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Abstract

Background: Prognostic multibiomarker signatures in prostate cancer (PCa) may improve patient management and
provide a bridge for developing novel therapeutics and imaging methods. Our objective was to evaluate the
association between expression of 33 candidate protein biomarkers and time to biochemical failure (BF) after
prostatectomy.

Methods: PCa tissue microarrays were constructed representing 160 patients for whom clinicopathologic features
and follow-up data after surgery were available. Immunohistochemistry for each of 33 proteins was quantified using
automated digital pathology techniques. Relationships between clinicopathologic features, staining intensity, and
time to BF were assessed. Predictive modeling using multiple imputed datasets was performed to identify the top
biomarker candidates.

Results: In univariate analyses, lymph node positivity, surgical margin positivity, non-localized tumor, age at prostatectomy,
and biomarkers CCND1, HMMR, IGF1, MKI67, SIAH2, and SMAD4 in malignant epithelium were significantly associated with
time to BF. HMMR, IGF1, and SMAD4 remained significantly associated with BF after adjusting for clinicopathologic features
while additional associations were observed for HOXC6 and MAP4K4 following adjustment. In multibiomarker predictive
models, 3 proteins including HMMR, SIAH2, and SMAD4 were consistently represented among the top 2, 3, 4, and 5 most
predictive biomarkers, and a signature comprised of these proteins best predicted BF at 3 and 5 years.

Conclusions: This study provides rationale for investigation of HMMR, HOXC6, IGF1, MAP4K4, SIAH2, and SMAD4 as
biomarkers of PCa aggressiveness in larger cohorts.
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Background
Although prostate cancer (PCa) is the most commonly
diagnosed non-cutaneous cancer of men in the United
States [1], few prognostic biomarkers are available for
routine clinical use. Serum PSA biochemical failure (BF)
versus non-failure is a well-established binary outcome
variable. Since clinical treatment failure (systemic pro-
gression and/or local recurrence) is essentially always
preceded by BF (by a median of 8 years) [2-5], PSA non-
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failure has high negative predictive value (NPV) for poor
clinical outcome after prostatectomy. When identifying
and validating new potential tissue based biomarkers for
the purpose of attempting to improve prognostication
after prostatectomy, the greatest clinical risk would be
to mischaracterize biologically aggressive disease as
“non-aggressive,” since that would lead to erroneous
underestimation of the malignant potential of the dis-
ease. For this reason, we seek tissue based biomarkers
that maximally correlate with PSA failure.
Multibiomarker signatures and gene associations have

been implicated in PCa progression but few markers
emerge among multiple independent studies as potentially
prognostic, outperform established clinicopathologic pa-
rameters in predicting BF following prostatectomy, or
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have become routinely used in clinical labs [6-18]. Current
prognostic indicators in PCa include preoperative PSA,
tumor stage, and grade [19]. Prognostic molecular bio-
markers may identify pathways that can be exploited for
therapy. For example, the TMPRSS2/ERG gene fusion
was identified as a frequent chromosomal rearrange-
ment present in a subgroup of prostate tumors that
leads to ERG transcription factor overexpression [20].
Subsequent studies have demonstrated that inhibiting
this pathway by delivery of liposomal nanovectors car-
rying siRNA specific for the TMPRSS2/ERG fusion
transcript provides therapeutic advantage in a murine
PCa model [21]. Additionally, multibiomarker signatures
can be spatially quantified to aid in the development of
novel imaging methods to assess PCa aggressiveness pre-
operatively in vivo through co-registration of postopera-
tive pathology data with preoperative imaging data [22].
Numerous studies have described biomarkers of aggres-

sive biologic behavior in PCa such as those correlated with
aberrant hyaluronan (HA) processing [8,11,12], neuroen-
docrine phenotype [14,23], increased tumor angiogenesis
[24], and poor prognosis [7,25]. Other groups have devel-
oped multi-biomarker signatures of PCa aggressiveness
using gene expression profiling as a method for biomarker
discovery; these studies have surprisingly little overlap be-
tween gene sets [6,9,10,13,15-18]. In this study, we took a
combined approach of a) non-biased, cross-study examin-
ation of gene expression profiling data and b) a candidate
gene approach (gene products that appear to be associated
with PCa outcome in prior publications), to identify 33
potential aggressiveness biomarkers. We evaluated the as-
sociation of these biomarkers with BF using immunohisto-
chemistry and automated digital pathology techniques on
tissue microarrays (TMAs) representing PCa tissue from
160 prostatectomy specimens.

Methods
Selection of candidate proteins
We identified 33 genes for study at the protein level by
immunohistochemistry. Eleven genes were selected based
on our own cross-study analysis of three publicly available
PCa gene expression profiling datasets as described in
Additional files 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
(ACPP, ADAM9, ALDH1A2, CASR, CCPG1, GADD45B,
HOXC6, IGF1, IQCK, PAGE4, PLIN2). Four genes were
included based on their occurrence in multiple published
gene signatures of PCa aggressiveness (CHMP1A, EI24,
MAP4K4, MKI67) [6,9,16,17]. Additional candidates were
included based on PCa literature review and included: 6
genes associated with HA processing in PCa (HA, HAS2,
HMMR, HYAL1, CD44, CD44v6) [8,11,12]; 4 genes impli-
cated in poor prognosis of PCa (CCND1, PTEN, SMAD4,
SPP1) [7]; 3 genes characteristic of the neuroendocrine
prostate tumor phenotype (CHGA, ENO2, SYP) [23]; 3
genes associated with development of neuroendocrine
prostate tumors (HES6, SIAH2, SOX9) [14]; 1 marker of
tumor angiogenesis (CD34) [24]; and 1 tumor suppressor
gene associated with poor progression (TP53) [25].

Clinical cohort and TMA construction
Archival formalin-fixed paraffin-embedded tissues from
patients with Gleason score 6, 7, 8, and 9 prostate acinar/
conventional adenocarcinomas that underwent radical
prostatectomy at the University of Minnesota Medical
Center Fairview from 1999 to 2008 were retrospectively
collected after approval from the University of Minnesota
Institutional Review Board. Patients with tumors predom-
inantly containing Gleason pattern 5 (5 + 4 and 5 + 5
morphology) were excluded. Our study focused on bio-
marker expression in tumor cells comprising primary
Gleason patterns 3 and 4. Molecular evidence suggests
that tumor of Gleason pattern 5 morphology is biologic-
ally distinct from tumor of Gleason patterns 3 and 4
[26,27]. Further, there is epidemiological evidence that
Gleason pattern 4 represents a pattern intermediate be-
tween lower risk (pattern 3) and much higher risk (pattern
5) prostate cancer. For these reasons, we believe that
tumor cells of pattern 3 (3 + 3) and pattern 4 (4 + 4, and
the pattern 4 component of 3 + 4, 4 + 3, and 4 + 5 tumors)
are of most interest in prognostic biomarker studies.
Demographic and clinical parameters were abstracted
from preexisting pathology reports and electronic medical
records. Representative PCa areas were identified on
hematoxylin and eosin-stained sections for each case.
TMAs consisting of quadruplicate 1.0 mm core samples
were constructed with a manual tissue arrayer (MTA-1,
Beecher, Sun Prairie, WI).

Immunohistochemistry
Unstained, 4 μm-thick sections were deparaffinized and
rehydrated using standard methods. Table 1 contains de-
tailed information on sources, dilutions, antigen retrieval,
and detection methods for each antibody. Antibodies were
optimized with positive and negative control tissues and
patterns of expression were demonstrated to be highly
similar to those seen in previous publications (Additional
file 13: Table S12). Most antibodies required standard
antigen retrieval; slides were incubated in 6.0 pH buffer
(Reveal Decloaker; Biocare Medical, Concord, CA) in a
steamer for 30 min at 95-98°C, followed by a 20 min cool
down period. Slides were rinsed in 1 × Tris-buffered sa-
line/0.1% Tween-20 (TBST; pH 7.4). Subsequent steps
were automated using a robotic staining platform
(Nemesis; Biocare), except MKI67 and TP53 immuno-
histochemistry which were performed on a Ventana
platform using the manufacturer’s specifications (Ven-
tana Medical Systems, Tucson, AZ). Endogenous per-
oxidase activity was quenched with 3% hydrogen peroxide



Table 1 Antibodies and conditions used for immunohistochemistry assays

Antibody Specificity Clone Dilution Antigen retrieval Incubation Detection Source Cat #

ACPP Polyclonal (rabbit) - 1:2500 Steamer/Citrate pH 6 1 h Novocastra Novolink
Polymer

Sigma-Aldrich HPA004335

ADAM9 Polyclonal (rabbit) - 1:100 Steamer/Citrate pH 6 1 h Novocastra Novolink
Polymer

Sigma-Aldrich HPA004000

ALDH1A2 Polyclonal (rabbit) - 1:1000 Steamer/Citrate pH 6 1 h Novocastra Novolink
Polymer

Sigma-Aldrich HPA010022

CASR Polyclonal (rabbit) - 1:200 Steamer/Citrate pH 6 1 h Novocastra Novolink
Polymer

Abcam ab18200

CCND1 Monoclonal (mouse) DCS-6 1:50 Decloaker/Citrate pH 6 1 h Novocastra Novolink
Polymer

Dako M7155

CCPG1 Polyclonal (rabbit) - 1:400 Steamer/Citrate pH 6 1 h Novocastra Novolink
Polymer

Sigma-Aldrich HPA026861

CD34 Monoclonal (mouse) QBEnd/10 1:4000 Steamer/Citrate pH 6 1 h Novocastra Novolink
Polymer

Neomarkers MS-363-P

CD44 Monoclonal (mouse) SP37 1:400 Steamer/Citrate pH 6 O/N Novocastra Novolink
Polymer

Dako M708201-2

CD44v6 Monoclonal (mouse) 2 F10 1:1000 Steamer/Citrate pH 6 1 h Novocastra Novolink
Polymer

R&D Systems BBA13

CHGA Monoclonal (mouse) LK2H10 + PHE5 1:800 Steamer/Citrate pH 6 1 h Novocastra Novolink
Polymer

Biocare
Medical

CM010B

CHMP1A Polyclonal (rabbit) - 1:100 Steamer/Citrate pH 6 1 h Novocastra Novolink
Polymer

Sigma-Aldrich HPA006776

EI24 Polyclonal (rabbit) - 1:8000 Steamer/Citrate pH 6 1 h Novocastra Novolink
Polymer

Sigma-Aldrich SAB1100756

ENO2 Monoclonal (mouse) 5E2 1:800 No AR 1 h Novocastra Novolink
Polymer

Leica NCL-L-NSE2

GADD45B Polyclonal (rabbit) - 1:25 Steamer/Citrate pH 6 1 h Novocastra Novolink
Polymer

Sigma-Aldrich HPA029816

HABPa NA (bovine) - 1:400 No AR O/N VECTASTAIN Elite ABCb Calbiochem 385911

HAS2 Polyclonal (goat) - 1:1000 Steamer/Citrate pH 6 1 h VECTASTAIN Elite ABC Santa Cruz sc-34067

HES6 Polyclonal (rabbit) - 1:1000 Steamer/Citrate pH 6 O/N Novocastra Novolink
Polymer

Abcam ab66461

HMMR Monoclonal (mouse) 6B7D8 1:900 Steamer/Citrate pH 6 1 h Covance Ultra
Streptavidin-HRP

ProMab NA

HOXC6 Polyclonal (rabbit) - 1:200 Steamer/Citrate pH 6 1 h Novocastra Novolink
Polymer

Santa Cruz sc-66925

HYAL1 Polyclonal (rabbit) - 1:100 Steamer/Citrate pH 6 O/N Novocastra Novolink
Polymer

Sigma-Aldrich HPA002112

IGF1 Polyclonal (rabbit) - 1:400 Steamer/Citrate pH 6 1 h Novocastra Novolink
Polymer

Millipore 07-1411

IQCK Polyclonal (rabbit) - 1:70 Steamer/Citrate pH 6 1 h Novocastra Novolink
Polymer

Sigma-Aldrich HPA026792

MAP4K4 Polyclonal (rabbit) - 1:100 Steamer/Citrate pH 6 1 h Novocastra Novolink
Polymer

Sigma-Aldrich HPA008476

MKI67 Monoclonal (mouse) MM1 Predilute Decloaker/CCS1 32 min Ventana ultraView
Universal

Leica ORG-8772

PAGE4 Polyclonal (rabbit) - 1:2000 Steamer/Citrate pH 6 1 h Novocastra Novolink
Polymer

Sigma-Aldrich HPA023880

PLIN2 Polyclonal (rabbit) - 1:100 Steamer/Citrate pH 6 1 h Novocastra Novolink
Polymer

Abbiotec 251533

PTEN Polyclonal (rabbit) - 1:200 Steamer/Citrate pH 6 1 h Novocastra Novolink
Polymer

Invitrogen 18-0256

SIAH2 Monoclonal (mouse) 24E6H3 1:50 Steamer/Citrate pH 6 1 h Novus NB110-88113
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Table 1 Antibodies and conditions used for immunohistochemistry assays (Continued)

Novocastra Novolink
Polymer

SMAD4 Monoclonal (rabbit) EP618Y 1:100 Steamer/Citrate pH 6 1 h Novocastra Novolink
Polymer

Millipore 04-1033

SOX9 Polyclonal (rabbit) - 1:200 Steamer/Citrate pH 6 1 h Novocastra Novolink
Polymer

Sigma-Aldrich HPA001758

SPP1 Monoclonal (rabbit) EPR3688 1:50 Steamer/Citrate pH 6 1 h Novocastra Novolink
Polymer

Epitomics 2671-1

SYP Monoclonal (mouse) 27G12 1:400 Steamer/Citrate pH 6 1 h Novocastra Novolink
Polymer

Leica NCL-SYNAP-299

TP53 Monoclonal (mouse) DO-7 1:40000 Steamer/Citrate pH 6 1 h Novocastra Novolink
Polymer

Dako M7001

Monoclonal (mouse) Bp53-11 Predilute Decloaker/CCS1 16 min Ventana ultraView
Universal

Ventana 760-2542

CCS1, Cell conditioning solution 1 (Ventana).
aBiotinylated conjugate.
bTertiary reagent only.
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solution (Peroxidazed; Biocare) for 10 min followed by
rinsing. Serum-free blocking solution (Background Sniper;
Biocare) was applied for 10 min. Blocking solution was re-
moved and slides were incubated with primary antibody
diluted in 10% blocking solution/90% TBST. Primary
antibody incubations were performed according to
Table 1. Most detection was performed with the Novo-
castra Novolink Polymer Kit (Leica Microsystems, Buf-
falo Grove, IL). Detection for HAS2 was performed
with the VECTASTAIN Elite ABC Kit (Vector, Burlingame,
CA). Histochemical detection of HA was performed using
biotinylated HA binding protein (bHABP) and only re-
quired the tertiary reagent of the VECTASTAIN Elite ABC
Kit (Vector). To demonstrate specificity for bHABP, add-
itional sections were pre-treated in 0.1 M sodium acetate
buffer (pH 5.0)/1% hyaluronidase (Sigma) for 45 min at
37°C (data not shown). Detection for HMMR was per-
formed with a streptavidin-horseradish peroxidase (HRP)
kit (Covance, Princeton, NJ). Final detection steps were
completed using 3,3-diaminobenzidine (DAB; Covance).
Slides were incubated for 5 min followed by rinsing, coun-
terstaining (CAT Hematoxylin; Biocare), dehydrating, and
coverslipping. A second independent run of immunohis-
tochemistry and image analysis was performed for a sub-
set of biomarkers to examine reproducibility.

Slide digitization, annotation, and immunohistochemical
quantification
TMA slides were scanned at 40 × magnification
(0.0625 μm2/pixel) using a whole slide scanner (Scan-
Scope CS or ScanScope XL; Aperio ePathology, Leica
Biosystems, Vista, CA) and preprocessed using the
Genie Histology Pattern Recognition software suite
(Aperio) to segment tissues into three user-defined
Image Classes (tumor, stroma, glass) as previously
reported [28]. For markers with predominantly nuclear
localization (CCND1, MKI67, SIAH2, and TP53), nuclear
DAB staining was quantified within malignant epithelium
using the Nuclear algorithm (Aperio). For the microvascu-
lar marker (CD34), DAB staining was quantified within
whole tumor areas using the Color Deconvolution algo-
rithm (Aperio) for standard area quantification as well as
the Microvessel algorithm (Aperio) for quantification of
alternative metrics that may be prognostic (average vessel
area, average vessel perimeter, average lumen area, average
vascular area, and microvessel density). For the remaining
markers, DAB staining was quantified within malignant
epithelium using the Color Deconvolution algorithm
(Aperio), except for HA quantified in tumor-associated
stroma and EI24 quantified in both tumor-associated
stroma and malignant epithelium (individually). Data ob-
tained using standard Color Deconvolution (Aperio) were
summarized by a continuous variable metric that incorpo-
rates both the staining strength (measured as average op-
tical density [OD] units since OD is linearly related to
amount of DAB staining [29]) and the percentage of posi-
tive pixels in malignant epithelium or tumor-associated
stromal areas (AvgOD*%Pos). This metric accounts for
differences in staining intensities as well as the proportion
of positive staining tumor and was previously found to be
highly correlated with visual pathologist scoring [28].
Similarly, data obtained using the Nuclear algorithm
(Aperio) were summarized as the average staining in-
tensity within nuclei of malignant epithelium (AvgNu-
clearOD) multiplied by the percentage of positive nuclei
in malignant epithelium (AvgNuclearOD*%PosNuclei).

Statistical analysis
The primary statistical analysis focused on the associ-
ation between biomarkers and BF. Time to BF was
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calculated from date of prostatectomy to the date of known
BF, defined as the date of a PSA value ≥0.2 ng/mL (taken at
least 6 weeks after surgery) and confirmed by a second PSA
value >0.2 ng/mL [2]. Time to BF was censored at the last
date of contact for subjects who did not experience BF. Pa-
tients with only a single post-operative PSA value were ex-
cluded. Clinicopathologic features used for statistical
analysis included pre-operative PSA (continuous), age
at prostatectomy (continuous), primary Gleason pattern
(3: 3 + 3 and 3 + 4; or 4: 4 + 3, 4 + 4, and 4 + 5), and Non-
Localized Tumor Indicator (yes or no) which was defined
by tumor that extended beyond the prostate (pathologic
stage pT3), involved lymph nodes (pN1), and/or had posi-
tive surgical margin (s) (pR1). Clinicopathologic features
and biomarker staining data (averaged across spots by bio-
marker for each patient) were evaluated for their associ-
ation with BF using Cox proportional hazards regression.
Associations were summarized with the hazard ratio (HR)
(per 1 standard deviation difference in biomarker measure-
ment) and 95% confidence interval. P-values of ≤0.05 were
considered statistically significant.
In addition, we developed a multibiomarker predictive

model for time to BF using a subset of the biomarkers
considered in our primary analysis. In order to account
for missing biomarker values, ten imputed datasets were
generated by chained equations [30] using the ‘mice’
package in R [31]. For each imputed dataset, predictive
models were developed for time to BF using the best 2,
3, 4, and 5 biomarkers with variable selection completed
using the Lasso [32]. Data were summarized by counting
the number of times each biomarker appeared in the top
2, 3, 4 and 5 biomarkers across the ten imputed datasets.
From this list, we identified the top 3 biomarkers. The
classification accuracy of our multibiomarker predictive
model was estimated by calculating the area under the
survival ROC curve (AUC) [33] for each imputed dataset
and averaging the estimates over the ten imputed data-
sets. A cross-validation procedure was used to adjust for
overfitting and 95% confidence intervals were completed
using the bootstrap.

Results
Immunohistochemical analysis of PCa related proteins
A select group of 33 proteins implicated in advanced
PCa or disease progression was evaluated by immuno-
histochemistry (Table 1) on our PCa cohort TMAs.
Immunohistochemical staining patterns were verified
using normal and tumor control tissues (described in
Additional file 13: Table S12; representative tissues
shown in Additional file 14: Figure S1). PCa tissues
exhibited positive staining for each of the 33 proteins
as illustrated in Figure 1. The image analysis work-
flow for immunohistochemical staining quantification
is displayed in Figure 2.
Additional studies were performed on 8 of the 33 bio-
markers (24%) (CCND1, CD44s, CD44v6, HA, HAS2,
HMMR, HYAL1, and SMAD4) to investigate the re-
producibility of IHC and image analysis. The number
of cases with available data varied for each biomarker
due to tissue core loss (technical reasons) or exclu-
sion (quality control). For each of the biomarkers,
71.2-84.7% of subjects had evaluable IHC staining on
tissue samples for both runs, 0.6-11.8% were missing
tissue for one of the two runs, and 8.8-11.8% were
missing tissue for both runs (Additional file 15: Table
S13). These data losses are within the expected miss-
ing data range of 6-30% for TMA-based methodologies
[34]. The correlation coefficient for subjects with two inde-
pendent evaluable marker values ranged from 0.54-0.81
(Additional file 15: Table S13).
Clinicopathologic features of PCa patients and BF
A total of 160 subjects met our eligibility criteria and
had suitable tissue available for analysis for at least one
biomarker. The mean age at the time of prostatectomy
was 60.8 years and the average pre-operative PSA was
7.2 ng/mL. A Kaplan-Meier curve for time to BF can be
found in Figure 3. Out of 160 patients, 22 experienced BF
during follow-up with a median time to BF of 9.6 years
(95% CI: 6.9-Inf). The median follow-up among non-
failures was 2.3 years (range 50–3156 days). Tumor char-
acteristics are summarized in Table 2. Combined Gleason
score, pathologic stage, lymph node involvement, surgical
margin involvement, Non-Localized Tumor Indicator, and
increased age at prostatectomy were significantly associ-
ated with time to BF (Table 2). Preoperative PSA and pri-
mary Gleason pattern were not found to be statistically
significant; however, multivariate analyses were adjusted
for all clinicopathologic features including preoperative
PSA and primary Gleason pattern based on established
prognostic factors for BF [19].
Prognostic significance of proteins implicated in
aggressive prostate cancer
Malignant epithelial staining of CCND1 (nuclear; p = 0.042),
HMMR (p = 0.005), IGF1 (p = 0.039), MKI67 (nuclear; p =
0.026), SIAH2 (nuclear; p = 0.016), and SMAD4 (p = 0.010)
were significantly associated with time to BF before adjust-
ing for clinicopathologic features (Table 3). After adjustment
for clinicopathologic features, HMMR (p = 0.008), IGF1
(p = 0.015), SMAD4 (p = 0.016) remained significantly
associated and new associations were observed for
HOXC6 (p = 0.050) and MAP4K4 (p = 0.024). These data
demonstrate that HMMR, HOXC6, IGF1, MAP4K4, and
SMAD4 are associated with time to BF and that their as-
sociations are not fully explained by currently established
clinicopathologic parameters.



Figure 1 (See legend on next page.)
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Figure 1 Immunohistochemistry of candidate biomarkers in prostate cancer. Representative immunohistochemical staining of ACPP,
ADAM9, ALDH1A2, CASR, CCND1, CCPG1, CD34, CD44, CD44v6, CHGA, CHMP1A, EI24, ENO2, GADD45B, HA, HAS2, HES6, HMMR, HOXC6, HYAL1,
IGF1, IQCK, MAP4K4, MKI67, PAGE4, PLIN2, PTEN, SIAH2, SMAD4, SOX9, SPP1, SYP, and TP53 from prostate cancer tissue microarrays. Scale bar
represents 50 μm.
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Multiple imputations and multibiomarker modeling of
prostate cancer aggressiveness
Table 4 presents the frequency with which each bio-
marker appeared in the top 2, 3, 4 and 5 biomarkers
across the ten imputed datasets. Three proteins (HMMR,
SIAH2, and SMAD4) were consistently present in the top
2, 3, 4, and 5 most predictive biomarkers (4, 10, and 7
times in the top 3, respectively). A predictive model com-
prised of HMMR, SIAH2, and SMAD4 had an AUC of
0.69 (95% CI: 0.50, 0.78) for BF at 3 years and 0.70 (95%
CI: 0.53, 0.87) for BF at 5 years (Table 5).

Discussion
While established clinicopathologic features including grade,
stage, and preoperative PSA partially explain the variability
in PCa outcome measured by BF after prostatectomy,
Figure 2 Image analysis workflow for immunohistochemical stainin
stained by immunohistochemistry. The method of image analysis perfor
pattern: default malignant epithelial area (A), malignant epithelial nuclei
(D). (E-G) Genie Histology Pattern Recognition software (Aperio) subclassified
glass (light blue). (H) Markers with heterogeneous positivity were evaluated b
epithelial areas. (I) Markers with predominantly nuclear localization (CCN
(Aperio) to quantify staining within nuclei of malignant epithelium. (J) Marker
Deconvolution (Aperio) to quantify staining within tumor-associated stroma. (
algorithm (Aperio) to quantify additional metrics including average vess
area, and microvessel density. Scale bars represent 50 μm.
further stratification of patients for more precise patient
management may be possible with prognostic multibiomar-
ker signatures. Many signatures and gene associations of
PCa progression have been identified [6-18,23-25], but few
markers emerge among multiple independent studies as po-
tentially prognostic, outperform established clinicopatho-
logic features, or become widely used. Identification of
robust prognostic biomarkers will not only improve the clin-
ical management of PCa, but is expected to provide an im-
portant bridge between pathology data and imaging data to
facilitate development of novel imaging biomarkers which
can be assessed noninvasively [22]. The present study fo-
cused on evaluating the prognostic utility of 33 proteins and
investigating multibiomarker signatures that were predictive
of BF. Although these proteins have been previously impli-
cated in aggressive biologic behavior of PCa from diverse
g quantification. (A-D) Prostate cancer tissue microarrays were
med independently for each marker was dependent on the staining
(B), tumor-associated stromal area (C), or tumor-associated vasculature
tumor areas into malignant epithelium (dark blue), stroma (yellow), and
y Color Deconvolution (Aperio) to quantify staining within malignant
D1, MKI67, SIAH2, and TP53) were evaluated by the Nuclear algorithm
s with significant stromal positivity (EI24 and HA) were evaluated by Color
K) The microvascular marker (CD34) was evaluated by the Microvessel
el area, average vessel perimeter, average lumen area, average vascular



Figure 3 Kaplan-Meier curve demonstrating the time to
biochemical failure for the sample population.

Table 2 Association of clinicopathologic features with
time to biochemical failure using univariate Cox
regression models

Variable N % HR (95% CI) P-value

Total population 160

Combined Gleason score 0.034

3 + 3 50 31.3 0.09 (0.02-0.51)

3 + 4 63 39.4 0.17 (0.03-0.78)

4 + 3 34 21.3 0.17 (0.03-0.92)

4 + 4 8 5.0 0.11 (0.01-1.23)

4 + 5 5 3.1 1.00

Primary Gleason pattern 0.347

3 113 70.6 0.65 (0.27-1.58)

4 47 29.4 1.00

Pathologic stage 0.013

Extraprostatic extension
(pT3+)

29 18.1 3.13 (1.28-7.69)

Prostate-limited (pT2) 131 81.9 1.00

Lymph node
involvement

0.018

Yes (pN1) 5 3.1 4.46 (1.29-15.37)

No (pN0) 155 96.9 1.00

Surgical margin

involvement

0.022

Yes (pR1) 53 33.1 2.82 (1.17-6.84)

No (pR0) 107 66.9 1.00

Non-Localized
tumor Indicator*

0.005

Yes 67 41.9 4.21 (1.54-11.50)

No 93 58.1 1.00

N Mean (SD) HR (95% CI) P-value

Age (years) 160 60.8 (6.8) 1.08 (1.01-1.16) 0.035

Pre-operative PSA (ng/mL) 148 7.2 (5.3) 1.03 (0.98-1.09) 0.238

*Non-Localized Tumor Indicator is a summary metric of tumor confined to
prostate. ‘Yes’ indicates tumor growth beyond the prostate (pathologic stage
pT3), involved lymph nodes (pN1), and/or positive surgical margins (pR1).
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studies, to our knowledge this is the first study to examine
these proteins in a single prostatectomy cohort using immu-
nohistochemistry and objective automated digital pathology
methods. We found that increased levels of several proteins
in malignant epithelium were significantly associated with
time to BF after adjustment for established clinicopathologic
parameters including HMMR, HOXC6, IGF1, MAP4K4,
and SMAD4. We also demonstrated that a 3-biomarker sig-
nature including HMMR, SMAD4, and SIAH2 was predict-
ive of BF in our cohort, warranting further investigation of
this signature in larger cohorts and imaging biomarker de-
velopment studies.
HMMR is a multicompartmentalized receptor for the

extracellular matrix carbohydrate HA with potentially
oncogenic functions such as mediating cell motility and
affecting mitotic spindle integrity [35]. Aberrant HA
pathway signaling is implicated in prostate tumor cell
proliferation, motility, angiogenesis, and metastasis [36].
Our results indicated that elevated HMMR in malignant
epithelium was associated with BF which is similar to
previous reports linking HMMR expression to the devel-
opment of castration-resistant PCa and metastatic disease
[12,37]. Further, low molecular weight HA fragments are
catabolized from native HA by physical (reactive oxygen/
nitrogen species) and enzymatic (hyaluronidase) mecha-
nisms [38] and bind to HMMR to induce cell migration
[39,40]. These data support the underlying model of aber-
rant HA-HMMR signaling in aggressive PCa and are en-
couraging for ongoing studies in our laboratories using
small molecular inhibitors to disrupt fragmented HA-
HMMR interactions for therapeutic targeting.
HOXC6 was identified in our cross-study analysis of

gene expression datasets as part of an 11-gene signature
of PCa aggressiveness. We further demonstrated an as-
sociation between HOXC6 immunohistochemistry with
time to BF in our PCa cohort. Similarly, Singh et al.
identified HOXC6 in a 5-gene signature that was pre-
dictive of BF [15]. HOXC6 is an androgen-regulated
gene which assists during development of normal tissues
and progression of PCa [41]. Mouse models provide spe-
cific evidence for the interaction of HOXC6 with mul-
tiple downstream targets including bone morphogenic
protein 7 (BMP7), fibroblast growth factor receptor 2
(FGFR2), and platelet-derived growth factor receptor α
(PDGFRA) that promote PCa metastasis to the bone
microenvironment [42]. Anti-apoptotic roles for HOXC6
have also been described in head and neck squamous



Table 3 Biomarkers as predictors of time to biochemical failure using Cox regression models

N Univariate Multivariate*

Variable HR (95% CI) P-value HR (95% CI) P-value

ACPP 139 0.93 (0.63-1.39) 0.735 1.07 (0.59-1.93) 0.827

ADAM9 152 0.98 (0.63-1.54) 0.944 1.19 (0.75-1.91) 0.462

ALDH1A2 141 0.79 (0.47-1.32) 0.368 1.10 (0.62-1.95) 0.737

CASR 143 1.01 (0.65-1.57) 0.949 0.98 (0.58-1.66) 0.937

CCND1 (nuclear) 142 1.38 (1.01-1.88) 0.042 1.18 (0.87-1.61) 0.296

CCPG1 143 1.19 (0.76-1.88) 0.446 1.14 (0.69-1.86) 0.611

CD34 (avg vess area) 146 1.16 (0.74-1.83) 0.515 1.02 (0.60-1.74) 0.938

CD34 (avg vess per) 146 1.42 (0.91-2.21) 0.123 1.43 (0.84-2.43) 0.188

CD34 (avg lum area) 146 1.45 (0.95-2.22) 0.086 1.37 (0.83-2.27) 0.220

CD34 (avg vasc area) 146 1.02 (0.66-1.60) 0.915 0.89 (0.52-1.53) 0.682

CD34 (MVD) 146 1.11 (0.71-1.73) 0.652 0.97 (0.56-1.67) 0.901

CD34 146 1.11 (0.72-1.71) 0.648 1.04 (0.63-1.71) 0.881

CD44 148 1.07 (0.68-1.68) 0.764 1.06 (0.70-1.60) 0.786

CD44v6 143 1.23 (0.79-1.89) 0.360 1.35 (0.84-2.16) 0.217

CHGA 136 0.50 (0.24-1.04) 0.064 0.56 (0.26-1.21) 0.139

CHMP1A 146 1.31 (0.83-2.08) 0.244 1.35 (0.84-2.20) 0.218

EI24 (stroma) 140 1.24 (0.85-1.82) 0.265 1.36 (0.97-1.91) 0.077

EI24 (tumor) 140 1.32 (0.94-1.87) 0.114 1.32 (0.97-1.79) 0.077

ENO2 145 1.33 (0.92-1.93) 0.135 1.48 (0.92-2.38) 0.108

GADD45B 148 1.11 (0.72-1.73) 0.630 1.18 (0.78-1.77) 0.435

HA (stroma) 150 1.51 (0.99-2.29) 0.055 1.43 (0.95-2.17) 0.090

HAS2 148 1.27 (0.82-1.97) 0.287 1.47 (0.94-2.30) 0.090

HES6 140 0.80 (0.48-1.34) 0.401 0.69 (0.38-1.27) 0.238

HMMR 139 2.01 (1.23-3.30) 0.005 1.98 (1.20-3.29) 0.008

HOXC6 142 1.22 (0.79-1.89) 0.368 1.51 (1.00-2.28) 0.050

HYAL1 147 1.42 (0.92-2.21) 0.116 1.40 (0.87-2.25) 0.163

IGF1 147 1.57 (1.02-2.42) 0.039 1.67 (1.10-2.52) 0.015

IQCK 149 0.90 (0.58-1.40) 0.651 0.90 (0.59-1.38) 0.625

MAP4K4 145 1.44 (0.91-2.28) 0.121 1.76 (1.08-2.86) 0.024

MKI67 (nuclear) 142 1.43 (1.04-1.96) 0.026 1.29 (0.93-1.79) 0.125

PAGE4 145 0.68 (0.45-1.03) 0.069 0.88 (0.57-1.35) 0.566

PLIN2 115 1.21 (0.71-2.09) 0.481 1.07 (0.62-1.86) 0.801

PTEN 144 0.83 (0.54-1.27) 0.393 0.84 (0.51-1.38) 0.493

SIAH2 (nuclear) 144 1.46 (1.07-1.99) 0.016 1.37 (0.94-2.02) 0.104

SMAD4 130 1.76 (1.15-2.71) 0.010 1.73 (1.11-2.70) 0.016

SOX9 145 1.39 (0.90-2.16) 0.137 1.45 (0.93-2.27) 0.101

SPP1 128 1.07 (0.62-1.84) 0.805 0.76 (0.44-1.33) 0.338

SYP 133 0.88 (0.48-1.63) 0.681 0.95 (0.53-1.70) 0.869

TP53_Lab1 (nuclear) 148 1.23 (0.83-1.83) 0.305 1.19 (0.78-1.82) 0.431

TP53_Lab2 (nuclear) 143 0.97 (0.63-1.50) 0.906 0.93 (0.60-1.44) 0.741

MVD, microvessel density.
*Adjusted for age at prostatectomy, pre-op PSA, primary Gleason pattern, and Non-Localized Tumor Indicator.
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Table 4 Frequency of biomarkers appearing in the top 2,
3, 4, and 5 biomarkers with highest area under the ROC
curve (AUC) across 10 imputed datasets

Variable Top 2 Top 3 Top 4 Top 5

ACPP 0 0 0 0

ADAM9 0 0 0 0

ALDH1A2 0 0 0 0

CASR 0 0 0 0

CCND1 (nuclear) 0 0 0 0

CCPG1 0 0 0 0

CD34 (avg vess area) 0 0 0 0

CD34 (avg vess per) 0 1 4 5

CD34 (avg lum area) 0 1 3 3

CD34 (avg vasc area) 0 0 0 0

CD34 (MVD) 0 0 0 0

CD34 0 0 0 0

CD44 0 0 0 0

CD44v6 0 2 2 2

CHGA 0 1 1 2

CHMP1A 0 0 0 0

EI24 (stroma) 0 0 0 0

EI24 (tumor) 0 0 0 0

ENO2 0 0 1 1

GADD45B 0 0 0 0

HA (stroma) 1 1 1 3

HAS2 0 0 0 0

HES6 0 0 0 0

HMMR 2 4 6 6

HOXC6 0 0 0 0

HYAL1 0 0 0 0

IGF1 0 0 0 0

IQCK 0 0 0 0

MAP4K4 0 0 0 0

MKI67 (nuclear) 0 0 0 0

PAGE4 0 0 0 0

PLIN2 0 0 0 0

PTEN 0 0 0 0

SIAH2 (nuclear) 7 10 10 10

SMAD4 4 7 7 8

SOX9 0 0 0 0

SPP1 0 0 0 0

SYP 0 0 0 0

TP53_Lab1 (nuclear) 0 0 0 0

TP53_Lab2 (nuclear) 0 0 0 0

MVD, microvessel density.
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cell carcinoma in which HOXC6 directly increases the
promoter activity causing overexpression of Bcl-2 [43].
Similarly, HOXC6 represses the activity of pro-apoptotic
genes neutral endopeptidase (NEP) and insulin-like
growth factor binding protein 3 (IGFBP3) in PCa [41]. Al-
though androgen receptor was not directly investigated in
this study, we identified an association between elevated
HOXC6 and BF in our cohort which along with these
studies provides rationale for further investigation of
HOXC6 in the PCa androgen receptor axis.
MAP4K4 is also a pro-migratory protein involved in

mammalian development and increases tumor cell mo-
tility likely through c-Jun N-terminal kinase (JNK) [44].
Our findings indicated that increased MAP4K4 was
significantly associated with time to BF. MAP4K4 is
similarly incorporated in numerous independent gene
expression signatures which are predictive of survival
in colorectal cancer [45] and recurrence in prostate
cancer [16,17]. Additionally, MAP4K4 is an independ-
ent prognostic factor for hepatocellular carcinoma and
lung adenocarcinoma [46,47]. Xenograft tumor growth
in mice using a hepatocellular cell line is substantially
inhibited by RNA interference of MAP4K4 [46], indi-
cating a potential therapeutic target that may be useful
for treatment of PCa.
Higher protein levels of IGF1 were associated with

time to BF in our PCa cohort. This observation was dis-
cordant from our initial cross-study analysis of independ-
ent gene expression datasets identifying downregulated
IGF1 as part of an 11-gene signature of PCa aggressive-
ness (Additional file 12: Table S11). One recent study
shows evidence for decreased IGF1 mRNA in local PCa
compared to benign prostate, although IGF1 may still be
involved in subsequent tumor progression as this study
did not evaluate advanced or metastatic disease [48]. In
contrast, our immunohistochemical findings correlate
with most literature on the role of increased IGF1 in can-
cer progression. In androgen-independent PCa, IGF1 in-
duces tumor cell motility by activation of αvβ3 integrin
via the PI3-K/Akt pathway [49]. IGF1 signaling through
PI3-K/Akt and β1 integrin similarly promotes adhesion
and migration in multiple myeloma cells [50].
The PI3-K pathway is also upregulated in transgenic

mice expressing tissue-specific IGF1 in prostate basal
epithelial cells which leads to constitutive activation of
IGF1R and increased development of PCa [51]. Import-
antly, meta-analysis of large datasets demonstrates an
association between high serum IGF1 levels and mod-
erately increased risk of PCa which may provide an im-
portant modifiable target in PCa patients [52].
In addition to IGF1, bioinformatic analysis identifies

SMAD4 as a candidate gene likely to be a primary driver
of PCa progression [53]. Reports of SMAD4 expression
in prostate and other cancers are complex and variable,



Table 5 Area under the ROC curve (AUC) for 3-year and 5-year recurrence using a 3-biomarker model comprised of
HMMR, SIAH2 (nuclear), and SMAD4

3-year recurrence 5-year recurrence

AUC (95% CI) P-value AUC (95% CI) P-value

Unadjusted AUC 0.708 (0.581-0.882) 0.004 0.721 (0.592-0.880) 0.002

Cross-validation adjusted AUC 0.685 (0.499-0.871) 0.052 0.702 (0.533-0.866) 0.024
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although mutation of the SMAD4 gene appears rare dur-
ing PCa progression [54]. In normal cells, SMAD4 is a
critical component of the TGF-β signaling cascade and
localizes to the nucleus after becoming activated to regu-
late TGF-β-responsive genes and inhibit cellular prolifer-
ation [55]. In this sense, SMAD4 may act as a tumor
suppressor, which has been demonstrated by reduced ex-
pression of SMAD4 in PCa compared to BPH and nor-
mal prostate tissue [56]. Interestingly, in our cross-study
analysis of gene expression datasets SMAD4 was present
in the top 46 ranked genes (position 21) and inversely
correlated with PCa aggressiveness (Additional file 4:
Table S3). While Smad-dependent TGF-β signaling pri-
marily functions to inhibit growth, the vast majority of
tumors acquire resistance to these effects and tumor
progression becomes stimulated by TGF-β in more ad-
vanced tumors [55]. Previous studies have linked in-
creased SMAD4 to higher grade, stage, and DNA ploidy
in PCa [57] and to infiltration of the myometrial wall in
endometrioid endometrial cancer [58], which is consist-
ent with our immunohistochemical analysis that elevated
SMAD4 was significantly associated with time to BF.
Similarly, SMAD4 shifts from its tumor suppressor role
to an aggressiveness factor in a mouse model of breast
cancer by promoting bone metastasis through TGF-β-
activated expression of IL-11 [59]. Advanced primary
prostate tumors often metastasize to the bone, poten-
tially reflecting parallel events whereby bone-derived
TGF-β offers an advantage to SMAD4-overexpressing
prostate tumor cells and providing a possible therapeutic
target in the TGF-β pathway.
HMMR, SMAD4, and SIAH2 comprised a multibiomar-

ker signature that was predictive of BF in our cohort.
SIAH2 is a RING finger ubiquitin ligase which controls the
stability of multiple substrates, and under hypoxic condi-
tions, causes ubiquitination/degradation of prolyl hydroxy-
lase 3 and 1 [60]. This action increases the accumulation
rate of HIF-1α and interacts with neuroendocrine-specific
expression of FoxA2 leading to neuroendocrine PCa devel-
opment and metastasis [14,60]. SIAH2 also contributes to
castration-resistant PCa by targeting a subset of inactive
androgen receptors for ubiquitination which increases the
activity of androgen receptor target genes implicated in
PCa progression [61]. Our results which identify SIAH2 in
the multibiomarker signature predictive of BF are consist-
ent with these studies and support a functional role for
SIAH2 in contributing to aggressive subtypes of PCa.
This study and its conclusions are limited by a small

sample size and short follow-up for some individuals.
We collected data on 160 patients of which half were
followed for less than 2.3 years. As a result, only 22 of
the 160 patients in our sample experienced BF even
though 67 patients had extraprostatic extension, lymph
node involvement, or surgical margin involvement. It is
likely that longer follow-up would result in more BF in-
stances. The small number of BF’s observed in our sam-
ple is directly related to the relatively modest AUC
(AUC ~0.7 for 3- and 5-year BF) observed for our 3-
biomarker signature. A larger sample size and more
events would provide more statistical power for develop-
ing a biomarker signature and more precision for evalu-
ating the performance of the new biomarker signature.
This retrospective hospital-based cohort study is add-
itionally limited by lack of information regarding (neo)-
adjuvant therapy. This is an important limitation of our
study, since such treatments could potentially affect pa-
tient outcomes and thus our interpretations. We plan to
complete a larger validation study to further refine our
biomarker signature and to obtain more precise esti-
mates of its performance as a classifier for BF.
Conclusions
This study presents a unique methodology for evaluating
the prognostic utility of PCa biomarkers. Because of the
precious value of tissues represented in TMAs from
large cohorts, we have tested 33 proteins by immunohis-
tochemistry using this cohort of 160 patients in order to
identify promising biomarkers for use in significantly lar-
ger validation studies [62]. Additionally, this study de-
scribes a 3-biomarker signature consisting of HMMR,
SIAH2, and SMAD4 proteins which appears to be prog-
nostic in our cohort. This signature may be useful in
work currently underway to co-register detailed multi-
biomarker immunohistochemistry signature maps with
multiparametric MR data, for the purpose of identifying
MR biomarkers that assess PCa aggressiveness preopera-
tively in vivo [22].
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Additional file 1: Development of an n-gene signature of prostate
cancer aggressiveness by cross-study examination of gene expression
profiling data.

Additional file 2: Table S1. Fully normalized RNA expression data
(Singh et al.) for the top 1000 most informative genes [500 genes with
the most positive Sx (non-aggressive) and 500 genes with the most
negative Sx (aggressive)] for 21 specimens in the Singh et al. dataset.
Genes are ranked by decreasing informational content (|Sx|).

Additional file 3: Table S2. Fully normalized RNA expression data (Yu
et al.) for the top 1000 most informative genes [500 genes with the most
positive Sx (non-aggressive) and 500 genes with the most negative Sx
(aggressive)] for 58 specimens in the Yu et al. dataset. Genes are ranked
by decreasing informational content (|Sx|).

Additional file 4: Table S3. Top 46 genes (ranked by |weighted
average Sx|) with Sx values from each dataset. Expression values for
genes with multiple probe set ID’s were averaged. Sx ratios were
averaged and weighted to account for difference in sample size
between datasets.

Additional file 5: Table S4. Weighted voting calculations for the top
46 ranked genes using normalized gene expression data from the Singh
et al. dataset (Additional file 2: Table S1) and weighted average Sx values
(derived in Additional file 4: Table S3) using the voting equation: v = Sx
[Gx - Bx].

Additional file 6: Table S5. Weighted voting calculations for the top
46 ranked genes using normalized gene expression data from the Yu
et al. dataset (Additional file 2: Table S1) and weighted average Sx values
(derived in Table S3) using the voting equation: v = Sx [Gx - Bx].

Additional file 7: Table S6. Aggressiveness predictions of n-gene
models for each specimen in the Singh et al. dataset. These values result
from the summation (V) of votes for genes added consecutively to the
n-gene model: V = Σx vx, where the summation (V) is positive (non-
aggressive; blue) or negative (aggressive; red). Statistical results for each
n-gene model are displayed at the end of each row.

Additional file 8: Table S7. Aggressiveness predictions of n-gene
models for each specimen in the Yu et al. dataset. These values result
from the summation (V) of votes for genes added consecutively to the
n-gene model: V = Σx vx, where the summation (V) is positive (non-
aggressive; blue) or negative (aggressive; red). Statistical results for each
n-gene model are displayed at the end of each row.

Additional file 9: Table S8. Fully normalized cDNA expression data
(Lapointe et al.) for the ranked set of top 46 genes for the 28 specimens
in the Lapointe et al. validation dataset.

Additional file 10: Table S9. Weighted voting calculations for the top
46 ranked genes using normalized gene expression data from the
Lapointe et al. validation dataset (Additional file 9: Table S8) and
weighted average Sx values (derived in Table S3) using the voting
equation: v = Sx [Gx - Bx].

Additional file 11: Table S10. Aggressiveness predictions of n-gene
models for each specimen in the Lapointe et al. validation dataset. These
values result from the summation (V) of votes for genes added
consecutively to the n-gene model: V = Σx vx, where the summation (V) is
positive (non-aggressive; blue) or negative (aggressive; red). Statistical
results for each n-gene model are displayed at the end of each row.

Additional file 12: Table S11. Composition of the final 11-gene model
validated in the Lapointe et al. dataset.

Additional file 13: Table S12. Control tissues used in
immunohistochemistry assays.

Additional file 14: Figure S1. Representative images of selected
control tissues demonstrating optimized immunohistochemistry.

Additional file 15: Table S13. Reproducibility of assay methods given
by N (%) patients for each combination of missing/observed for two
independent runs and the correlation coefficients when data were
observed in both runs.
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