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Abstract

Background: Quantification of molecular cell processes is important for prognostication and treatment
individualization of head and neck cancer (HNC). However, individual tumor comparison can show discord in
upregulation similarities when analyzing multiple biological mechanisms. Elaborate tumor characterization,
integrating multiple pathways reflecting intrinsic and microenvironmental properties, may be beneficial to group
most uniform tumors for treatment modification schemes. The goal of this study was to systematically analyze if
immunohistochemical (IHC) assessment of molecular markers, involved in treatment resistance, and 18F-FDG PET
parameters could accurately distinguish separate HNC tumors.

Methods: Several imaging parameters and texture features for 18F-FDG small-animal PET and immunohistochemical
markers related to metabolism, hypoxia, proliferation and tumor blood perfusion were assessed within groups of
BALB/c nu/nu mice xenografted with 14 human HNC models. Classification methods were used to predict tumor
line based on sets of parameters.

Results: We found that 18F-FDG PET could not differentiate between the tumor lines. On the contrary, combined
IHC parameters could accurately allocate individual tumors to the correct model. From 9 analyzed IHC parameters, a
cluster of 6 random parameters already classified 70.3% correctly. Combining all PET/IHC characteristics resulted in
the highest tumor line classification accuracy (81.0%; cross validation 82.0%), which was just 2.2% higher
(p = 5.2×10-32) than the performance of the IHC parameter/feature based model.

Conclusions: With a select set of IHC markers representing cellular processes of metabolism, proliferation, hypoxia
and perfusion, one can reliably distinguish between HNC tumor lines. Addition of 18F-FDG PET improves
classification accuracy of IHC to a significant yet minor degree. These results may form a basis for development of
tumor characterization models for treatment allocation purposes.
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Background
In the past decades, radiotherapy has become a preferred
treatment modality for advanced head and neck cancer
(HNC). To increase treatment outcome, radiotherapy is
given in accelerated schedules and is often combined with
chemotherapy and/or biologically targeted therapies [1].
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HNC require a more extensive characterization than is
currently performed, in order to enhance clinical progno-
sis estimation, to enable therapy response prediction and
to give direction to tailored therapy selection from the dif-
ferent therapy modalities available to patients. Molecular
and biological tumor characteristics, such as proliferation
rate and extent of hypoxia which are known radiation-
resistance mechanisms in HNC [2], can be analyzed [e.g.
with immunohistochemistry (IHC)] next to the histo-
pathological and anatomical tumor traits that are com-
monly used for therapy allocation [3]. In studies, tumors
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are often assessed regarding only one or a few specified
biologic markers, such as hypoxia, proliferation or a cer-
tain biologic target, and based on this limited information
assigned to a particular phenotype [4]. The next step to
predict intrinsic tumor behavior, such as metastatic poten-
tial or probable therapy-response, would be to combine a
group of biomarkers involved in multiple cellular path-
ways [5]. However, the optimal combination and amount
of markers for various predictive assays in radiation oncol-
ogy is still unknown [6]. Furthermore, even if tumors are
categorized to a similar phenotype based on one charac-
teristic, they can display discordances regarding other
cellular mechanisms. For instance, equally hypoxic HNC
tumors can show discrepant proliferation rates [7,8]. This
may even apply for different regions within one tumor [9].
The tumor microenvironment plays an important role in
the activation of cellular mechanisms [10]. Characterization
of HNC, incorporating several aspects of phenotype
markers representing multiple pathways influenced by
intrinsic and extrinsic factors, might help pave the way for
accurate distinction of individual tumors from other tumors
of the same origin. A set of adequately selected parameters
based on biological processes may deliver accurate all-
round tumor classification for grouping of uniform tumors
for treatment allocation, prediction of treatment response
or distinction of patient groups with a different prognosis.
Development of such a set of parameters would best be

performed in a patient cohort, taking multiple biopsies per
tumor, since a single biopsy will not represent marker ex-
pression of entire tumors [11]. However, taking additional
biopsies for study-purposes is often impossible to achieve.
We established 14 HNC xenograft models originating
from human head and neck carcinomas, with stability
across several passages [12-14]. Nevertheless, biological
marker expression within one tumor model displays vari-
ation after transplantation of xenograft tumors in different
animals, under the influence of external and microenvi-
ronmental factors. Using these models, we can evaluate
and characterize heterogeneous head and neck tumors as
it were of multiple biopsies from 14 different patients.
Establishment of a direction to the appropriate size of a
classification parameter-set in such tumor models may be
extrapolated to the clinical situation.
The availability of non-invasive functional imaging

modalities broadens the range of possibilities for quantifica-
tion of HNC biological traits [15,16]. Positron emission
tomography (PET) with the glucose analogue 2-[18F]
fluoro-2-deoxy-D-glucose (18F-FDG) is a powerful mo-
lecular imaging method exploiting increased metabolic
activity of cancer cells [17]. Research is still focused on
identifying the multifactorial molecular mechanisms
underlying the cancer cells’ altered glucose metabolism
[18]. Nonetheless, qualitative 18F-FDG PET is increas-
ingly implemented before, during and after radiotherapy
for HNC [19]. Quantification of differences in 18F-FDG
tumor uptake may supplement IHC tumor char-
acterization. In this study, we systematically analyzed
an array of tumor parameters, to investigate if parame-
ters derived from the imaging modalities 18F-FDG PET
and IHC, singularly or in combination, could reliably
distinguish different human HNC xenograft models from
one another. The IHC markers were selected based on
their association with 18F-FDG accumulation and relation-
ship, on a molecular basis, with tumor cell metabolism,
and radiotherapy-resistance mechanisms proliferation and
hypoxia [20].

Methods
Xenograft tumor models
Ninety-eight female BALB/c nu/nu mice (Central Animal
Laboratory Radboud University Medical Center) were
xenografted with MEC82 (mucoepidermoid carcinoma),
SCCNij or FaDu (squamous cell carcinomas) head and
neck primary tumors. All lines but FaDu were derived
from patient biopsies obtained in clinical studies from the
Radboud University Medical Center conducted between
1996 and 2006 [21-23]. Patients gave written informed
consent after approval from the Medical Ethics Commit-
tee of the Radboud University Medical Center. All re-
search was conducted in compliance with the Helsinki
Declaration and in accordance with Dutch law. Addition-
ally, we created a xenograft model from the FaDu cell line
[24,25]. SCCNij model-numbers were: 3, 59, 68, 86, 153,
154, 167, 172, 185, 196, 202 and 240. The origin of the
tumor lines is described in Additional file 1: Table S1.
Two-mm3 tumor pieces were implanted subcutaneously
in the right flank in 6-8 weeks old mice. Experiments
started at an average tumor diameter of 6-8 mm. Ninety-
two animals were scanned per protocol; 5 mice per tumor
model were used for IHC. Animals were kept in a specific-
pathogen-free unit and protocols and institutional guide-
lines for the proper humane care and use of animals in
research were followed. The Animal Welfare Committee
of the Radboud University Medical Center approved all
experiments.

Small-animal PET imaging and biodistribution
Mice were fasted for 6 hours and were subsequently anes-
thetized using isoflurane/compressed air before 18F-FDG
injection until the end of the experiment. Before and dur-
ing scans, body temperature was kept within normal range
using heated pads and heating lamps [26]. At 45 minutes
before imaging, mice were injected intravenously (i.v.)
through a tail vein catheter with 0.2 mL/10.2 ± 0.8 MBq
18F-fluoro-2-deoxyglucose (18F-FDG; Department of
Nuclear Medicine and PET research, VU University
Medical Center, Amsterdam, the Netherlands) followed
by 0.1 mL saline to propel 18F-FDG residue from the
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catheter. Specific activity was > 1 GBq/μmol and radio-
chemical purity was always > 97% (end of synthesis).
Syringes were measured in a dose calibrator before and
after injection. Before imaging, bladders were largely
emptied by gentle external pressure. Animals were im-
aged in pairs using an Inveon small-animal PET scanner
(Siemens Preclinical Solutions, Knoxville, TN). Tumors
were positioned in the center of the field of view. A 15-
minute emission scan was acquired followed by a 400-
second transmission scan, using the built-in 57Co source
(energy window 120-125 keV) for attenuation correc-
tion. For assessment of tumor micro-environmental
characteristics, mice were injected intra-peritoneally
(i.p.) with 80 mg/kg hypoxia-marker pimonidazole hydro-
chloride (PIMO; 1-[(2-hydroxy-3-piperidinyl)propyl]-2-
nitroimidazole hydrochloride; Hypoxyprobe-1, NPI Inc.,
Belmont, MA) at 60 minutes before sacrifice and with
50 mg/kg S-phase marker bromodeoxyuridine (BrdU;
Sigma, Zwijndrecht, The Netherlands) just before im-
aging. The perfusion marker Hoechst 33342 (15 mg/kg,
Sigma) was injected i.v. 1 minute prior to sacrificing the
animals through cervical dislocation.
Tumors and normal tissues were harvested, weighed, and

counted in a gamma well counter (1480 Wallac Wizard 3”,
PerkinElmer Life Sciences, Boston, MA). The tumors were
cut; one half of the tumor was immediately snap-frozen in
liquid nitrogen for IHC. Radioactivity uptake in the other
half of the tumor and in normal tissues was calculated as
percentage of the injected dose per gram of tissue (%ID/g)
(Additional file 1: Figure S1). For radioactive decay correc-
tion, injection standards were counted simultaneously.

PET image analysis
List mode data were acquired using the default energy and
coincidence timing. Data were reconstructed using 3-
dimensional ordered subset expectation maximization
(OSEM3D, 2 iterations) followed by maximum a posteriori
(MAP, 18 iterations, β = 0.05) reconstruction optimized for
uniform resolution (Siemens Inveon Acquisition Work-
place, version 1.5, Siemens Preclinical Solutions) [27].
Transaxial pixel size was 0.43 mm, plane separation
0.8 mm, and the image matrix 256×256×159 [28]. PET im-
ages were analyzed using Siemens Inveon Research Work-
place software. Quantification of tracer uptake in volumes
of interest (VOIs) drawn around tumor and hind leg mus-
cles on the attenuation corrected images was obtained by
calculating the maximum (SUVmax) and mean standardized
uptake values (SUVmean). SUV was calculated as a ratio of
voxel radioactivity concentration and injected activity (both
decay-corrected towards start of scan) divided by body
weight. SUVmean for tumors was taken from a PET tumor
VOI created using automatic delineation with a fixed 40%
SUVmax threshold [29,30]. Uptake was further quantified as
the ratio of mean tumor to mean muscle uptake (T/M).
IHC staining
Frozen tumors were sectioned using a cryostat microtome.
Consecutive central 5 μm thick tumor sections were
mounted on poly-L-lysine coated slides and stored at -80°C
until staining. Slides were scanned for vessel perfusion
based on the fluorescent Hoechst 33342 signal before
staining for carbonic anhydrase-9 [CA9; primary antibody
(PA) biotinylated rabbit anti-CA9 (Novus Biologicals,
Littleton, CO)], BrdU [PA sheep anti-BrdU (GeneTex Inc.,
San Antonio, TX)], PIMO [PA rabbit anti-pimonidazole
(J Raleigh, University of North Carolina)], monocarboxylate
transporter-4 [MCT4; PA rabbit anti-MCT4 antibody
(Santa Cruz Biotechnology, Santa Cruz, CA)], glucose
transporter-1 [GLUT1; PA rabbit anti-glut1 (Neomarkers
Inc, Fremont, CA)], epidermal growth factor receptor
[EGFR; PA goat anti-EGFR sc-03 antibody (Santa Cruz)],
phosphorylated protein kinase B [pAKT; PA rabbit anti-
pAKT (Santa Cruz)], and blood vessels [PA 9 F1 (rat mono-
clonal against mouse endothelium, Radboud University
Medical Center)]. Specific staining protocols are described
in the Additional file 1.

IHC image acquisition and analysis
Tumor sections were analyzed using a digital image ana-
lysis system as described previously [31]. After scanning
stained whole tissue sections, gray scale images (pixel
size 2.59×2.59 μm, dynamic range 4095 grey values) were
obtained and subsequently converted into binary images.
Thresholds for segmentation of the fluorescent signals
were interactively set above the background staining for
each IHC image. Binary images were used to calculate
fractions of tumor area positive for CA9, EGFR, MCT4,
pAKT, GLUT1 and PIMO relative to the total viable
tumor area. BrdU labeling index (LI) was determined as
the number of positively stained nuclei relative to the
total number of nuclei in the tumor area. Vascular dens-
ity (VD; number of vascular structures per mm2) and
perfused vessel fraction (PF) were established. These
were the “IHC parameters” analyzed for combined clas-
sification accuracy. Areas of necrosis, determined using
Hematoxylin and Eosin (HE) stained consecutive tumor
sections, were excluded from analysis.

Global texture analysis
IHC images were first linearly rescaled by means of their
determined signal threshold, which was also used for seg-
mentation of the fluorescent signal, in order to make
image intensities comparable between IHC images of the
same marker type. Global textural features comprised the
mean (only for IHC), skewness and entropy (i.e. Shannon’s
entropy, representative for global uptake heterogeneity) of
the distribution of intensity values within the tumor VOI
for PET and within the positively stained tumor area for
IHC. In order to compute entropy, images were first
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discretized into equally spaced bins. For PET images we
applied a bin-width of 0.5 units SUV and the bin-width
for discretizing IHC images was set at 25 units. This
discretization step not only reduces image noise, but also
normalizes intensities across all subjects, which in turn
allows for a direct comparison of entropy values between
mice. Entropy was then calculated as:

entropy ¼ −
XNl

i¼1

P ið Þ log2P ið Þ

Where P defines the first order histogram and P(i) the
fraction of voxels with intensity level i. Nι is the number
of discrete intensity levels. Developing global texture fea-
ture values was possible for most IHC markers, but not
when a particular staining followed a thin ribbon-like
pattern throughout tumor sections, which was the case
for PF and vessels.

Statistical methods
All analyses and plotting were performed in R statistical
environment (v2.15.2) unless stated otherwise. The pack-
ages e1071 (v1.6), lattice (v0.20-13), latticeExtra (v0.6-24),
hexbin (v1.26.0) and cluster (v1.14.3) were used for data
processing and graphical representation.

Intra- versus inter-tumor line variability
A variance component analysis for all PET and IHC
parameters was performed. For each parameter a linear
mixed-effects model was fit with tumor line as random
effect with the nlme package (v3.1-106). This produces the
variance within (intra) a tumor line, the variance between
(inter) tumor lines and the total (intra + inter) variance.
The ratio intra/inter was calculated and used as a measure
of intra-tumor line heterogeneity, as done previously [32].

Tumor line prediction
To assess whether (combinations of) PET and IHC param-
eters could distinguish tumor lines we created Random
Forest models based on these parameters to predict tumor
lines. A Random Forest is an ensemble classifier generated
by growing a ‘forest’ of decision trees, where each tree is
trained with a different bootstrap subset of tumors and pa-
rameters. Approximately a third of the samples are omit-
ted from each tree, creating out-of-bag (OOB) data that is
subsequently used to measure classifier performance [33].
For each model a Random Forest consisting of 20,000
trees (with the default number of variables randomly sam-
pled at each split) was built using the randomForest pack-
age (v4.6-7). Performance of these predictors was assessed
with the OOB error estimate and via cross validation. For
cross validation the data were randomly split in training
(75% of samples) and test (25% of samples) data. A Ran-
dom Forest was built in the training set and evaluated in
the test set as measured by the percentage of samples
correctly classified. This was repeated 1000 times. Cross
validation training and test sets were the same for all
evaluated models, which allowed for a direct comparison
between models. These analyses focused on the 72 tumors
with full IHC profiling. For a few samples in this subgroup
PET data (4 tumors), MCT4 data (5 tumors) and BrdU
data (3 tumors) were not assessable, and median imput-
ation was applied to fill in these missing data (e1071 pack-
age v1.6). Accuracy distributions between models were
compared by a paired t-test.

Results
Small-animal 18F-FDG PET imaging and IHC
For 14 different primary head and neck carcinoma xeno-
graft models, 18F-FDG imaging and biodistribution was
performed in 92 animals, and 72 tumors were exten-
sively analyzed for IHC markers. An example of a PET
image of a mouse with the tumor in the right flank is
shown in Figure 1A. Staining parameters from IHC ana-
lysis are presented per tumor line in Additional file 1:
Table S2.

Tumor classification using PET parameters
First, we focused on the accuracy of the PET quantifica-
tion parameters SUVmax, SUVmean and T/M to allocate
individual tumors to their appropriate tumor line. For
each PET parameter the intra-tumor line variance was
calculated as a fraction of the total variance; e.g. a small
fraction is a measure for low intra-tumor line heterogeneity
(Table 1) [32]. To assess whether PET parameters were
distinct per tumor line, each parameter was ranked from
low to high prior to unsupervised clustering. As Figure 1B
shows, no clear clustering of the different tumor lines is ob-
served using SUVmax, SUVmean and T/M, although SUVmax

and SUVmean are tightly correlated (Figure 1C). Next, a
Random Forest was built based on the PET parameters to
test their combined ability to predict the various tumor
lines. The Random Forest classified samples with a 78.9%
error rate, which was confirmed in cross validation: only
19.0% ± 8.0% (mean ± standard deviation SD) of samples in
the test set were correctly classified (Table 2). Overall,
routinely used 18F-FDG PET parameters were not able to
distinguish a specific tumor line from the other HNC lines.

Tumor classification using PET parameters and PET features
For further analysis of the discriminatory ability of PET,
global texture features derived from the individual PET
images were added to the model. Although addition of
the PET texture features entropy and skewness resulted
in a slightly better classification accuracy (26.7%, cross
validation accuracy: 23.1% ± 8.8%), these combined pa-
rameters still could not differentiate between tumor
lines. The intra-tumor line heterogeneities of the PET



Figure 1 Classification of 14 HNC lines using 18F-FDG PET quantification parameters SUVmax, SUVmean and Tumor-to-Muscle ratio (T/M)
and correlation with established PET global texture features. (A) 18F-FDG PET image of a mouse with a head and neck xenograft tumor in the
right flank (arrow). (B) Heatmap of the PET parameters showing no clear clustering per tumor line. Each parameter was ranked from low (white) to
high (black) for analysis. Tumor lines are indicated by their respective numbers. (C) Correlation heatmap of the PET parameters and PET features.
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features were in the same range as those of the PET
parameters (Table 1).

Tumor classification using IHC parameters
As for PET parameters, IHC staining parameters were
first examined for their combined classification accuracy
of the 14 tumor lines. IHC staining fractions for CA9,
EGFR, MCT4, pAKT, GLUT1 and PIMO, as well as the
BrdU LI, VD and PF of the microscopy-imaged tumor
sections were analyzed (Figure 2A-C). Intra-tumor line het-
erogeneity was calculated for each IHC parameter. Notably,
exogenous marker expression (PIMO, BrdU and PF)
showed overall higher intra-tumor line variation than ex-
pression of the endogenous markers (Table 1, Figure 2B-C).
As is shown in Figure 2D, unsupervised clustering of the
IHC parameters resulted in a reasonable separation of the
different tumor models.
To investigate whether the combination of IHC parame-

ters could distinguish tumor lines, a Random Forest was
built to predict the tumor line from the IHC data. Classifi-
cation performance of the Random Forest was high (ac-
curacy 76.9% as calculated from the OOB error estimate).
This was confirmed in cross validation analysis, where in
the test sets 74.9% ± 10.9% of the samples were classified
correctly. Since each tree in Random Forest is trained on a
bootstrap subset of the parameters, these can be used to
estimate the importance of a parameter by calculating the
decrease in classification accuracy when the parameter
is omitted from a model (Figure 2E). Parameters with
smaller intra-tumor line heterogeneity had a bigger effect
on accuracy; these were in effect the endogenous markers.
Next, we explored the influence of number of IHC parame-
ters on classification accuracy. All possible combinations
for 1 up to 8 IHC parameters were used to build a Random
Forest. Classification accuracy increased significantly with
the number of combined IHC parameters up to 7, and a
random combination of 6 parameters already showed a
classification accuracy of 70.3% ± 11.4% (Figure 2F).

Tumor classification using IHC features and IHC parameters
IHC global texture features were analyzed combined with
IHC parameters. IHC texture features provided more
information on marker distribution profiles and comple-
mented IHC quantification values. Intra-line heterogeneity
for each IHC feature is given in Table 1 and was higher for
exogenous markers than endogenous markers similar to



Table 1 Intra-tumor line heterogeneity: PET and IHC
parameters and features

Parameter Texture feature Within line variance

Total variance
18F-FDG PET SUVmax 0.41
18F-FDG PET SUVmean 0.33
18F-FDG PET T/M 0.70
18F-FDG PET Entropy 0.39

Skewness 0.58

PIMO 0.77

Mean 0.77

Entropy 0.80

Skewness 0.82

BrdU 0.78

Mean 0.52

Entropy 0.58

Skewness 0.63

pAKT 0.34

Mean 0.31

Entropy 0.36

Skewness 0.47

EGFR 0.29

Mean 0.15

Entropy 0.16

Skewness 0.67

MCT4 0.12

Mean 0.23

Entropy 0.20

Skewness 0.48

CA9 0.08

Mean 0.24

Entropy 0.28

Skewness 0.71

GLUT1 0.47

Mean 0.92

Entropy 0.83

Skewness 0.92

Vascular density 0.40

Perfusion fraction 0.55

Table 2 Random Forest classifier performance

Model Accuracy
overall model

Accuracy cross validation
test set (mean ± SD)

PET Parameters 21.1% 19.0% ± 8.0%

+ features 26.7% 23.1% ± 8.8%

IHC Parameters 76.9% 74.9% ± 10.9%

+ features 83.9% 79.8% ± 10.2%

PET + IHC Parameters 83.6% 76.4% ± 11.0%

+ features 81.0% 82.0% ± 10.6%
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their associated IHC parameters, except for GLUT1;
GLUT1 features showed greater heterogeneity than the
IHC staining fraction.
The addition of IHC texture features resulted in a bet-

ter classification accuracy (83.9%) than using the IHC
parameters alone (i.e. 76.9%) (Figure 3A). In cross valid-
ation 79.8% (± 10.2%) of the individual tumors were cor-
rectly classified. The Random Forest including both IHC
parameters and IHC features performed significantly
better than the Random Forest based on IHC parameters
alone (Figure 3A, mean accuracy difference: 4.9%, 95%
confidence interval [CI]: 4.2%-5.5%, p = 3.1 × 10-47,
paired t-test). Furthermore, we analyzed correlations be-
tween IHC parameters and their texture features. With
the exception of pAKT, the texture features mean and
entropy correlated well with the associated IHC param-
eter (Figure 3B). The feature skewness displayed an over-
all negative correlation with the other IHC features and
IHC parameters.

Combination of PET and IHC parameters
Next, we investigated whether combining PET and IHC
parameter data would result in better sample classifica-
tion. Performance of the PET and IHC parameter based
Random Forest was slightly better compared with the
Random Forest based on IHC parameters alone (accur-
acy 83.6%; cross validation accuracy 76.4% ± 11.0%). The
cross validation data was used to directly compare the
Random Forests based on 1) PET parameters alone, 2)
IHC parameters alone and 3) the combination of PET
and IHC parameters with each other (Figure 4). Both the
IHC based model and the combined model performed
significantly better than the PET based model. Further,
although the difference between the IHC based and the
combined model was significant, this difference was small
(mean difference: 1.4%, 95% CI: 0.9%-2.0%, p = 7.0 × 10-8,
paired t-test).

PET and IHC parameters combined with PET and IHC
texture features
All texture features were added to the IHC and PET pa-
rameters to investigate whether this would further improve
tumor line characterization. A Random Forest was built
with these data, which resulted in an accuracy of 81.0%. In
cross validation analysis, 82.0% ± 10.6% of the samples were
classified correctly. The Random Forest for all data com-
bined resulted in the highest classification accuracy.
The cross validation results generated for this model

were compared to data from the Random Forests based
on 1) IHC and PET parameters and 2) IHC parameters
and IHC features (Figure 5). Overall the model combining



Figure 2 (See legend on next page.)
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Figure 2 Classification of 14 HNC lines using immunohistochemistry (IHC) marker parameters. (A) Representative example of a combined
IHC marker staining for PIMO (green), CA9 (red) and vessel (blue) staining. (B + C) Expression of an endogenous hypoxia marker (CA9) and an
exogenous hypoxia marker (PIMO) in the different tumor lines (mean ± SD). (D) Clustered heatmap of the IHC parameters with overall good
clustering of the different tumor lines. Tumor lines are indicated by their respective numbers. (E) Graph displaying an estimate of the decrease in
Random Forest classification accuracy when omitting the respective parameter. (F) Random Forest classification accuracy as a function of the
(randomly combined) number of IHC parameters. * = significantly different from previous number of parameters (t-test).
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all parameters performed best, however differences with
the IHC parameters plus IHC features based model were
small (mean difference 2.2%, 95% CI: 1.8%-2.5%, p = 5.2 ×
10-32, paired t-test).

Discussion
The goal of the study was to investigate if parameters de-
rived from 18F-FDG PET imaging and IHC, singularly or
in combination, could reliably distinguish different human
HNC xenograft models from one another. Eventually, this
could give direction to classification methods for cluster-
ing of tumors that are most alike regarding multiple char-
acteristics in clinical studies, e.g. for treatment prediction
and prognostication purposes or for individualized treat-
ment selection.
IHC markers were selected for relevance in metabolic cell

processes and known therapy resistance mechanisms [2], as
well as for (in)direct links to 18F-FDG tumor uptake in the
literature [34-38]. Using a systematic analysis method, the
presented results show that a finite set of IHC staining
parameters, quantifying several relevant molecular cell
processes, can accurately allocate a specific tumor to the
appropriate tumor line within a cluster of 14 HNC lines.
Figure 3 Classification model accuracy comparison and correlation be
(A) Distribution of the difference in Random Forest classification accuracy o
IHC parameters combined with IHC features (feat. = features). (B) Correlatio
Adding more staining markers increases accuracy, but at a
certain point this effect levels off. A specifying accuracy of
at least 70% can be achieved with a random set of 6 of these
IHC markers.

18F-FDG PET could not differentiate between the
HNC lines in this study. Furthermore, quantification pa-
rameters (SUV, T/M) and selected 18F-FDG PET texture
features did not provide additional value to classification
accuracy by IHC alone. It may be unlikely that 18F-FDG
PET derived parameters can reliably categorize combined
differences in biological characteristics between head and
neck tumors. Absolute SUVs were relatively low in this
study and were in line with other preclinical HNC studies
[39,40], but lower than the typical SUVs that are detected
in clinical HNC [41]. This is inherent to the mouse model
used for PET imaging in this study. Although differences
were seen between HNC lines, most of the observed vari-
ance could be attributed to intra-tumor line differences.
Uptake of 18F-FDG has been assessed for correlation

with several biological markers in tumors, such as GLUT1,
glycolysis- and hypoxia-related markers [34,35,42], prolif-
eration [36,42,43], EGFR [37] and AKT [38], with conflict-
ing results. Overall, 18F-FDG uptake in malignancies
tween IHC parameters and their associated texture features.
f the model based on IHC parameters alone and the model based on
n heatmap of the IHC parameters and the IHC features.



Figure 4 Classification model accuracy comparison. Distributions of the difference in Random Forest classification accuracy of models based
on PET parameters versus models based on the IHC parameters (A), models based on PET parameters versus models based on both PET and IHC
parameters (B) and models based on IHC parameters versus models based on both PET and IHC parameters (C).
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reflects multifactorial mechanisms of increased metabolic
activity and glucose utilization, performed by glucose
transporters and enzymes in the glycolytic pathway, which
in turn are regulated through different signaling pathways
triggered by endogenous and exogenous stimulators. Aims
to attribute 18F-FDG uptake to expression of one specific
protein or therapy resistance mechanism are therefore
debatable.
Quantitative texture feature analysis has been introduced

in radiodiagnostic imaging as a means to characterize and
classify tumors using their signal intensity distribution
[44,45], and studies described the use of texture features as
potential prognostic or predictive tools [46,47]. Textural
feature analysis can be applied in numerous imaging
modalities where lesion configuration plays a discriminating
role for stratification [48], e.g. contact dermoscopy images
[49] or microscopy images [50,51]. For this study we fo-
cused on a limited set of global features that would give
relevant insight in signal distribution next to quantification
parameters such as IHC staining fraction or PET SUV,
including entropy and skewness for IHC and PET images,
with the additional feature “mean” (pixel grey value) for
Figure 5 Classification model accuracy comparison. Distributions of the
on both IHC and PET parameters versus models based on all variables (IHC
parameters and IHC features versus models based on all variables (B).
IHC images. IHC texture features combined with IHC
parameters conveyed optimal characterization accuracy.
However, addition of 21 feature values improved the
classification accuracy of the combined 9 IHC parameters
(which was already 74.9%) by only 4.9%.
Limitation of the study is the use of relatively small xeno-

graft tumors as opposed to multiple biopsies from larger
HN tumors. However, this setup provides the possibility to
study multiple parameters in entire tumor sections, which
is difficult to achieve on a large scale in a patient setting. In
clinical studies, sampling errors by extraction of a single
biopsy forms a general pitfall when assessing biological
markers with a heterogeneous tumor distribution. At least
4-5 central core biopsies are needed to minimize effects of
IHC staining heterogeneity within tumor sections [11,52].
In entire tumors, an even greater spatial heterogeneity in
IHC characteristics is likely to occur. Iakovlev et al. demon-
strated that, for CA9 quantification in multiple cervical
tumor biopsies per patient, the highest variation was inter-
tumor, followed by intra-tumor and intra-tumor section
variation. The greatest reduction in assessment-error could
be achieved by increasing the number of biopsies spaced
difference in Random Forest classification accuracy of models based
/PET parameters and features) (A) and models based on IHC
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well apart rather than increasing the number of stained
sections per biopsy [11].
We analyzed multiple tumors per xenograft model,

which have the same genetic background and are grown
to a similar size under similar circumstances in mice from
the same strain. Even these tumors, that may represent a
basic approach to multiple biopsies from heterogeneous
tumors in different patients, exhibited variable characteris-
tics during growth, affected by microenvironmental and
external factors [53,54]. Intra-tumor line variation for the
administered exogenous markers was overall larger than
for endogenous markers. Tumor uptake of exogenous
markers is influenced by dosage and administration, circu-
lation and body clearance properties, tumor vascular dens-
ity and perfusion, diffusion, binding and washout kinetics
et cetera. In the clinical situation, external and microenvi-
ronmental influences may result in even larger intra-
tumor and inter-tumor variation of molecular marker
expression in HNC.
Results from the study can be extrapolated to other

tumor types in the sense that, when the aim is to allo-
cate or adapt individually tailored treatment, a selection
of parameters provides the potential for precise tumor
characterization and stratification. Depending on the
treatment options at hand, individual tumor profiles or
grouping of most uniform tumors can be established
with the help of a distinct panel of IHC markers. This
precludes analyzing an extensive number of classifica-
tion parameters.
Care should be taken that the number of chosen charac-

terizing parameters is not too small either. In this study,
we found relatively low accuracies when less than 6 IHC
parameters were combined for classification. Instead of
administering exogenous IHC markers, molecular PET
tracers with a more defined imaging spectrum than 18F-
FDG, such as tracers for hypoxia or proliferation rate [55],
can potentially complement IHC analyses by visualizing
the entire tumor for presence of certain tumor mecha-
nisms relevant for treatment.

Conclusions
In this study, we used a systematic analysis to demon-
strate that features of different quantifying methods
characterize head and neck tumor lines effectively and
complement each other. Multiple IHC and 18F-FDG
PET parameters and texture features categorized individ-
ual tumors as adequate as possible. However, a select set
of IHC marker parameters representing tumor metabol-
ism, proliferation, hypoxia and blood perfusion could
already allocate individual tumors to the appropriate
HNC line, in an array of 14 HNC lines, with high
reliability. Selected IHC texture features complemented
IHC parameters for optimal characterization accuracy.
18F-FDG PET parameters and texture features were of
minor additional value to the classification accuracy of
IHC parameters alone. 18F-FDG as a marker may be too
multifactorial influenced to distinguish microenviron-
mental or molecular differences between HNC lines.
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