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Upregulation of CPE promotes cell proliferation
and tumorigenicity in colorectal cancer
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Abstract

Background: Colorectal cancer (CRC) is one of the most common cancers worldwide and a leading cause of
cancer related death. Although the mortality rate of CRC is decreasing, finding novel targets for its therapy remains
urgent. Carboxypeptidase E (CPE), a member of the pro-protein convertases, which are involved in the maturation
of protein precursors, has recently been reported as elevated in many types of cancer. However, its role and
mechanisms in tumor progression are poorly understood.

Methods: In the present study, we investigated expression of CPE in CRC cell lines and tumor tissues using
Western blot and real-time qRT-PCR. Plasmids for overexpression and depletion of CPE were constructed and
analyzed by Western blot, MTT and colony formation assays and bromodeoxyuridine incorporation assays. The
relative expression of p21, p27, and cyclin D1 were analyzed by Real-time qRT-PCR in the indicated cells.

Results: Our study showed that CPE was significantly upregulated in CRC cell lines and tumor tissues. MTT and
colony formation assays indicated that overexpression of CPE enhanced cell growth rates. BrdU incorporation and
flow-cytometry assays showed that ectopic expression of CPE increased the S-phase fraction cells. Soft agar assay
proved enhanced tumorigenicity activity in CPE over-expressing CRC cells. Further studies of the molecular
mechanisms of CPE indicated that is promoted cell proliferation and tumorigenicity through downregulation of p21
and p27, and upregulation of cyclin D1.

Conclusions: Taken together, these data suggest that CPE plays an important role in cell cycle regulation and
tumorigenicity, and may serve as a potential target for CRC therapeutics.
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Background
Colorectal cancer (CRC) is one of the most common
cancers and a leading cause of cancer-related deaths [1].
According to WHO statistics, there were an estimated
1.2 million cases of CRC in 2008 worldwide. CRC devel-
opment is a multi-step and multigene process, involving
activation and overexpression of oncogenes, and inacti-
vation and downregulation of tumor suppressor genes
[2], which have multiple effects in CRC tumorigenesis,
including cell proliferation, apoptosis, invasion, and
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metastasis. Mutation of the tumor suppresser gene, ad-
enomatous polyposis coli (APC), is one of the most well
studied in CRC. Familial adenomatous polyposis (FAP),
an autosomal, dominantly inherited disease, can cause
the development of hundreds to thousands of colorectal
tumors during the second and third decades of a patient’s
life [3]. Germline mutations in APC are identified in
approximately 80% of FAP affected individuals [4,5].
Many other oncoproteins have been reported to be
upregulated or activated in CRC, such as FOXQ1 [6],
PIK3CA [7], and cyclin D1 [8]. Although CPE, a prohor-
mone/proneuropeptide processing enzyme, has been
reported to be elevated in CRC [9], its role in tumor
development remains poorly understood.
CPE is found primarily in endocrine and neuroendo-

crine cells, and is a metalloexopeptidase [10]. It encodes
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a carboxypeptidase that cleaves C-terminal amino acid
residues, and is involved in the biosynthesis of peptide
hormones and neuropeptides, which are synthesized as
precursors in the rough endoplasmic reticulum. After
being packaged into secretory granules, these precursors
are processed sequentially, first, by prohormone convert-
ases (PC1/3 and PC2) to remove the carboxyl side of
paired basic residues to yield basic residue-extended
peptides [11,12], then by a subset of soluble CPE to
cleave the basic residues to generate biologically active
peptide hormones and neuropeptides [10,13,14]. CPE
also functions as a prohormone sorting receptor for the
regulated secretory pathway (RSP) [15,16]. Mice with
Cpe mutations, or Cpe knockout mice, exhibit patho-
physiological conditions, such as obesity, diabetes, infertil-
ity, low bone mineral density, and deficits in learning and
memory [17-20]. In humans, deregulated CPE has been
associated with numerous diseases, such as diabetes,
Alzheimer's disease [21], and cancers. Horing et al. found
reduced expression of CPE in Glioblastoma, and proposed
that CPE functioned as a putative tumor suppressor
gene [22]. Conversely, Murthy et al. reported that CPE
was significantly elevated in many human cancers, and
its upregulation was correlated with tumor growth and
metastasis [9]. Therefore, the role of CPE in cancer re-
mains unclear.
In this study, we found that CPE was significantly

upregulated in CRC cell lines and tumor tissues. Further
investigations revealed that overexpression of CPE led to
decreased expression of cyclin-dependent kinase (CDK)
inhibitors, p21 and p27, and increased expression of the
CDK regulator, cyclin D1. The resulting increase in the
S-phase fraction of tumor cells may account for CPE’s
role in enhancing cell growth rates and tumorigenicity
activity in CRC cells. These results suggest that CPE
may be a novel target for CRC therapeutics.
Methods
Ethics statement
For the use of clinical materials for research purposes,
samples were obtained with prior written informed con-
sents from the patients and approval from the Institutional
Research Ethics Committees of ZengchengPeople,s Hos-
pital (BoJi-Affiliated Hospital of Sun Yat-Sen University)
ethics Committee.
Cell lines and tissue specimens
Colorectal cancer (CRC) cell lines, including SW480,
SW620, KM12, HCT15, HCT116, Caco-2, and LoVo,
were cultured in RPMI 1640 medium (Invitrogen, Carlsbad,
CA, US) supplemented with 10% FBS (HyClone, Logan,
Utah, US). Tissue specimens were freshly collected from
Zengcheng People’s Hospital (BoJi-Affiliated Hospital of
Sun Yat-Sen University), and were histopathologically and
clinically diagnosed.
Plasmids and antibodies
For overexpression of CPE: human full-length CPE cDNA
from HCT116 cells was amplified by PCR and cloned into
a pMSCV-puro retroviral vector. For depletion of CPE:
two human shRNA sequences were cloned into the
pSuper-retro-puro plasmid to generate pSuper-retro CPE
shRNA. The following sequences were selected: RNAi#1,
CTCCAGGCTATCTGGCAATAA; and RNAi#2, GATAG
GATAGTGTACGTGAAT. Anti-CPE (BD, Franklin Lakes,
New Jersey, US), anti-β-actin (Sigma, Saint Louis, MI, US),
and anti-BrdU (Upstate, Temecula, CA, US) were used for
Western blot analysis and bromodeoxyuridine (BrdU)
incorporation assays.
RNA extraction, reverse transcription (RT) and real-time
qRT-PCR
Total RNA from cultured cells was extracted using Trizol
reagent (Invitrogen, Carlsbad, CA, US), following the
manufacturer’s instructions. The cDNA was amplified
and quantified using an ABI Prism 7500 Sequence De-
tection System (Applied Biosystems, Foster City, CA),
with SYBR Green I dye (Molecular Probes, Invitrogen,
CA Carlsbad, CA, US). The following primers were se-
lected: CPE: CCATCAGCAGGATTTACACG (forward)
and TAAATTCAGGCTCACCAGGC (reverse); p21: CG
ATGCCAACCTCCTCAACGA (forward) and TCGCAG
ACCTCCAGCATCCA (reverse); p27: TGCAACCGAC
GATTCTTCTACTCAA (forward) and CAAGCAGTGAT
GTATCTGATAAACA AGGA (reverse); Cyclin D1: AAC
TACCTGGACCGCTTCCT (forward) and CCAC TTGA
GCTTGTTCACCA (reverse); GAPDH: ACCACAGTCC
ATGCCATCAC (forward) and TCCACCACCCTGTTGC
TGTA (reverse). Expression data were normalized to GAP
DH, and calculated as 2-(Ct[gene] – Ct[GAPDH]), where Ct

represents the threshold cycle for each transcript.
MTT and colony formation assay
For the MTT assay: cells were seeded in 96-well plates
(2000 cells/plate); at each time point, cells were stained
with 100 μl sterile MTT dye (0.5 mg/ml; Sigma, St.
Louis, MO, US) for 4 h at 37°C; the culture medium was
removed; and 150 μl of dimethyl sulphoxide (DMSO;
Sigma) was added. The absorbance was measured at
570 nm; the reference wavelength was 655 nm. For the
colony formation assay: cells were seeded in 6-well
plates (1000 cells/plate); cultured for 10 days; fixed with
ice-cold methanol for 10 min; and stained with 1% crystal
violet for 1 min.
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Bromodeoxyuridine incorporation assay
Cells were seeded on coverslips (Fisher, Pittsburgh, PA,
US) in 24-well plates (5 × 104 cells/plate). After 24 h,
the cells were incubated with BrdU for 1 h, and stained
with anti-BrdU antibody (Upstate, Temecula, CA, US),
following the manufacturer’s instructions. Gray level
images were acquired under a laser scanning microscope
(Axioskop 2 plus, Carl Zeiss Co. Ltd., Jena, Germany).
Anchorage-independent growth ability assay
Cells (5000 cells/plate) were mixed in 2 × RPMI 1640
with an equal volume of soft agar (Sigma, Saint Louis,
MO, US) to give a final solution of 0.3% agar, 1 × RPMI
1640, 10% FBS. The cell-agar mixture was added to
the top of the cell-free bottom layer with 1% agar.
After 10 days, viable colonies larger than 0.1 mm were
counted.
Statistical analysis
Statistical tests for data analyses are Student’s 2-tailed t
test. Statistical analyses were performed using the SPSS
11.0 statistical software package. Data represent mean ±
SD. P values of 0.05 or less were considered statistically
significant.
Figure 1 CPE is overexpressed in colorectal cancer cells. (A-B) Western
relative expression of CPE in CRC cell lines and primary normal colorectal e
analysis (D) showing the relative expression of CPE in CRC patients’ tumor
as a loading control. mRNA data were normalized to GAPDH control and a
independent experiments. *: P < 0.05.
Results
CPE is overexpressed in CRC cell lines and tissues
To investigate the biological role of CPE in human CRC
progression, we analyzed CPE expression in CRC cell
lines and paired tissue specimens from CRC patients.
Western blot analysis and real-time qRT-PCR results
showed that CPE was overexpressed in all CRC cell lines
compared to primary normal colorectal epithelial cells
(Figure 1A-B). Data from paired CRC tissue specimens
showed that both CPE protein and mRNA were signifi-
cantly upregulated (5- to 13-fold) in tumor tissue com-
pared to matched adjacent normal tissue (Figure 1C-D
and Additional file 1: Figure S1). Taken together, these
data indicated that CPE was overexpressed in CRC, and
its overexpression may contribute to the development of
human CRC.

CPE expression levels correlate with cell proliferation
rates in CRC
To further investigate the role of CPE in CRC, two CRC
cell lines, HCT116 and SW480, were selected to stably
express CPE ORF and CPE shRNA. Western blot ana-
lysis showed that stable cell lines were successfully
established (Figure 2A). The role of CPE in cell prolifer-
ation was investigated by conducting MTT and colony
formation assays. Ectopic expression of CPE dramatically
blot analysis (A) andreal-time qRT-PCR analysis (B) showing the
pithelial cells. (C-D) Western blot analysis (C) and real-time qRT-PCR
tissues (T) vs. matched adjacent normal tissues (ANT); β-actin was used
re presented as mean ± standard deviation (SD) from three



Figure 2 CPE promotes colorectal cancer cell proliferation. (A) Western blot analysis of CPE expression in HCT116 and SW480 cell lines stably
infected with CPE ORF or shRNA. β-actin was used as a loading control. (B) MTT assay analysis of cell growth rates for different stable cell lines
at the indicated times after seeding cells. (C) Representative micrographs (left panel) and quantification (right panel) of colony formation in
CPE-overexpressing and vector cells. (D) Representative micrographs (left panel) and quantification (right panel) of colony formation in CPE-silencing
and vector cells. Data are presented as mean ± SD from three independent experiments. *: P < 0.05.
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enhanced growth rates of both CRC cell lines (Figure 2B,
left panel), forming more and larger colonies (Figure 2C).
Conversely, silencing of CPE impaired growth rates
(Figure 2B, right panel) and colony formation abilities
(Figure 2D) in both CRC cell lines. Herein, we con-
cluded that overexpression of CPE promotes CRC cell
proliferation.
CPE promotes cell proliferation by increasing the S-phase
fraction of CRC cells
Having observed that CPE upregulation promoted cell
proliferation, we further explored the underling mecha-
nisms. BrdU, an analogue of thymidine, becomes incor-
porated into replicating DNA by replacing thymidine.
Subsequent immunodetection of BrdU allows the percent-



Figure 3 CPE promotes cell proliferation by increasing the S-phase fraction of cells. (A) Representative micrographs (upper panel) and
quantification (lower panel) of BrdU incorporation in CPE-overexpressing and vector cells. (B) Representative micrographs (upper panel) and
quantification (lower panel) of BrdU incorporation in CPE-silencing and vector cells. (C) Flow cytometric analysis of CPE-overexpressing and vector
cells. (D) Flow cytometric analysis of CPE-silencing and vector cells. Data are presented as mean ± SD from three independent experiments.
*: P < 0.05.
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age of cells at S-phase to be determined. As shown in
Figure 3A (right panel), overexpression of CPE signifi-
cantly increased the percentage of BrdU positive cells
in both cell lines: 29.2% vs. 43.28% in HCT116; 26.88%
vs. 41.36% in SW480. In contrast, knockdown of CPE
dramatically decreased the S-phase fraction of BrdU
incorporated cells: from 32.33% to 17.28% (CPE-RNAi#1)
and 15.69% (CPE-RNAi#2) in HCT116 cells; and from
30.08% to 18.02% (CPE-RNAi#1) and 14.89% (CPE-
RNAi#2) in SW480 cells (Figure 3B). Cell cycle analysis
by flow-cytometry assay further proved that upregulation
of CPE dramatically increased the percentage of S phase
cells and decreased the percentage of cells in the G1/G0
phase (Figure 3C). Conversely, silencing of CPE increased
the percentage of cells in the G1/G0 phase and decreased
the percentage of S-phase cells (Figure 3D). Based on
these data, we proposed that CPE promotes cell prolif-
eration by increasing the S-phase fraction of CRC cells.
Overexpression of CPE promotes tumorigenicity of
CRC cells
To investigate the role of CPE expression on the tumori-
genic activity of CRC cells, anchorage-independent growth
ability assay was performed. The results showed that
ectopic expression of CPE significantly enhanced anchor-
age-independent growth of both CRC cell lines, increasing
the numbers and size of colonies in soft agar compared to
vector cells (Figure 4A). Depletion of CPE dramatically
impaired the anchorage-independent growth of both cell
Figure 4 Overexpression/knockdown of CPE promotes/impairs tumor
(left panel) and quantification (right panel) of colonies formed in soft agar
(left panel) and quantification (right panel) of colonies formed in soft agar
from three independent experiments. *: P < 0.05.
lines, as indicated by the reduction in colony numbers and
colony size (Figure 4B).

CPE promotes cell proliferation and tumorigenicity via
modulation of p21 and p27 and cyclin D1 expression
The CDK inhibitors p21 and p27, and CDK regulator
cyclin D1, perform important functions in the control of
cell cycle progression. Quantitive real-time PCR showed
that overexpression of CPE significantly downregulated
p21 and p27, and upregulated cyclin D1 (Figure 5A). In
contrast, silencing of CPE dramatically enhanced p21
and p27 expression, and inhibited cyclin D1 expression
in both HCT116 and SW480 cell lines (Figure 5B). These
results indicated that CPE regulates p21, p27, and cyclin
D1 to promote cell proliferation and tumorigenicity.

Discussion and conclusion
In the present study, we found that CPE is elevated in
CRC and have suggested a mechanistic role for CPE in
the proliferation of CRC cell lines. Furthermore, we
proposed that CPE possesses oncogenic functions in
CRC development. This is consistent with other studies:
Lee et al. reported that an N-terminal truncated CPE
isoform was highly upregulated, and could induce tumor
growth. They further suggested its use as a biomarker
for predicting metastasis in hepatocellular carcinoma
[23]. By analyzing profile data in the Gene Expression
Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/
geo/), Murthy et al. found that CPE was elevated in CRC
and many other types of human cancer, including hepato-
igenicity of colorectal cancer cells. (A) Representative micrographs
in CPE-overexpressing and vector cells. (B) Representative micrographs
in CPE-silencing and vector cells. Data are presented as mean ± SD

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/


Figure 5 CPE regulates p21, p27, and cyclin D1 expression. (A) Overexpression of CPE downregulated p21 and p27, and upregulated cyclin
D1. Real-time qRT-PCR analysis of the relative expression of p21, p27, and cyclin D1 in the indicated cells. (B) Knockdown of CPE upregulated p21
and p27, and downregulated cyclin D1. Real-time qRT-PCR analysis of the relative expression of p21, p27, and cyclin D1 in the indicated cells.
Data were normalized to GAPDH control and presented as mean ± SD from three independent experiments. *: P < 0.05.
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cellular carcinoma, cervical cancer, and kidney cancer
[9]. However, in glioma, CPE expression level appears
to be controversial: Liu et al. analyzed 12 primary brain
glioma biopsies using cDNA microarrays, and revealed
elevation of CPE expression compared to normal brain
tissue [24]; this was supported by another cDNA micro-
array study which found elevation of CPE expression in
50 human gliomas of various histogenesis, compared to
normal brain tissue samples [9]. In contrast, a study by
Horing et al. indicated that CPE acted as a tumor suppres-
sor by reducing expression of CPE in a cell death-resistant
glioma cell line, and in GBM samples from The Cancer
Genome Atlas cohort, compared to normal control brain
specimens [22]. Therefore, regulation of CPE may be
different in different types of cancer, and it is not yet
possible to define CPE as either a tumor suppressor or
an oncogene.
CPE is known to be elevated in many types of human

cancer, irrespective of whether they are neuroendocrine
tumors, such as lung cancer [25], or nonendocrine can-
cers, such as CRC, as shown by our data and others
(Saravana, [9]). However, the mechanism of CPE up-
regulation is still unknown. CPE locates at 4q32.3 in the
human genome; and duplications of 4q31-qter have been
documented in several human diseases [26-28], which
may contribute to CPE amplification in cancer. Similarly,
CPE upregulation has been reported in cervical cancer,
where 70% of cases are correlated with human papillo-
mavirus (HPV) infection [29], suggesting that CPE up-
regulation may triggered by viral antigens.
CPE is reported primarily in endocrine and neuroen-

docrine cells; however, it has now been identified in
epithelial-derived cancer cells. CPE functions as a prohor-
mone and neuropeptide processing exopeptidase, and
as a regulated secretory pathway (RSP) sorting receptor
[13-15]. Consequently, it has important roles in the
endocrine and neural systems. In mice, mutation or
knockout (KO) of CPE causes deficiencies in peptide
hormones and neuropeptides, such as insulin [17,19],
gonadotropin-releasing hormone, and brain-derived neuro-



Liang et al. BMC Cancer 2013, 13:412 Page 8 of 9
http://www.biomedcentral.com/1471-2407/13/412
trophic factor (BDNF) [30]. CPE KO mice exhibit multiple
endocrinopathies leading to obesity, diabetes, and infertil-
ity [19]; however, how CPE promotes tumor progression
is largely unknown. In this study, we found that CPE
upregulation increased the S-phase fraction of CRC cells,
thereby promoting cell growth and tumorigenicity. Fur-
ther investigation indicated that CPE achieved this pro-
proliferation effect by modulating p21, p27 expression
and mediating cyclin D1 expression at the mRNA level.
To date, CPE has been considered to be an enzyme,
and not a transcriptional factor or cofactor. This means
that CPE cannot initiate transcription of these cell cycle
regulators by itself, and therefore further investigation
is needed.
In the current study, we found that ectopic expression

of CPE dramatically enhanced, whereas silencing of CPE
impaired, growth rates of both CRC cell lines. More
importantly, soft-agar assay revealed that the anchorage-
independent growth of CRC cells lines significantly en-
hanced upon CPE upregulation and impaired in response
to CPE depletion, suggesting that overexpression of
CPE promotes, but downregulation of CPE decreased,
the tumorigenicity of CRC cells, which are currently
under investigation in our laboratory examined with
in vivo model using CPE-overexpressing and CPE-silenced
cells. Meanwhile, Saravana and colleagues have also re-
ported a higher level of CPE in metastatic CRC specimens
than primary ones [9], indicating that CPE involves in
tumor metastasis. Therefore, it is also worthy to further
investigate the correlation and biological role of CPE in
CRC metastasis.
In summary, this study showed that CPE was dramat-

ically elevated in CRC cell lines and tissues samples,
compared to normal colorectal epithelial cells and matched
adjacent normal tissue (ANT), respectively. Further in-
vestigations revealed that upregulation of CPE enhanced
cell proliferation and tumorigenicity in CRC cells; whereas
downregulation impaired cell proliferation and tumorigen-
icity, and that this was achieved through regulation of
the cell cycle regulators p21, p27, and upregulation of
cyclin D1. Understanding the precise role of CPE in
CRC progression will increase our knowledge of the
biological mechanisms of CRC. Suppression of CPE
may offer a novel therapeutic strategy for CRC.

Additional file

Additional file 1: Figure S1. Expression of CPE splice variants. RT-PCR
analyses of the relative expression of CPE splice variants in tumor tissue
compared to matched adjacent normal tissue in colorectal cancer. Data
were normalized to GAPDH control and presented as mean ± SD from
three independent experiments. *: P < 0.05.
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