matlnspector analysis identified four putative
Spl and two putative NF-kappa B binding motifs in the
MMP-9 promoter (Additional file 7: Figure S3B). Activa-
tion of the wild-type MMP-9 promoter was significantly
increased when the cells were cotransfected with a Spl
expression plasmid. The activity of the MMP-9 promoter
Spl binding site mutant 1 and 2 constructs was un-
changed, but the MMP-9 promoter Spl binding site mu-
tant 3 and 4 constructs showed significantly decreased
activity. Together this data indicated that Sp1 upregulated
the expression of MMP-9 by binding to sites 3 and 4, but
not 1 or 2 in the MMP-9 promoter (Figure 6B).

Additionally, overexpression of p65 induced activity of
the wild-type MMP-9 promoter, but not the promoter re-
porter with a mutated NF-kappa B binding site, indicating

that p65 also plays a role in regulating MMP-9 expression
(Figure 6C). Real time PCR and western blotting results
validated that MMP-9 expression was significantly de-
creased after transfection with siRNA specifically targeting
Spl and p65 (Figure 6D), indicating that Spl and/or p65
could simulate the expression of MMP-9 in SCLC cells.

E2F1 modulated Sp1 and p65 expressions in SCLC cells

The results described above suggested that Spl and p65
could regulate the expression of MMP-9 (Figure 6), and
our ChIP-seq data showed that E2F1 was recruited to
the sequences of Spl and p65 (Additional file 5: Table
S3 and Additional file 6: Table S4). Therefore, we specu-
lated that E2F1 regulated the expression of MMP-9 me-
diated by Sp1 or p65. We next explored the correlation
among MMP-9, Spl, p65, and E2F1. In addition to high
levels of E2F1 (95.96%) and MMP-9 (86.67%) in SCLC,
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IHC staining in 90 SCLC samples revealed positive Sp1l
and p65 expression in 93.33% (84/90) and 98.89% (89/
90) of the cases, respectively (Figure 7A). The expression
of p65 was consistent with a previous report [36], but ours
is the first report revealing Sp1 expression in SCLC. More
importantly, E2F1, Spl and p65 were highly expressed in
SCLC samples where MMP-9 staining was also strong, in-
dicating a positive correlation among E2F1, Sp1, p65 and
MMP-9 in SCLC tissues (Figure 7A). This observation
supported the notion that E2F1 upregulated MMP-9 ex-
pression, mainly via Sp1 and/or NF-kappa B.

We next want to examine whether E2F1 contributes
to the overexpressions of Spl and p65 in SCLC. Deple-
tion of E2F1 led to significantly reduced Spl and p65
expression in two SCLC cell lines (Figure 7B). VEGEFR,
which was transcriptionally regulated by E2F1 [17], was
used as a positive control. Enforced expression of E2F1
in H1688, H446 and A549 cells led to a significant in-
duction of the luciferase reporter driven by the wild-type
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Spl promoter compared with controls (Figure 7C). Fur-
thermore, E2F1 overexpression could also stimulate activ-
ities of Sp1 mutated 1 and mutated 2 promoters. However,
the activity of Spl mutant 3 promoter (Additional file 7:
Figure S3C) was dramatically reduced, suggesting that the
actgcGCGCcgaatgee motif in Spl promoter was functional
and essential for E2F1-mediated induction (Figure 7C).
E2F1 also notably induced p65 promoter activity, while
mutation of each E2F1 binding motif in the p65 promoter
(Additional file 7: Figure S3D) resulted in decreased lucifer-
ase activity, even with E2F1 expression (Figure 7D). To-
gether these results showed that E2F1 regulated Spl and
p65 expressions at the transcriptional level, which subse-
quently led to enhancement of target gene expression, such
as MMP-9.

Discussion
Transcription factor E2F1 gains more attention due to
its predominant functions in controlling cell cycle,
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Figure 7 Expressions of Sp1 and p65 were regulated by E2F1. (A) Immunohistochemistry staining of Sp1, p65, and E2F1 (1:50 antibody
dilution) were positive in the sections of SCLC tissue where MMP-9 was positive (Scale bar =50 pum). (B) The expressions of Sp1 and p65 were
significantly decreased in E2F1i group as compared with Mock and NCi by real time PCR and western blotting (*P < 0.05). (C) E2F1 could induce
the activity of Sp1 promoter, E2F1 binding site mutant 1 and 2, but not mutant 3 (*P < 0.05). (D) E2F1 could enhance the activity of p65 promoter,
but not E2F1 binding site mutant 1 and 2 (*P < 0.05).
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tumorigenesis, apoptosis, and aggressiveness [21,26-29].
Our studies revealed that E2F1 was highly expressed in
SCLC of Chinese Han population, associated with high
expressions of MMP-7, -9, and -16, but not MMP-2.
Overexpression of E2F1 facilitated the expressions of
MMP-9 and -16 genes in SCLC. We showed for the
first time that MMP-9 expression was transcriptional
regulated by Spl and NF-kappa B as a consequence of
activation of E2F1 in SCLC.

It has been reported that E2F1 was highly expressed in
SCLC and promoted SCLC cell proliferation [21]. How-
ever, its expression level in NSCLC showed inconsistent.
Eymin’s and Kuhn’s results showed that E2F1 expression
was lower in NSCLC [21,29], but the studies by Hung,
Huang and Gorgoulis displayed that E2F1 was highly
expressed in NSCLC [27,28,30]. Here we detected the
expression of E2F1 in lung cancer among a Chinese Han
population. Our results were consistent with Eymin’s re-
sults that E2F1 was highly expressed in SCLC, but not
NSCLC [21]. Further investigation is required to exam-
ine the level in populations with large numbers of
samples, and to clarify the relationship between E2F1
and lung cancer.

Overexpressions of MMPs were considered to play an
important role in metastatic spread of SCLC. Michael et al.
detected the expressions of MMPs and reported a defi-
ciency of MMP-2 in SCLC [8]. Our results were consistent
with their discovery. This study was the first to report the
expression of MMP-16 in all SCLC samples (90 of 90).
Together this indicated that MMP-16 played an important
role in the process of invasion and metastasis of SCLC,
and high expression of E2F1 may be the main driver to
promote MMP-16 expression.

Some investigators reported that Spl or NF-kappa B
could regulate the expression of MMP-13, -9 and -2
[33-35]. In our study, E2F1 regulated the expression of
MMP-9 mediated by Spl and NF-kappa B, indicating the
importance of E2F1 in facilitating the expressions of MMP
genes. The role of E2F1 in metastatic process was recently
investigated in different cancer types. Klein-Szanto’s study
showed that E2F1 gene transfer enhanced the invasion of
head and neck carcinoma cells [37]. Chellappan’s group
demonstrated that E2F1 influenced metastasis by targeting
MMP family members, FLT-1, KDR, and angiopoietin 2
[9,17]. In agreement with these observations, we pro-
vided additional evidence that Spl and NF-kappa B,
transcriptional activated by E2F1, promoted aggressive
phenotype via upregulation of MMP-9 that was highly
expressed in SCLC.

Because genes usually contain multiple binding sites
for many transcription factors, it is essential to explore
the detailed interactions between transcription factors
and DNA or other proteins. E2F1 and Sp1 bind through
specific domains in each protein, and their physical
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interaction and functional synergism appears to be re-
quired for the regulation of many genes, including DHER,
MYCN, murine thymidine kinase, and transglutaminase
type 1 [38-41]. Several investigators reported a positive
interaction between E2F1 and p65. E2F1 firmly bound IxB
(Inhibitor of NF-kappa B) to NF-kappa B and inhibited
cell adhesion in human aortic endothelial cells [42]. E2F1
also cooperated with NF-kappa B to regulate BNIP3 to
control cell survival [43,44]. In our study, we found that
E2F1 upregulated the expression of Sp1 and p65 in SCLC,
which in turn activated the expression of MMP-9. It re-
mains unclear whether high level of E2F1 cooperates with
Spl or p65 to regulate other genes involved in malignant
phenotype of SCLC. Although E2F1 expression varies in
different types of lung cancer, ours together with other’s
finding demonstrated that overexpression of E2F1, at
least partially, contributed to invasion and metastasis in
both SCLC and NSCLC [9,21]. Further investigation is
required to test a possibility whether E2F1 acts as a tar-
get for SCLC therapy.

Conclusions

Our findings provided a new mechanism by which E2F1
could transcriptionally regulate MMP-16, Spl, and p65
expression. Spl and p65 subsequently controlled MMP-
9 expression in SCLC via E2F1 activation.
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Additional file 1: Table S1. Primer sequences used in the construction
of promoters.

Additional file 2: Figure S1. Scores evaluation of E2F1 staining in
differential pathological lung cancer. The above panel showed E2F1
staining grade in SCLC tissue, and the following panel showed that E2F1
staining level in adenocarcinoma and LCLC tissue. Because E2F1 was not
detected in squamous carcinoma, the data was not shown.

Additional file 3: Table S2. Multivariate survival analysis by using Cox's
regression.

Additional file 4: Figure S2. The analysis of invasion and metastasis
when overexpression of E2F1 in A549 cells. (A) The expression of E2F1

in A549 cells when transfected with E2F1 expression plasmid.

(B) Serum-induced invasiveness was significantly increased in E2F1 group
(*P < 0.05). (C) Enforced expression of E2F1 significantly promoted
migration as compared with Mock and pcDNA3.1 (*P < 0.05).

Additional file 5: Table S3. Features of the ChIP —to-sequences.

Additional file 6: Table S4. Sequence of the DNA fragments that were
bound to E2F-1 by CHIP-to-seq.

Additional file 7: Figure S3. Transcription factor binding sites and
corresponding mutants in the promoter region of target genes. (A) E2F1
binding sites and corresponding mutants in MMP-16 promoter. (B) E2F1,
Sp1 and NF-kappa B binding sites and corresponding mutants in MIMP-9
promoter. (C) E2F1 binding sites and corresponding mutants in Sp1
promoter. (D) E2F1 binding sites and corresponding mutants in p65
promoter.
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