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Norcantharidin inhibits tumor growth and
vasculogenic mimicry of human gallbladder
carcinomas by suppression of the PI3-K/MMPs/
Ln-5y2 signaling pathway
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Abstract

Background: Vasculogenic mimicry (VM) is a novel tumor blood supply in some highly aggressive malignant
tumors. Recently, we reported VM existed in gallbladder carcinomas (GBCs) and the formation of the special
passage through the activation of the PI3K/MMPs/Ln-5y2 signaling pathway. GBC is a highly aggressive malignant
tumor with disappointing treatments and a poor prognosis. Norcantharidin (NCTD) has shown to have multiple
antitumor activities against GBCs, etc; however the exact mechanism is not thoroughly elucidated. In this study,
we firstly investigated the anti-VM activity of NCTD as a VM inhibitor for GBCs and its underlying mechanisms.

Methods: /n vitro and in vivo experiments to determine the effects of NCTD on proliferation, invasion, migration,
VM formation, hemodynamic and tumor growth of GBC-SD cells and xenografts were respectively done by
proliferation, invasion, migration assays, H&E staining and CD31-PAS double stainings, optic/electron microscopy, tumor
assay, and dynamic micro-MRA. Further, immunohistochemistry, immunofluorescence, Western blotting and RT-PCR
were respectively used to examine expression of VM signaling-related markers PI3-K, MMP-2, MT1-MMP and Ln-5y2 in
GBC-SD cells and xenografts in vitro and in vivo.

Results: After treatment with NCTD, proliferation, invasion, migration of GBC-SD cells were inhibited; GBC-SD

cells and xenografts were unable to form VM-like structures; tumor center-VM region of the xenografts exhibited

a decreased signal in intensity; then cell or xenograft growth was inhibited. Whereas all of untreated GBC-SD

cells and xenografts formed VM-like structures with the same conditions; the xenograft center-VM region exhibited a
gradually increased signal; and facilitated cell or xenograft growth. Furthermore, expression of MMP-2 and

MT1-MMP products from sections/supernates of 3-D matrices and the xenografts, and expression of PI3-K, MMP-2,
MM1-MMP and Ln-5y2 proteins/mRNAs of the xenografts were all decreased in NCTD or TIMP-2 group; (all P < 0.01, vs.
control group); NCTD down-regulated expression of these VM signaling-related markers in vitro and in vivo.

Conclusions: NCTD inhibited tumor growth and VM of human GBCs in vitro and in vivo by suppression of the
PI3-K/MMPs/Ln-5y2 signaling pathway. It is firstly concluded that NCTD may be a potential anti-VM agent for
human GBCs.
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Background

Gallbladder carcinoma (GBC) is the most common bil-
iary tract cancer (BTC), the fifth or sixth common ma-
lignant neoplasm of the digestive tract and the leading
cause of cancer-related deaths in West countries and
China [1-5]. It commonly presents at an advanced stage,
and has limited therapeutic options such as low surgical
resection rate, disappointing chemotherapy and radio-
therapy; moreover, diagnostic delay, high local recur-
rence and distant metastasis, and biological behavior of
the tumor, the prognosis is very poor [1,6-13]. Therefore,
comprehension of the special biological behaviors and
the molecular events in gallbladder carcinogenesis, and
development of novel anticancer or molecularly targeted
therapeutics in advanced GBC are very necessary, and
remain challenging [12,13]. Recent developments in tar-
geted therapeutics, directed against several key signalling
pathways in BTC, including epidermal growth factor
receptor, angiogenesis, and the mitogen-activated pro-
tein kinase pathway appear promising [13].

The growth and metastasis of the tumor depend on
an effective microcirculation. The formation of a micro-
circulation can occur via the traditionally recognized
mechanisms of vasculogenesis and angiogenesis and
the recently found vasculogenic mimicry (VM). VM, a
newly-defined pattern of tumor blood supply, provides a
special passage without endothelial cells and conspicu-
ously different from angiogenesis and vasculogenesis
[14], describes the unique ability of highly aggressive
tumor cells to express endothelial cell-associated genes
and form extracellular matrix (ECM)-rich, patterned
tubular networks when cultured on a three-dimensional
(3-D) matrix, and is associated with a poor prognosis for
the patients with some aggressive malignant tumors
such as melanoma [14,15], breast cancer [16], hepatocel-
lular carcinoma [17], gastric adenocarcinoma [18], and
colorectal cancer [19], etc.. We previously reported that
VM existed in human GBCs and GBCs by both 3-D
matrices of highly aggressive GBC-SD cells in vitro and
GBC-SD nude mouse xenografts in vivo and correlated
with the patient’s poor prognosis [20-22]. We identified
that the formation of VM in human GBCs through the
activation of the phosphoinositide 3 kinase/matrix me-
talloproteinases/laminin 5y2 (PI3K/MMPs/Ln-5y2) sig-
naling pathway in the 3-D matrices of GBC-SD cells
in vitro and GBC-SD nude mouse xenografts in vivo
[23,24]. Because differential endothelial cells involved in
angiogenesis and VM, and their different molecular
regulation mechanisms are key targets in cancer therapy,
some experiments confirmed that simple application an-
giogenic inhibitors have no effect on VM [25]. So, it
should be considered to develop new antivascular thera-
peutic agents that target both angiogenesis and VM, in
especial, anti-VM therapy for tumor VM.
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Evidence has shown that traditional Chinese medicines
contain anticancer ingredient. Norcantharidin (NCTD)
is a demethylated and low-cytotoxic derivative of can-
tharidin with anti-tumor properties, an active ingredient
of the traditional Chinese medicine Mylabris; is currently
synthesized from furan and maleic anhydride via the
DielsAlder reaction [26-28]. It has been reported that
NCTD inhibits the proliferation and growth of a variety
of human tumor cells and is used in clinic to treat hu-
man cancers, e.g., hepatic, gastric, colorectal and ovarian
carcinoma because of its effective anticancer activity,
fewer side effects and leukocytosis [26-31]. We have re-
ported that NCTD has multiple antitumor activities
against GBCs in vitro and in vivo [32-34]. However, the
exact mechanism responsible for the NCTD antitumor
is not thoroughly elucidated. In this study, we further in-
vestigated the anti-VM activity of NCTD as a VM inhibi-
tor for human GBCs and its underlying mechanisms.
The results showed that NCTD inhibits tumor growth
and VM of human GBCs by suppression of the PI3-K/
MMPs/Ln-5y2 signaling pathway in vitro and in vivo.
Thus, we firstly concluded that NCTD may be a poten-
tial anti-VM agent for human GBCs.

Methods

Cell culture

Establishment of human gallbladder carcinoma GBC-SD
cell lines have been described previously [22] and were
maintained in Dulbecco’s modified Eagle’s media (DMEM,
Gibco, USA) supplemented with 10% fetal bovine
serum (FBS, Hangzhou Sijiqing Bioproducts, China)
and 10° U-ml™" penicillin and streptomycin (Shanghai
Pharmaceutical Works, China) in an incubator (Forma
series II HEPA Class 100, Thermo, USA) at 37°C with
5% carbon dioxide (CO,).

Proliferation assay in vitro

Cultured GBC-SD cell suspensions were used in acute
toxicity test [32]. Maximal (100 pg-ml™') or minimal
(5 ug-ml™") effective dose was calculated respectively
from pro-experiment. Cells were grown in a 96-well
plate (3 x 10° cells/ml-100 pl/well) in culture medium
overnight, then treated with various concentrations of
NCTD (injection solution: 5 mg-ml™; Jiangsu Kangxi
Pharmaceutical Works, China) in fresh culture medium
at 37°C in 5% CO, for 24 hr. The tetrazolium-based col-
orimetric assay (MTT; Sigma, MO, USA) was used to
determine the effect of NCTD on proliferation of GBC-
SD cells. The optical densities (A value) at 540 nm were
measured with an enzyme-linked immunosorbent assay
(ELISA) reader (Biorad model 450, Sigma, Germany).
The A540 value of the experimental groups was divided
by the A540 value of untreated controls and presented
as a percentage of the cells. Inhibitory percent of NCTD
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on GBC-SD cells (%) = (1-A540 value in the experimen-
tal group/A540 value of control group) x 100%. Three
separate experiments were carried out. The concentra-
tion of drug giving 50% growth inhibition (ICs,) was cal-
culated from the formula ICs, = Ig™'[Xm-I (p-0.5)].

Invasion assay in vitro

The 35-mm, 6-well Transwell membranes (Coster, USA)
were used to assess the in vitro invasiveness of GBC-SD
cells. Briefly, a polyester (PET) membrane with 8-pum
pores was uniformity coated with a defined basement
membrane matrix consisting of 50 pl Matrigel (Becton
Dickinson, USA) mixture which diluted with serum-free
DMEM (2 volumes versus 1 volume) over night at 4°C
and used as the intervening barrier to invasion. Upper
wells of the chamber were respectively filled with 1 ml
serum-free DMEM containing 2 x 10> ml™' GBC-SD
cells (n=3). Cells were untreated (control group)
and treated with 100 nM tissue inhibitor of matrix
metalloproteinase-2 (TIMP-2) recombinant protein
(Sigma, Germany; TIMP, group) or 28 pg-ml '(1/2
ICs) of NCTD (NCTD group) in fresh culture medium
(0.3 ml/every chamber). Lower wells of the chamber
were filled with 3 ml serum-free DMEM containing 1 x
MITO + (Collaborative Biomedical, Bedford, MA). After
24-hr in a humidified incubator at 37°C with 5% CO,,
cells that had invaded through the basement membrane
were stained with H&E, and counted by a light micro-
scope. Invasiveness was calculated as the number of cells
that had successfully invaded through the matrix-coated
membrane to the lower wells. Briefly, quantification was
done by calculating the number of cells in 5 independent
microscopic fields at a 400-fold magnification. Experi-
ments were performed in duplicate and repeated three
times with consistent results.

Collagen gel contraction i.e. migration assay in vitro

Collagen gel suspensions for GBC-SD cell lines are pre-
pared by mixing 250 ul of a suspension that contained
3x10°ml™" into 250 pl of undiluted rat-tail collagen
type I (Sigma, Germany; 4.25 mg'ml™") dripped into ster-
ilized 35-mm petridishes that contained 2 ml culture
media to prevent adhesion of the collagen to the glass
substrate. The suspensions are allowed to polymerize for
1 hr at room temperature before these culture dishes
were placed in the 37°C with 5% CO, incubator. Cells
were untreated (control group) and treated with 100 nM
TIMP-2 recombinant protein (Sigma, Germany; TIMP,
group) or 28 pg-ml'(1/2 ICs) of NCTD (NCTD
group) for 24 hrs. Gel contraction was defined as the
relative change in the gel size, measured in two dimen-
sions, including maximum and minimum diameters. Gel
measurements were recorded daily, and the culture
medium was changed every one day. Contraction index
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(CI) was calculated as follows: CI=1-(D-Dy)?*x 100%,
where D is the primary diameter of rat-tail collagen type I,
Dy is the average of maximum and minimum diameters of
gel. All experiments were performed in triplicate.

Network formation assay in vitro

Matrigel and rat-tail type I collagen 3-D matrices were
prepared as described previously [22]. Cells were allowed
to adhere to matrix, and untreated (control group) and
treated with 100 nM TIMP-2 recombinant protein (Sigma,
Germany; TIMP, group) or 28 pg-ml™* of NCTD (NCTD
group) for 2 days. For experiments designed to analyze the
ability of the cells to engage in VM using a phase contrast
microscopy (Olympus IX70, Japan). The images were
taken digitally using a Zeiss Televal inverted microscopy
(Carl Zeiss, Inc., Thornwood, NY) and camera (Nickon,
Japan) at the time indicated.

Tumor xenograft assay in vivo

Balb/c nu/nu mice (equal numbers of male and female
mice, 4-week old, about 20 g) were provided by Shanghai
Laboratory Animal Center, Chinese Academy of Sciences
and housed in specific pathogen free (SPF) condition. All
of procedures were performed on nude mice according
to the official recommendations of the Chinese Commu-
nity Guidelines. Tumor xenograft assay of GBC-SD cells
in vivo was performed as described previously [22,24,34].
The mice, by 2 weeks when a tumor xenograft was appar-
ent in all mice axilback, were randomly divided into a
control group (n = 6) receiving intraperitoneal (i.p.) injec-
tions of 0.1 ml normal saline alone twice each week, a
NCTD group (n =6, each mouse receiving i.p. injections
of 28 mg-kg' NCTD at a dose of 1/5 LD, given in
0.1 ml of normal saline, as described previously [34]), and
a TIMP-2 recombinant protein (Sigma, Germany; n =6,
each mouse receiving intratumoral injection of 100 nM)
group, twice each week for 6 weeks in all. Xenograft size
i.e. the maximum diameter (a) and minimum diameter
(b) was measured with calipers two times each week.
The tumor volume was calculated by the following for-
mula: V (cm®) =1/6mab® Also, tumor inhibitory rate of
each group was respectively evaluated. Tumor inhibitory
rate = (volume in the control group - volume in the ex-
perimental group)/volume in the control group x 100%.

Immunohistochemistry in vitro and in vivo

Immunohistochemistry in vitro and in vivo included
H&E staining, periodic acid-Schiff (PAS) staining, CD3;-
PAS double stainings, and the determination of matrix
metalloproteinase-2 (MMP-2) or membrane type 1-
MMP (MT1-MMP) protein for sections and supernates
from the cell culture tissues and sections of GBS-SD
nude mouse xenografts. H&E staining, PAS staining and
CD3;-PAS double stainings were performed as indicated
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previously [22]. MMP-2 and MT1-MMP proteins from
sections of 3-D culture samples and GBC-SD xenografts
were determined by streptavidin-biotin complex (SABC)
method as described previously [24]. Primary antibody
[MMP-2 (1:200), MT1-MMP (1:100); Rabbit polyclonal
antibody], biotinylated secondary antibody, SABC re-
agents and 3, 3-diaminobenzidine (DAB) solution were
from Wuhan Boster, China. Sections were observed
under an optic microscope with x 10 and x 40 objectives
(Olympus CH-2, Japan). For negative control, the slides
were addressed in phosphate buffer solution (PBS) in
place of primary antibody. Ten sample slides in each
group were selected by analysis. More than 10 visual
fields were observed or more than 500 cells counted per
slide. In addition, MMP-2 and MT1-MMP proteins from
supernates of 3-D culture samples were determined by
ELISA as indicated previously [24]. The supernates from
each group and the diluted standard solutions were
added into 2 multiple wells, 2 zero adjusting wells, and a
control tetramethylbenzidine (TMB) well. The former
two wells were added in order with biotinylated antibody
(MMP-2, Wuhan Boster; MT1-MMP, DR, USA), ABC
reagents and TMB solution (Wuhan Boster), respect-
ively; the control TMB well were didn’t added in order
with MMP-2, MT1-MMP, ABC reagents. The optical
densities at 450 nm were needed to be measured using
an ELISA reader (Biorad model, Sigma, Germany).

Electron microscopy in vitro and in vivo

For scanning electron microscopy (SEM) and transmis-
sion electron microscopy (TEM), 3-D culture samples of
GBC-SD cells and fresh tissues of GBC-SD nude mouse
xenografts (0.5 mm?) were fixed in cold 2.5% glutaralde-
hyde in 0.1 molL™" of sodium cacodylate buffer and
postfixed in a solution of 1% osmium tetroxide, dehy-
drated, and embedded in a standard fashion. The speci-
mens were then either embedded, sectioned, and stained
by routine means for a JEOL-1230 TEM, or critically
point-dried, and sputter-coated with gold for a Hitachi
S-520 SEM.

Hemodynamic assay of the xenografts’ VM in vivo

Hemodynamic assay of GBC-SD nude mouse xenografts
were examined by a dynamic micro-magnetic resonance
angiography (micro-MRA; MRI is a 1.5 T superconduct-
ive magnet unit from Marconic, USA) as described
previously [22]. The anesthetized xenograft nude mice
(n =3, 7 weeks old, 35 + 3 grams) placed at the center of
the coils were injected L.V. in the tail vein with human
adult serum gadopentetic acid dimeglumine salt injec-
tion [HAS-Gd-DTPA, 0.50 mmol (Gd)-ml™!, Mr = 60-
100kD, 0.1 mmol(Gd) - kg™, Schering, Germany] before
sacrifice. Micro-MRA was performed to analyze hemo-
dynamic in the VM (central tumor) regions [22]. The
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images were acquired before injection of the contrast
agents and 2, 5, and 15 minutes after injection. Three
regions of interset (ROI) in the central area and the mar-
ginal area of the xenografts were observed and time-
coursed pixel numbers per mm® were counted. Two
experiments were performed on these three gated ROL
All of the data were obtained directly from the MRA
analyzer and were expressed as the mean + SD.

Indirect immunofluorescence detection in vivo

PI3-K, MMP-2, MT1-MMP and Ln-5 y2 protein prod-
ucts from GBC-SD xenografts of each group were deter-
mined by indirect immunofluorescence method as
described previously [24]. The frozen sections (4 pm) of
the xenografts from each group were pretreated, added
in order with 50 pl (1:100) primary antibody (PI3-K:
mouse anti-human polyclonal antibody, Acris Antibodies
GmbH, USA; MMP-2, MT1-MMP: rabbit polyclonal
antibody, Wuhan Boster; Ln-5y2: mouse anti-human
polyclonal antibody, Santa Cruz), biotinylated secondary
antibody (1:100; goat anti-rabbit IgG-FITC/GGHL-15 F,
or goat anti-mouse IgG-FITC/GGHL-90 F, Immunology
Consultants Laboratory, USA), respectively. Then, sec-
tions were rinsed in TBS solution and distilled water,
mounted coverslip using buffer glycerine, and observed
under a fluorescence microscope (Nikon, Japan). For
negative control, the slides were treated with PBS in
place of primary antibody. Ten sample slides in each
group were chosen by analysis. More than 10 visual
fields were observed per slide. Expression of each VM
signal-related protein on slides of the xenografts showed
a yellowgreen fluorescent dyeing. Fluorescent dyeing
intensity was classed into -, *, +, ++, +++, ++++. Of
them, - ~ +: negative expression, >++: positive expression.

Western blotting in vivo

PI3-K, MMP-2, MT1-MMP and Ln-5 y2 proteins from
GBC-SD xenografts of each group were determined
by Western blot analysis as described previously [22].
Cells were lysed. The supernatant was recovered. BCA
protein was determined with a protein quantitative kit
(KangChen, KC-430, China). Then, an aliquot of 20 mg
of proteins was subjected to sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS- PAGE) for
electrophoresis under reducing condition, and were then
transferred to a PVDF membrane. An hour after being
blocked with PBS containing 5% non-fat milk, the
membrane was incubated overnight, was then added in
order with each primary antibody [mouse anti-human
antibody, 1:3000; PI3-K (P85-a): Acris Antibodies
GmbH; MMP-2, MT1-MMP: Wuhan Boster; Ln-5y2:
Santa Cruz], and mouse anti-human GAPDH antibody
(1:10000; Kangcheng Bioengineering, Shanghai) diluted
with PBST containing 5% non-fat milk at 4°C, an
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appropriate anti-mouse or anti-rabbit HRP-labeled sec-
ondary antibody (1:5000; Kangcheng Bioengineering).
The target proteins were visualized by an enhanced
chemiluminescent (ECL) reagent (KC™ Chemilumines-
cent Kit, KangChen, KC-420, China), imaged on the Bio-
Rad chemiluminescence imager. The gray value and gray
coefficient ratio of every protein were analyzed and cal-
culated with Image J analysis software.

RT-PCR analysis in vivo

PI3-K, MMP-2, MM1-MMP and Ln-5y2 mRNAs from
GBC-SD xenografts of each group were respectively
determined by reverse transcription-polymerase chain
reaction (RT-PCR) assay. RT-PCR was performed as de-
scribed by the manufacturer. Total RNA from the xeno-
graft cells of each group was prepared using the Trizol
reagent (Invitrogen, USA). Concentration of RNA was
determined by the absorption at 260 ~ 280. PCR amplifi-
cations were performed with gene-specific primers
(Table 1) with annealing temperature and number of
amplification cycles optimized using cDNA from the
xenograft cells in each group. PCR amplification reac-
tions were performed as follows: 1 cycle of 94°C for
5 min; 35 cycle of 94°C for 10 ~ 22 sec, 57 ~ 60°C for 15
~ 20 sec, 72°C for 20 sec, 82 ~ 86°C (fluorescence collec-
tion) for 5~10 sec; 1 cycle of 72~99°C for 5 min.
GAPDH primers were used as control for PCR amplica-
tion. 10 uL PCR products were placed onto 15 g-L™*
agarose gel and observed by EB (Ethidium bromide,
Huamei Bioengineering Company, China) staining using
the ABI Prism 7300 SDS software.

Statistical analysis

All data were expressed as mean +SD and performed
using SAS (9.0 version software, SAS Institute Inc., Cary,
NC, USA). Statistical analyses to determine significance
were tested with the y?, F or Student-Newman-Keuls
t tests. P < 0.05 was considered statistically significant.

Table 1 VM signaling-related markers

Gene PCR primers Amplification Cycle
(forward-reverse) size (bp) no.

PI3-K 5'-TGTCGCAGCCCAGGTAGATT-3' 269 35
5'-CAGGAGGTGGTCGGGTCAAG3-'

MMP-2 5'-TCTGAGGGTTGGTGGGATTGG-3' 290 35
5-AAGAGCGTGAAGTTTGGAAGCA-3'

MM1T-MMP  5'-CAAAGGCAGAACAGCCAGAGG3-' 180 35
5"-ACAGGGACCAACAGGAGCAAG-3'

Ln-5y2 5'-ACACGGGAGATTGCTACTCG3-' 123 35
5'-ACCCATTGTGACAGGGACAT-3'

GAPDH 5'-CCTCTATGCCAACACAGTGC-3' 211 35~40

5'GTACTCCTGCTTGCTGATCC-3'
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Results

NCTD inhibits proliferation of GBC-SD cells in vitro

MTT assay was used to determine the effect of NCTD
on proliferation of GBC-SD cells. We found that the cul-
tured GBC-SD cells began to growth at 6™ hr, maturated
at 24™ hr, which were predominantly of shuttle-shape or
accumulation, with abundant cytoplasm, clear nuclei in
control group; after NCTD treatment, the morphology
of GBC-SD cells showed visible cell aggregation, float,
nuclear condensation or fragmentation, cataclysm, apop-
totic bodies, or even death (Figure 1A). Furthermore,
NCTD inhibited markedly proliferation of GBC-SD
cells in a dose-dependent manner with the ICs, value
56.18 pug-ml ™" (Figure 1B).

NCTD inhibits invasion of GBC-SD cells in vitro

The Transwell plates were used to measure the in vitro
ability of GBC-SD cells to invade a basement membrane
matrix. We found that GBC-SD cells in control group
passed more of the Transwell membrane and had more
invasive capability than TIMP-2 or NCTD group in vitro
(Figure 2A); the number of passing membrane cells i.e,
invated tumor cells in TIMP-2 or NCTD group mark-
edly decreased (Figure 2B; P<0.001). Thus, NCTD,
similarly to TIMP-2, inhibited significantly invasion of
GBC-SD cells in vitro.

NCTD

A Control

Bﬁmo

X

< 75

c

=]

s 50

=

= B

=

0 J

0 5 10 20 40 60 80 100

NCTD (pg'ml?)

Figure 1 Inhibitory effect of NCTD on proliferation of GBC-SD
cells in vitro. (A) Histomorphologic of GBC-SD cells under an
inverted optic microscope (original magnification, x200) at 24" hr:
predominantly shuttle-shape cells, with abundant cytoplasm and
clear nuclei in control group; visible float or aggregation cells, with
nuclear condensation and nuclear fragmentation in NCTD group
(1/2 1Cso NCTD). (B) The dose-response curves of NCTD effect on

GBC-SD cells with the ICsq value of 56.18 pg-ml™".
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Figure 2 Inhibitory effect of NCTD on invasion of GBC-SD cells in vitro. (A) Representative histomorphologic of GBC-SD cells (original magni-
fication, x200) with H & E staining under an optic microscope. (B) The invaded number of GBC-SD cells in control group, TIMP-2 group and NCTD
group. The invaded number of GBC-SD cells in TIMP-2 or NCTD group was much less than that of control group (P < 0.001), without different

NCTD inhibits migration of GBC-SD cells in vitro

The collagen gel contraction test was used to determine
the effect of NCTD on migration of GBC-SD cells. As
shown in Figure 3, migrated potential ie. collagen gel
contraction of GBC-SD cells in control group was in-
creased, as time prolonged. But in TIMP-2 or NCTD
group with increase of the concentration, migrated po-
tential and collagen gel contraction index (CI) of GBC-
SD cells were decreased significantly, when compared
with control group (all P<0.01). However, no difference
of GBC-SD cells’ CI was observed between TIMP-2
group and NCTD group from 1 to 4 days. It was showed
that the same as TIMP-2, NCTD inhibited significantly
migration of GBC-SD cells in vitro.

NCTD inhibits VM-like network formation of GBC-SD cells

in vitro

Vasculogenic-like networks formed from the 3-D cul-
tures of GBC-SD cells in vitro was observed under an
inverted phase-contrast light microscope and electron
microscopies. As shown in Figure 4, GBC-SD cells were
able to form network of hollow tubular structures when
cultured on Matrigel and rat-tail collagen type I com-
posed of the ECM gel in the absence of endothelial cells
and fibroblasts (Figure 4Aa;-,). The tumor-formed

networks initiated formation within 48 hr after seeding
the cells onto the matrix with optimal structure forma-
tion achieved by two weeks. To address the role of the
PAS positive materials in tubular networks formation
and to make sure whether GBC-SD cells could secret
PAS positive materials appeared around the single cell
or cell clusters, 3-D cultures of GBC-SD cells were
stained with PAS without hematoxylin counterstain.
Microscopic analysis demonstrated that as an ingredient
of the basemembrane of VM, PAS positive materials
were located in granules and patches in the cell cyto-
plasm (Figure 4Aa,). SEM and TEM clearly visualized
channelized or hollowed vasculogenic-like networks
formed GBC-SD cells (Figure 4Bb;-,), with clear micro-
villi surrounding cluster of tumor cells; also, TEM
showed some microvilli on the outside of network, clear
cellular organelle structures, and cell connection with an
increased electron density in density (Figure 4Bb,). In
the process of vasculogenic-like structure formation,
after using TIMP-2 or NCTD for 2 days, GBC-SD cells
lost the capacity of the above network formation, with
visible cell aggregation, float, nuclear fragmentation,
apoptosis and necrosis. Furthermore, using TIMP-2 or
NCTD for 48 hr after network formation, the formed
vasculogenic-like structures were destructed, with visible
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Figure 3 Inhibitory effect of NCTD on migration of GBC-SD cells in vitro. (A) Representative pictures of collagen gel contraction of GBC-SD
cells. (B) Comparison of collagen gel contraction of GBC-SD cells in different groups: A significant difference of gel contraction index (Cl) of
GBC-SD cells was observed between control group and TIMP2 or NCTD group from 1 to 4 days (*P < 0.01, vs. TIMP2 or NCTD group), without

different Cl between TIMP-2 group and NCTD group.
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cell aggregation, float, nuclear fragmentation and apop-
tosis (Figure 4Aa;-4). At the same time, SEM and TEM
showed GBC-SD cells couldn’t grow along with collagen
framework, raised and deformed, lost the capacity of the
above network formation, with visible decreased micro-
villi, destroyed cellular organelles, vacuolar degeneration,
nuclear fragmentation, and typical apoptotic bodies
(Figure 4Bb;-,). It was thus showed that the same as
TIMP-2, NCTD inhibited and destroyed forming-VM and
formed-VM from 3-D cultures of GBC-SD cells in vitro.

NCTD inhibits growth and VM formation of GBC-SD xeno-
grafts in vivo

GBC-SD xenografts appeared gradually in subcutaneous
area of right axilback of nude mice from the 6™ day after
inoculation, were in all nude mice (7/7, 100%) after
3 weeks. At the end of the experiment, the size or vol-
ume of the xenografts in NCTD or TIMP-2 group was
decreased significantly in comparison with control
group, with increased tumor inhibition (Figure 5A, all

P <0.001), and tumor inhibitory rate in NCTD group
were much less than that of TIMP-2 group (P < 0.01).
The histological characteristics of the xenografts
were observed via H&E staining and CD3;-PAS double
stainings under an optic microscopy and a TEM. Micro-
scopically, the xenografts in control group showed
tumor cell-lined channels containing red blood cells
(Figure 5Bb;) without any evidence of tumor necrosis.
The channel consisted of tumor cells was negative of
CD3; and positive PAS. Tumor cells form vessel-like
structure with single red blood cell inside (Figure 5Bb,).
In the central area of tumor, the xenografts exhibited
VM in the absence of ECs, central necrosis and fibrosis
(Figure 5Bb,). Furthermore, TEM clearly showed single,
double, and several red blood cells existed in the central
of the tumor nests without necrosis and fibrosis in
control group, and there was no vascular structure be-
tween the surrounding tumor cells and erythrocytes
(Figure 5Bbs). However, similar phenomenon failed to
occur in the xenografts in TIMP-2 or NCTD group, with
destroyed cellular organelles, cell necrosis, nuclear
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Figure 4 (See legend on next page.)
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(See figure on previous page.)

Figure 4 Phase contrast microscopy and electron microscopy on 3-D cultures of GBC-SD cells in vitro. (A) Phase contrast microscopy

of GBC-SD cells 3-D cultured on Matrigel and rat-tail collagen | matrix (original magnification, x200) in vitro. GBC-SD cells formed patterned,
vasculogenic-like networks when cultured on Matrigel (a;) and rat-tail collagenimatrix (ay-3, H&E staining; a4, PAS staining without hematoxylin
counterstain) for 14 days; furthermore, PAS positive, cherry-red materials found in granules and patches in the cytoplasm of GBC-SD cells
appeared around the signal cell or cell clusters. But in the process of network formation, using TIMP-2 or NCTD for 2 days, GBC-SD cells lost the
capacity of the above vasculogenic-like network formation, with visible cell aggregation, float, nuclear fragmentation, apoptosis and necrosis.

(B) Vasculogenic-like network microstructures in 3-D cultures of GBC-SD cells under electron microscopies (bq, SEM X 500; by, TEM x 1200). SEM or
TEM clearly visualized channelized or hollowed vasculogenic-like networks formed GBC-SD cells (red arrowhead), with clear microvilli surrounding
cluster of tumor cells; also, TEM showed some microvilli on the outside of network, clear cellular organelle structures, and cell connection with an
increased electron density in density (yellow arrowhead). After using TIMP-2 or NCTD for 2 days, GBC-SD cells couldnt grow along with collagen
framework, raised and deformed, lost the capacity of the above network formation (blue arrowhead), with visible decreased microvilli, destroyed
cellular organelles, Vacuolar degeneration (green arrowhead), nuclear fragmentation, and typical apoptotic bodies (brown arrowhead).

pyknosis, fragmentation and apoptotic bodies (Figure 5Bbs).
These findings demonstrated that VM existed in GBC-SD
nude mouse xenografts and that NCTD, the same as
TIMP-2, inhibited the VM formation of GBC-SD nude
mouse xenografts in vivo.

NCTD affects VM’ hemodynamic of GBC-SD xenografts

in vivo

Two-mme-interval horizontal scanning of GBC-SD xeno-
grafts of each group were conducted to compare tumor
signal intensities of the xenograft mice by dynamic
Micro-MRA with an intravascular macromolecular MRI
contrast agent named HAS-Gd-DTPA. We found that
the tumor center of GBC-SD xenografts in control group
exhibited a signal that gradually increased multiple high-
intensity spots, i.e., higher occurrence of VM observed
in tumor center of the xenografts with gradual increased
high-intensity MRI signal, a result consistent with patho-
logical VM (Figure 6AB, Table 2). However, the center
region of the xenografts in NCTD or TIMP-2 group ex-
hibited a low intensity signal or a lack of signal change
in intensity, a result consistent with central ischemic
disappearance of nuclei, and apoptosis; and no difference
on signal intensity (pixel count/mm®) was observed be-
tween NCTD group and TIMP-2 group (Figure 6AB). It
deduced that NCTD inhibits the xenografts’ growth, in-
duces the ischemic necrosis of the xenografts by sup-
pressing hemodynamic and VM of the xenografts.

NCTD downregutates expression of VM signaling-related
markers PI3-K, MMP-2, MT1-MMP and Ln-5y2 in vitro and
in vivo

To investigate the underlying mechanisms of NCTD
effects on tumor growth and VM of human GBCs
in vitro and in vivo, in this study we explored the regula-
tion effect of NCTD on the PI3-K/MMPs/Ln-5y2 signal-
ing pathway i.e., expression of VM signaling-related
markers PI3-K, MMP-2, MT1-MMP and Ln-5y2 in vitro
and in vivo. Expression of MMP-2 and MT1-MMP pro-
teins from sections and supernates of 3-D culture sam-
ples of GBC-SD cells in vitro were examined by SABC

and ELISA, and expression of PI3-K, MMP-2, MT1-
MMP and Ln-5y2 at protein and mRNA levels from sec-
tions of GBC-SD xenografts in vivo were determined by
SABC, indirect immunofluorescence, Western blotting
and RT-PCR. We found that in sections of 3-D culture
samples of GBC-SD cells in vitro, the positive expression
site of MMP-2 and MTI1-MMP proteins presented
yellow-brown reactant in the cytoplasm; overexpression
of MMP-2 and MT1-MMP proteins in control group
was observed, expression of MMP-2 and MT1-MMP
proteins in TIMP-2 or NCTD group was significantly
lower than that of control group (Figure 7A; all
*P <0.001); expression of MMP-2 and MT1-MMP pro-
teins from supernates of 3-D culture samples in vitro
in control group increased significantly as time pro-
longed, when compared with TIMP-2 or NCTD group
(Figure 7B; all *P<0.001). And, overexpression of
MMP-2, MT1-MMP proteins from sections of GBC-SD
xenografts in control group was all observed in vivo; ex-
pression of MMP-2 and MT1-MMP proteins of the
in vivo xenografts in TIMP-2 or NCTD group was sig-
nificantly lower than that of control group (Figure 8; all
*P < 0.001). Furthermore, it was in vivo showed that not
only expression (bright yellow-green fluorescent staining
reactant in cytoplast, or Western gray value) of PI3-K,
MMP-2, MM1-MMP and Ln-5y2 proteins in control
group was all upregulated markedly, with significantly
downregulated expression of these VM signaling-related
proteins in TIMP-2 or NCTD group (Figures 9 and 10A;
all *P<0.001), but also, expression of PI3-K, MMP-2,
MM1-MMP and Ln-5y2 mRNAs of GBC-SD xenografts
in TIMP-2 or NCTD group was decreased significantly
when compared with control group (Figure 10B; all
*P<0.01); and no difference on expression of these
VM signaling-related proteins/mRNAs was observed be-
tween NCTD group and TIMP-2 group. We previously
reported that highly aggressive GBC-SD cells overex-
pressed MMP-2, MT1-MMP, PI3-K and Ln-5y2 formed
in vitro and in vivo VM networks through the activation
of the PI3-K/MMPs/Ln-5y2 signaling pathway, the
PI3-K/MMPs/Ln-5y2 signaling pathway contributed to
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Figure 5 Growth and characteristic appearance of GBC-SD xenografts in vivo. (A) The size, volume and inhibition of GBC-SD xenografts of
each group. *P < 0.001, vs. control group; *P < 0.01, vs. TIMP-2 group. (B) Histomorphologic appearance of the xenografts of each group. Using H
& E staining (b4) and CDs;-PAS double stainings (by) (original magnification, x200), sections of the xenografts in control group showed tumor
cell-lined channels containing red blood cells (orange arrowhead) without any evidence of tumor necrosis. PAS-positive substances line the
channel-like structures; tumor cells form vessel-like structure with single red blood cell inside (yellow arrowhead). TEM (bs; original magnification,
%x8000) clearly visualized several red blood cells in the centre of tumor nests in the xenografts in control group (red arrowhead). However, similar
phenomenon failed to occur in the xenografts in TIMP-2 group or NCTD group, with destroyed cellular organelles, cell necrosis (blue arrowhead),
nuclear pyknosis, fragmentation and apoptotic bodies (brown arrowhead).

vasculogenic mimicry of human gallbladder carcinoma
GBC-SD cells in vitro and in vivo, and TIMP-2 ef-
fectively inhibit expression of these VM signaling-
related markers, thus inhibiting VM of GBC-SD cells
in vitro and in vivo [22]. The results in this study
showed that NCTD downregulated expression of VM

signaling-related markers PI3-K, MMP-2, MT1-MMP
and Ln-5y2 in vitro and in vivo, and similarly to
TIMP-2, inhibited the VM formation of GBC-SD cells
in vitro and GBC-SD nude mouce xenografts in vivo.
These findings firstly demonstrated that NCTD in-
hibits tumor growth and VM of human GBCs by
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Figure 6 Dynamic micro-MRA and hemodynamic of GBC-CD xenografts in vivo. (A) The images were acquired before the injection (pre),
5,10, and 15 min after injection of the contrast agents (HAS-Gd-DTPA). The tumor center area (yellow circle) in control group exhibited a signal
that gradually increased multiple spots in intensity (which is consistent with the intensity observed in tumor marginal area between the (red
circle and the yellow circle). However, the center region (yellow circle) of the xenografts in NCTD or TIMP-2 group exhibited a decreased signal
or a lack of signal change in intensity. (B) Hemodynamic changes of the xenografts' VM of each group. All data are expressed as means + SD.
*P < 0.001, vs. Pre injection in control group; #P=0.0000, vs. NCTD or TIMP-2 group. But, no difference on signal intensity (pixel count/mm?>) was
observed between NCTD group and TIMP-2 group.
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Table 2 Relationship between VM and MRI image in mice
with GBC-SD xenografts

MRI signal MRI VM (n) P
intensity in (n) X

tumor center ) )

Gradual increase 5 5 0 0.0000
No increase 13 0 13

suppression of the PI3-K/MMPs/Ln-5y2
pathway in vitro and in vivo.

signaling

Discussion

Because of highly aggressive characteristic, disappointing
surgical resection and chemo-radiotherapies, and poor
prognosis of the patients with GBC, novel adjuvant
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therapies or anticancer agents are clearly needed to treat
this disease [1-12]. Considering an effective tumor
microcirculation consists of vasculogenesis, angiogenesis
and VM, many researchers are currently seeking to de-
velop new angiogenic and VM inhibitors from cleaved
proteins, monoclonal antibodies, synthesized small mol-
ecules and natural products [34-40]. Some angiogenic
inhibitors such as bevacizumab (Avastin, a VEGF inhibi-
tor), sorafenib, erlotinib, sunitinib, angiostatin, endosta-
tin, thrombospondin-1, celastrol, TNP-470, and SU-5416
have been reported to exhibit antitumor and antiangio-
genic activities [36,41-46]. However, recent studies have
suggested that the benefits of antiangiogenic therapy
have far been rather modest, also, sole blockage of
angiogenesis may not be effective [25,47,48]. VM is
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Figure 7 Expression of MMP-2, MT1-MMP proteins from sections [(A), SABC method, original magnification, x200)] and supernates [(B),
ELISA] of the 3-D cultures of GBC-SD cells in vitro. (A) The positive expression site of MMP-2 and MT1-MMP proteins presented yellow-brown
reactant was in cytoplast. Expression of MMP-2 and MT1-MMP proteins in TIMP-2 group and NCTD group was significantly lower than that of
control group (all *P < 0.001). (B) Expression of MMP-2 and MT1-MMP proteins from supernates of 3-D culture samples in control group increased
significantly as time prolonged, when compared with TIMP-2 group or NCTD group (all *P < 0.001).
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believed as a special blood passage conspicuously differ-
ent from angiogenesis in some highly aggressive malig-
nant tumors, it should be so considered to develop new
antivascular therapeutic agents that target both angio-
genesis and VM, in especial, anti-VM therapy for VM
when in antitumor treatment of some highly aggressive
tumors with VM. McNamara MG et al have suggested
that the future therapeutic spectrum for GBC will likely
encompass novel combinations of targeted therapies
with cytostatics in scientifically and molecularly directed
schedules, thus permitting fewer mechanisms of escape
for tumor cells [13].

NCTD, a demethylated and low-cytotoxic derivative of
cantharidin, not only inhibits the proliferation and
growth of a variety of human tumor cells and is used
clinically to treat some human cancers because of its an-
ticancer activity, fewer side effects and leukocytosis
[26-31], but has multiple antitumor activities against
GBCs in vitro and in vivo [32-34]. In this study, we fur-
ther investigated the anti-VM activity of NCTD as a VM
inhibitor for human GBCs. The results have shown that
GBC-SD cells were able to form vasculogenic-like net-
work structures when cultured on 3-D matrices and
seeded into the axilback of nu/nu mice, and then facili-
tated growth of GBC-SD cells or xenografts, which were

concordant with our previous reports [22,24]; that NCTD
inhibited significantly proliferation, invasion, migration,
vasculogenic-like network formation of GBC-SD cells
in vitro, and suppressed VM formation and VM hemody-
namic of GBC-SD xenografts in vivo, then inhibiting tumor
xenografts’ growth. Thus, we concluded that NCTD may
be a potential anti-VM agent for human GBCs.

Molecular events underlying VM displayed by highly
aggressive malignant tumor cells such as aggressive hu-
man GBCs remain poorly understood. Therefore, under-
standing the key molecular mechanisms that regulate
VM in human GBCs would be an important event and
provide potential targets for new therapies of GBCs. Re-
cently, experimental evidences have shown the import-
ance of several key molecules or signaling pathways in
the formation of vasculogenic-like networks by aggres-
sive malignant tumor cells, including PI3K, MMPs,
Ln5y2 chain [49-52], etc. PI3-K/MMPs/Ln-5y2 signaling
pathway is a key pathway which regulated VM formation
of aggressive malignant tumor cells. PI3K is a smaller
lipid kinase. Its main activity product PI(3,4,5) P3 acts as
a binding site for many intracellular proteins. PI3K sig-
naling plays an integral role in many normal cellular
processes, including survival, proliferation, differenti-
ation, metabolism and motility, in a variety of cell types



Zhang et al. BMC Cancer 2014, 14:193
http://www.biomedcentral.com/1471-2407/14/193

Page 14 of 17

Control

PI3-K

MMP-2

MM1MMP

Protein expression (%)

PI3-K

MMP-2 MM1-MMP

Figure 9 Expression of VM signal-related proteins PI3-K, MMP-2, MM1-MMP and Ln-5y2 of GBC-CD xenografts in vivo (indirect
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But, no difference on expression of these proteins was observed between NCTD group and TIMP-2 group.

OcControl
aTiMp-2
BNCTD

Ln-5y2

[53]. MMPs, divided into soluble MMPs and MT-MMP,
are a broad family of zinc-biding endopepeidases that par-
ticipate in the ECM degradation that accompanies cancer
cell invasion, metastasis, and angiogenesis [54-56]. Recent
studies have indicated that MMP-2 and MT1-MMP ex-
pression was significantly related to VM formation in mel-
anoma and ovarian carcinoma cells in 3-D culture [49,52].
The Ln-5y2 chain, MMP-2, and MT1-MMP act coopera-
tively and required for highly aggressive melanoma tumor
cells to engage in VM when cultured on a 3-D ECM [50].

The Ln-5y2 chain in the ECM is able to romote VM for-
mation [50,51]. As an important adjustor, PI3-K directly
affects the cooperative interactions of MT1-MMP and
MMP-2 activity in highly aggressive melanoma cells, and
regulates MT1-MMP activity which promotes the conver-
sion of pro-MMP into its active conformation through an
interaction with TIMP-2. Both enzymatically active MT1-
MMP and MMP-2 may then promote the cleavage of
Ln-5y” chains into promigratory y* and y** fragments.
The deposition of these fragments into tumor extracellular
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Figure 10 Expression of VM signal-related proteins/mRNAs PI3-K,
MMP-2, MM1-MMP and Ln-5y2 of GBC-CD xenografts in vivo.

(A) Western blotting: Overexpression of PI3-K, MMP-2, MM1-MMP
and Ln-5y2 proteins of GBC-SD xenografts in control group was
observed; but expression of these proteins in TIMP-2 or NCTD group
was significantly decreased (*P < 0.001, vs. control group). (B) RT-PCR:
Expression of PI3-K, MMP-2, MM1-MMP and Ln-5y2 mRNAs of
GBC-SD xenografts in control group was increased significantly
when compared with TIMP-2 and NCTD groups (*P < 0.01).

milieu may result in increased migration, invasion and
VM formation [50,51]. Special inhibitors of PI3K may im-
pair VM formation and decrease MT1-MMP and MMP-2
activity; inhibition of PI3K blocked the cleavage of Ln-5y2
chain, resulting in decreased levels of the y2, and y2x
promigratory fragments [49]. We reported that highly
aggressive GBC-SD cells overexpressed MMP-2, MT1-
MMP, PI3-K and Ln-5y2, formed VM in human GBCs
through the activation of the PI3K/MMPs/Ln-5y2
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signaling pathway in vitro and in vivo; and the PI3-K/
MMPs/Ln-5y2 signaling pathway contributed to VM of
human GBC cells in vitro and in vivo [23,24]. So, the
PI3K/MMPs/Ln-5y2 signaling pathway may represent pre-
dominant targets for anti-VM of tumors and cancer ther-
apy. In this study, we explored the regulation effect of
NCTD on the PI3-K/MMPs/Ln-5y2 signaling pathway i.e.,
expression of VM signaling-related markers PI3-K, MMP-
2, MT1-MMP and Ln-5y2. The results have showed that
NCTD downregulated expression of these VM signaling-
related markers in vitro and in vivo; thus inhibited the VM
formation of GBC-SD cells in vitro and GBC-SD nude
mouse xenografts in vivo. These findings demonstrated
that NCTD inhibits tumor growth and VM of human
GBCs by suppression of the PI3-K/MMPs/ Ln-5y2 signal-
ing pathway.

TIMP-2 is a 21-kDa protein which selectively forms
a complex with the latent proenzyme form of the
72-kDa type IV collagenase, thereby inhibits the type IV
collagenolytic activity and the gelatinolytic activity, and
abolishes the hydrolytic activity of all members of the
metalloproteinase family [24]. TIMP-2 is a potent inhibi-
tor of cancer cell invasion through reconstituted ECM
[57]. Addition of endogenous inhibitor TIMP-2 or anti-
bodies to 72-kDa type IV collagenase or specific antiserum
against the 72-kDa type IV collagenase achieved the alter-
ation of the type IV collagenase-inhibitor balance, then
inhibited HT-1080 cell invasion [57]. A significantly higher
concentration of TIMP-2 may effectively inhibit all of the
proteolytic activities associated with MMP-2 and/or MT1-
MMP. The inhibition of either MMP-2 or MT1-MMP
activity with antibodies is sufficient to prevent formation
of vasculogenic-like patterned networks [50]. We reported
that recombinant TIMP-2 retarded patterned VM forma-
tion in 3-D matrices of GBC-SD and xenografts within
2 weeks of seeding and injecting, and downregulated ex-
pression of MMP-2, MT1-MMP, PI3-K and Ln-5y2 pro-
teins/mRNASs in vitro and in vivo, whereas all of untreated
GBC-SD cells and xenografts formed vasculogenic-like
patterned networks, upregulated expression of these VM
signaling-related proteins/mRNAs; so believed that TIMP-
2 inhibited VM formation of GBC-SD cells in vitro and
in vivo through suppression of the PI3-K/MMPs/Ln-5y2
signaling pathway [24]. In this study, we designed TIMP-2
as an experimental control group, to investigate compara-
tively the inhibitory effect of NCTD on VM in GBCs and
its mechanism. The results showed that NCTD, similarly
to TIMP-2, not only inhibited the VM formation of GBC-
SD cells and xenografts, but also downregulated expres-
sion of PI3-K, MMP-2, MT1-MMP and Ln-5y2 in vitro
and in vivo; therefore, served as a disproof that NCTD
inhibits tumor growth and VM of human GBCs by sup-
pression of the PI3-K/MMPs/ Ln-5y2 signaling pathway
in vitro and in vivo.
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Conclusions

Collectively, NCTD inhibits tumor growth and VM of
human GBCs by suppression of the PI3-K/MMPs/Ln-
5y2 signaling pathway. NCTD could serve as a potential
anti-VM agent for human GBCs. It should be considered
to use this VM inhibitor when in antitumor treatment of
some highly aggressive tumors with VM.
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