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Abstract

siRNA mediated therapeutics.

growth inhibition.

melanoma treatment.

Background: Melanoma represents one of the most aggressive and therapeutically challenging malignancies as it
often gives rise to metastases and develops resistance to classical chemotherapeutic agents. Although diverse
therapies have been generated, no major improvement of the patient prognosis has been noticed. One promising
alternative to the conventional therapeutic approaches currently available is the inactivation of proteins essential for
survival and/or progression of melanomas by means of RNA interference. Survivin and cyclin B1, both involved in
cell survival and proliferation and frequently deregulated in human cancers, are good candidate target genes for

Methods: We used our newly developed sticky siRNA-based technology delivered with linear polyethyleneimine
(PED to inhibit the expression of survivin and cyclin B1 both in vitro and in vivo, and addressed the effect of this
inhibition on B16-F10 murine melanoma tumor development.

Results: We confirm that survivin and cyclin BT downregulation through a RNA interference mechanism induces a
blockage of the cell cycle as well as impaired proliferation of B16-F10 cells in vitro. Most importantly, PEI-mediated
systemic delivery of sticky siRNAs against survivin and cyclin B1 efficiently blocks growth of established
subcutaneaous B16-F10 tumors as well as formation and dissemination of melanoma lung metastases. In addition,
we highlight that inhibition of survivin expression increases the effect of doxorubicin on lung B16-F10 metastasis

Conclusion: PEl-mediated delivery of sticky siRNAs targeting genes involved in tumor progression such as survivin
and cyclin BT, either alone or in combination with chemotherapeutic drugs, represents a promising strategy for
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Background

Melanoma is considered as one of the most aggressive hu-
man cancers. The majority of melanoma-associated deaths
are caused by metastases, which can occur in a wider
variety of areas than any other cancer [1]. Among target
organs, the lung represents a common site of metastasis,

* Correspondence: vkedinger@polyplus-transfection.com; al_bolcato@yahoo.com
1Polyplus—transfection SA, Bioparc, BP 90018, Boulevard Sébastien Brant,
67401 llikirch, France

“Current address: Quintiles, rue Jean Dominique Cassini, BP 50137, 67404
lllkirch Cedex, France

Full list of author information is available at the end of the article

( BioMVed Central

mostly because of its anatomic structure and high
vascularization. These characteristics make it a preferen-
tial pathway for metastatic seeding and a rich environment
for neoplastic growth [2]. Another feature commonly
attributed to melanoma is its chemo-resistance [3]. During
melanoma progression, the breakdown of cell death control
leading to resistance to chemotherapeutic drugs is achieved
through the combined activation of anti-apoptotic factors,
inactivation of pro-apoptotic effectors and reinforcement of
survival signals. Targeting one or more of these different
factors may be a key requisite to overcome drug resistance
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and thus improve clinical outcome of patients with
melanoma.

Survivin, a member of the Inhibitor of Apoptosis Protein
(IAP) family [4], has emerged few years ago as a promising
therapeutic target in cancers because of its overexpression
in a wide spectrum of tumors, including melanoma [5-7].
Additionally, survivin was identified as a marker of poor
prognosis in melanoma [8]. In addition to its role in apop-
tosis inhibition, survivin also plays a critical role in the
regulation of cell division by inducing exit from G1 check-
point arrest and subsequent entry into S phase [9]. Finally,
recent studies have involved survivin in cell motility,
which may underlie a role for this protein in promoting
melanoma metastasis [10-12]. Various approaches invol-
ving molecular inhibitors have been developed to inhibit
its expression in tumor cells [6,13-17]. Another potential
therapeutic target for cancer treatment is represented by
cyclin Bl1, the regulatory subunit of cyclin-dependent
kinase 1 (cdkl), which plays a pivotal role in the transition
of the cell cycle from G2 phase to mitosis [18]. Altered ex-
pression of cyclin B1 has been reported in numerous can-
cers, where it could contribute to chromosomal instability
[19-23]. Furthermore, several studies have demonstrated
its clinical significance as a poor prognosis factor for se-
veral cancer types [24-27], including melanoma [28], and
cyclin B1 overexpression is responsible for radiotherapy
resistance in different tumors [29-31].

RNA interference represents a powerful approach for
antitumor therapy by allowing in vivo silencing of essential
genes for tumor progression and provides a promising
alternative to traditional small molecule therapies. How-
ever, delivery of siRNAs still remains the most challenging
step for the development of a siRNA-based therapy. The
challenge includes efficient target gene silencing in the de-
sired tissue while avoiding side effects such as immune re-
sponse, toxicity and off-target silencing. In this context,
the cationic linear polyethylenimine (PEI) is well known
for its efficiency to transfect genes both im vitro and
in vivo as it is involved in several clinical trials for the
treatment of bladder cancer (http://clinicaltrials.gov/ct2/
show/NCT00595088), pancreatic ductal adenocarcin-
oma (http://clinicaltrials.gov/ct2/show/NCT01274455)
and multiple myeloma (http://clinicaltrials.gov/ct2/
show/NCT01435720?term=senesco&rank=1). In this
study, we investigated its ability to deliver functional anti-
tumoral siRNA. To this end, we have developed sticky
siRNAs (ssiRNAs) that mimic gene structure through re-
versible concatemerization brought by sticky 3’-comple-
mentary overhangs [32]. These modified siRNAs confer a
higher stability to the complexes formed with linear PEI,
thus increasing gene silencing efficiency both in vitro and
in vivo, compared with standard siRNAs. We used this
new technology to specifically target survivin and cyclin
Bl in B16-F10 murine melanoma cells. Our results show
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that ssiRNAs are efficient to inhibit survivin and cyclin Bl
expression in vitro and that a systemic treatment with
ssiRNAs targeting these two genes is able to reduce both
subcutaneous melanoma tumors and their lung metasta-
ses. Moreover, inhibition of survivin expression increased
the effect of a doxorubicin treatment on melanoma lung
metastasis. Altogether, our data are promising towards
development of ssiRNAs against survivin and cyclin Bl as
a new therapeutic strategy for melanoma treatment.

Methods

Cell line

Murine melanoma B16-F10 cell line was obtained from
ATCC and cultured in Dulbecco’s modified Eagle’s
medium (Eurobio, Courtaboeuf, France), supplemented
with 10% fetal bovine serum (Hyclone, Logan, UT,
USA), 2 mM Glutamine (Eurobio) and 200 U/ml peni-
cillin / 200 pg/ml streptomycin (Eurobio).

Sticky siRNAs
[EX-HPLC-purified nucleic acids were purchased from
Eurogentec (Brussels, Belgium). Annealing was performed
in annealing buffer (Eurogentec), final concentration 0.1 X
for 2 min at 95°C followed by slow cooling. Sequences
were as follow:

Cyclin Bl ssiRNA sense, 5-GAGAUGUACCCUCCA
GAAAdTdTdTdTdTdTdTdT-3;

Cyclin Bl ssiRNA antisense, 5’-UUUCUGGAGGGUA
CAUCUCdAdAdAdAdAdAdAdA-3;

Survivin ssiRNA sense, 5-CCGUCAGUGAAUUCUU
GAAdTdTdTdTdTdTdTdT-3;

Survivin ssiRNA antisense, 5-UUCAAGAAUUCACU
GACGGdAdAdAdAdAdAdAdA-3;

Negative control ssiRNA sense, 5-AUGUCUACUGG
CAGUCCUGATATATdTdTdTdTdT-3;

Negative control ssiRNA antisense, 5’-CAGGACUGC
CAGUAGACAUJAdAJAdAdAdAdAdA-3.

In vitro and in vivo transfections

jetPEI® and in vivo-jetPEI® were from Polyplus-transfection
(Illkirch, France). For transfection with jetPEI° reagent,
complexes were prepared as follows: for a triplicate experi-
ment, the required amount of ssiRNA and transfection
reagent were each separately diluted in 150 pl of NaCl 150
mM. A volume of 2.4 pl (for 75 nM of ssiRNA, N/P=6) or
3.2 ul (for 50 nM of ssiRNA, N/P=8) of jetPEI° was used
per pg of siRNA. N/P ratio is defined as the number of
nitrogen residues of jetPEI° per nucleic acid phosphate.
The transfection reagent solution was added to the
ssiRNA solution and left for 30 min at room temperature.
A volume of 100 pl of complexes was added to B16-F10
cells seeded in 24-well plates at 40,000 cells/well one day
before, and placed in 0.5 ml of medium without serum
just prior to complexes addition. After 4 h, the medium
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was replaced by 1 ml of complete medium containing 10%
serum.

For in vivo delivery with in vivo-jetPEI°, complexes were
prepared as follows: for 1 mouse, the required amount of
nucleic acid and PEI were separately diluted in 100 pl of 5%
glucose solution (final concentration). For injection of 0.6
mg/kg of ssiRNA, 0.16 pl of PEI were used per pg of
ssiRNA (N/P=8). For the 1 mg/kg ssiRNA injected amount,
0.25 pl of PEI were used per pg of ssiRNA (N/P=12.5). The
transfection reagent solution was added to the ssiRNA
solution and left for at least 30 min at room temperature.
At this stage complexes are stable for more than 4 h at
room temperature.

Animal experiments

All animal studies were conducted in accordance to the
French Animal Care guidelines and the protocols were
approved by the Direction des Services Vétérinaires.
Five-weeks old NMRI Nude female mice were obtained
from Elevage Janvier (Le Genset Saint Isle, France). For
subcutaneous xenografts, B16-F10 cells (1 x 10° cells in
100 pl of culture medium without serum) were injected
subcutaneously on the right flank of animals. ssiRNA/
PEI complexes were intravenously injected through the
retro-orbital sinus within 2 s. Treatment with ssiRNA
complexes started when tumors reached 50 mm?® and
were performed every other day until sacrifice of the ani-
mals. Tumors were measured at each injection, and
tumor volume was calculated as v = (it x L x 1%)/6. For
lung metastasis model, B16-F10 cells (1 x 10° cells in
300 pl of culture medium without serum) were injected
intravenously through the tail vein.

Branched DNA assay

QuantiGene assay (Panomics, Santa Clara, CA, USA) was
used to quantify the amount of mRNA in cells or lungs.
Cells were lysed in 600 pl of 1 x lysis buffer and incubated
for 30 min at 50°C. Lungs were lysed in 20 ml of tissue
and cell lysis solution (Tebu, Le Perray-en-Yvelines,
France), supplemented with 0.15 mg/ml of K Proteinase
(Sigma-Aldrich, St Louis, MO, USA) and incubated three
times 5 min at 60°C with 10 s vortexing. A volume of 1-
60 pl of cell or lung lysate was used for branched DNA
(bDNA) assay. Probe set were designed using QuantiGene
ProbeDesigner software. Target gene expression was as-
sayed according to manufacturer recommendations. Tar-
get expression level was normalized to corresponding
GAPDH expression from the same cell lysate.

Western blot analysis

Cells were lysed in 100 pl of RIPA buffer. Proteins were
quantified with the BCA kit (Pierce, Brebieres, France).
Fifty micrograms of total protein were subjected to elec-
trophoresis on a 10 or 15% acrylamide/bisacrylamide gel
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and transferred to a poly (vinylidene fluoride) membrane
(Millipore, Molsheim, France). A mouse anti-cyclin Bl
monoclonal antibody (Cell Signaling Technologies,
Danvers, MA, USA) at 1/1,000, a rabbit anti-survivin
polyclonal antibody (Cell Signaling Technologies) at 1/
1,000 and a mouse anti-GAPDH monoclonal antibody
(Ambion, Austin, TX) at 1/10,000 were used. Anti-
rabbit or anti-mouse secondary horseradish peroxidase-
conjugated were purchased from Millipore and used at
1/10,000. Protein bands were visualized with enhanced
chimioluminescence reagent (ECL, Amersham, GE
Healthcare, Velizy-Villacoublay, France).

Proliferation assay

Cell pellets were homogenized in 100 pl of 1:1 PBS/trypan
blue (Eurobio) and live cells were counted using an auto-
matic hematocyter (TC10, BioRad, Marnes-la-Coquette,
France).

For nuclei morphology analysis, cells were fixed with
ice-cold methanol for 10 min, rinsed with 1 x PBS and
stained with DAPI (0.01 pg/pl) for 15 min. Cells were
observed using a Nikon inverted microscope (Nikon
Eclipse TE 2000-S, Amsterdam, Netherland).

Cell cycle and apoptosis analysis

Cells were fixed in chilled 50% ethanol for 15 min at —20°C.
Pellets were incubated in 1 x PBS with 0.1% Triton X-100
and 5% BSA for 10 min on ice, and for 30 min at 37°C in
1 x PBS containing 20 pg/ml of RNase A. Propidium iod-
ide (100 pg/ml) was added for 10 min at room
temperature. Cell pellet was resuspended in 1 x PBS, 5
mM EDTA to obtain a cell concentration lower than 5.10°
cells/ml. Cells were analyzed by FACS using a Guava
apparatus from Millipore (Molsheim, France).

5’-RACE analysis

Total RNA was isolated using RNA NOW reagent
(Biogentex Laboratories, Houston, TX, USA) following
instructions of the manufacturer. One pg of RNA was
ligated to GeneRacer ™ RNA Oligo (5-CGA-CUG-GAG-
CAC-GAG-GAC-ACU-GAC-AUG-GAC-UGA-AGG-
AGU-AGA-AA-3’; Life Technologies, Saint Aubin,
France). Two-hundred and fifty nanograms of Oligo were
used respectively for cyclin Bl or survivin analysis. Ligated
RNA was reverse transcribed using a gene-specific primer
(Table 1). To detect the cleavage product, one or two
rounds of consecutive PCR (for conditions see Additional

Table 1 Primers used for Reverse transcription

Name
Cyclin B1 Rev (CCNBM1548R)
Survivin Rev (810R)

Sequence
5-TTC-GAC-AAC-TTC-CGT-TAG-CC-3'
5"-AGC-TCT-GGA-CTC-TGG-CCA-CCC-3"
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Table 2 Primers used for PCR
Name

Cyclin B1 Rev (CCNBM975R)
Survivin Rev (810R)

Survivin RevN (743R)

Sequence
5-AGG-GCG-ACC-CAG-GCT-GAA-GT-3'
5"-AGC-TCT-GGA-CTC-TGG-CCA-CCC-3"
5-GCC-ACC-TCC-CTG-TGG-ACT-CA-3'

file 1: Table S1) were performed using primers comple-
mentary to the RNA Oligo and to cyclin Bl or survivin
gene sequence (Table 2).

Histology

After mice sacrifice, lungs were perfused with 4% para-
formaldehyde, incubated for 16 h in 4% paraformalde-
hyde and processed for paraffin embedding. Paraffin
sections (7 um) were generated and Hematoxylin/Eosin
(H&E) stained.
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Statistical analysis

All statistical analyses were performed using GraphPad
prism software package (version 5). P values were calcu-
lated according to Mann-Withney test and were consi-
dered significant when lower than 0.05.

Results and discussion

in vitro ssiRNAs gene silencing efficiency in B16-F10
murine melanoma cells

We used previously validated survivin and cyclin Bl
siRNA sequences [33,34], designed sticky siRNAs with
these sequences by adding 3’ complementary overhangs
and first tested their silencing efficiency both at the
mRNA and protein levels in B16-F10 cells. A sequence
presenting no homology with mRNA databases was used
as a negative control. Transfection of B16-F10 cells with
jetPEI° and different concentrations of specific ssiRNAs
ranging from 25 to 100 nM was performed and all led to
a significant reduction of cyclin Bl and survivin mRNA
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Figure 1 Inhibition of survivin and cyclin B1 expression in B16-F10 cells. (a, b) mRNA expression level of cyclin B1 and survivin analyzed by
branched DNA 16 h after transfection with ssiRNAs and PEl. Cyclin BT and survivin levels are expressed relative to GAPDH. (c) Protein level of
cyclin BT and survivin analyzed by Western blot 24, 48 and 72 h after transfection with a negative control ssiRNA (2) or ssiRNAs against cyclin B1
or survivin (3) (50 nM, N/P=8). Non transfected cells (1) were also loaded. GAPDH was used as a loading control. (d) /n vitro 5-RACE analysis of
RNA extracted from B16-F10 cells either untransfected (1) or 16 h after transfection with negative control (2), cyclin BT or survivin (3) ssiRNAs
and PEIl (50 nM, N/P 8). Top part, schematic representation of the 5-RACE procedure.
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levels. The level of inhibition was optimal at 50 nM, N/P
of 8 and 75 nM, N/P of 6 (Figure la and b). Indeed, both
concentrations induced a 70 to 80% inhibition of the
two target mRNA expression compared to control cells.
This downregulation of mRNA expression induced a
diminution of the corresponding protein level for at least
48 h for both target proteins, as analyzed by Western
blot (Figure 1c).

In order to confirm that the gene silencing observed after
transfection occurred through a RNAi mechanism, we then
performed rapid amplification of cDNA ends (5-RACE)
on RNAs extracted from B16-F10 cells transfected with
cyclin B1, survivin or negative control ssiRNA. A band cor-
responding to the predicted cleavage product (158 bp for
cyclin B1 and 330 bp for survivin) was specifically detected
from RNAs extracted of both cyclin Bl and survivin
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ssiRNA transfected cells (Figure 1d). Sequencing analysis
of the PCR products confirmed their specificity (data not
shown).

The inhibition of cyclin Bl and survivin expression ob-
served after ssiRNA transfections was accompanied by a
specific cellular effect, as cells presented a growth inhi-
bition of more than 80% compared to control cells 48 h
post-transfection (Figure 2a). The proliferation rate of
cells transfected with the negative control ssiRNA was
also somewhat lowered compared to control cells. This
diminution can be attributed to the transfection itself,
which causes a transient blockage of the cell cycle pro-
gression. To further characterize the growth inhibition
induced by the down-regulation of both cyclin Bl and
survivin, we analyzed by flow cytometry B16-F10 DNA
content 48 h after transfection of ssiRNAs (Figure 2b).
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Figure 2 Effect of survivin and cyclin B1 inhibition on B16-F10 cell cycle progression. (a) Proliferation assay 48 h after transfection of
ssiRNAs. The proliferation rate is represented as a percentage of cell growth relative to control untransfected cells. (b) Flow cytometer analysis of
the cell cycle distribution of untransfected B16-F10 cells or 48 h after transfection with negative control, survivin or cyclin B1 ssiRNAs with PEI
(50 nM, N/P=8). (c) Table presenting the percentage of cells in apoptosis (subG1 population) of 3 independent experiments determined after
FACS analysis in the presence of propidium iodide 48 h after transfection with negative control and specific ssiRNAs with PEI (50 nM, N/P=8).

(d) DAPI staining, 48 h after transfection with negative control, cyclin BT or survivin ssiRNAs with PEI (50 nM, N/P=8) showing the presence of
mega-nuclei and chromosomal aberrations in cells transfected with either cyclin B1 or survivin ssiRNAs.
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Whereas only 17.9 and 12.6% of nontransfected or nega-
tive control ssiRNA-transfected cells were located in
G2/M phase, respectively, more than 50% of cells
transfected with survivin ssiRNA were arrested in G2/M
phase. Comparatively, the effect was milder after cyclin
B1 inhibition, yet a significant blockage of the cells in
G2/M phase was still present (Figure 2b). Moreover, per-
centage of apoptotic cells was also increased following
downregulation of survivin and cyclin Bl expression
compared to controls (Figure 2c). Finally, DAPI staining
of cells in which cyclin Bl or survivin expression was
inhibited showed a high proportion of cells presenting
mega-nuclei (more than 50% of the cells), a characteris-
tic of cell cycle arrest (Figure 2d).

Altogether, these results validate the ssiRNA ap-
proach to silence cyclin Bl and survivin through a
mechanism of RNA interference in vitro in B16-F10
murine melanoma cells.

Systemic treatment with ssiRNAs inhibits growth of
established subcutaneous melanoma xenografts

B16-F10 cells have the ability to form tumors when
injected subcutaneously in nude mice [35]. We took ad-
vantage of this model mimicking a primary melanoma
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tumor to test the potency and specificity of PEI-mediated
delivery of ssiRNAs in vivo. First, in order to confirm a
RNA interference mechanism of ssiRNAs in vivo, we
performed a 5-RACE analysis after intra-tumoral injec-
tion of ssiRNA (0.6 mg/kg, N/P=8) complexed with
in vivo-jetPEI’. As shown in Figure 3a, we detected a band
specific for the cleavage product after injection of either
cyclin Bl or survivin ssiRNAs in B16-F10 xenografts that
could not be detected in glucose or negative control
ssiRNA injected tumors.

We then assessed the effect of a systemic treatment of
ssiRNAs delivered with in vivo-jetPEI* on the growth of
B16-F10 xenografts. Intravenous delivery of ssiRNAs at
1 mg/kg (N/P = 12.5) was performed every other day.
The mean tumor size monitored after each injection is
represented in Figure 3b for each group. We started to
observe a reduction of tumor growth after the third in-
jection of ssiRNA against survivin (ie, 5 days after
tumor cells injection), which persisted until the end of
the experiment and reached a significant inhibition of
up to 50% compared to control mice (Figure 3b). The ef-
fect of cyclin B1 ssiRNA was less pronounced, yet still
significant as it leads to 44% inhibition of tumor growth
compared to controls (Figure 3c). The difference
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observed between the two target genes could be
explained by the multifunctionality of survivin compared
to cyclin B1, as the first protein is implicated in apop-
tosis, proliferation and motility [36], whereas the second
one only plays a critical role in the control of the cell
cycle progression and apoptosis [18]. The mice treated
with negative control ssiRNA presented a minor, statisti-
cally nonsignificant, reduction of tumor size. The differ-
ence between the control and negative control ssiRNA
groups could reflect the nonspecific effect of transfection
on the cell cycle previously observed in vitro (see above).

Melanoma lung metastases are reduced following
systemic treatment with ssiRNAs

Metastases, which represent the leading cause of mortality
for patients with melanoma, are the most challenging cells
to target. PEI was previously shown to preferentially
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deliver active nucleic acids, plasmids and siRNAs, to the
lung after intravenous injection [37-40]. We therefore
wondered whether systemic treatment of antitumoral
ssiRNAs delivered with PEI could reduce the formation of
melanoma lung metastases. When injected into nude mice
tail vein, B16-F10 cells rapidly give rise to lung metastases.
The advantage of this model is that it circumvents the
initial step of tumor cell migration and allows us to eva-
luate the effect of our treatment on the implantation of
metastatic cells in the host tissue and their subsequent
proliferation. Treatment with ssiRNAs was performed as
described in Figure 4a. At the end of the experiment,
lungs were excised and observed for metastatic nodules.
Treatment with cyclin Bl and survivin specific ssiRNAs
led to an important reduction of the number of metastases
(black nodules) compared to controls as illustrated by rep-
resentative pictures of lungs (Figure 4b). The lung weight
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was also used as an indicator of metastasis progression.
We determined the mean percentage of lung over body
weight in each group and observed a significant decrease
in groups treated with survivin and cyclin Bl ssiRNAs
compared to control groups (Figure 4c). Histological
analysis of lung sections was performed which further
confirmed the drastic diminution of both nodule size and
number in both survivin and cyclin Bl ssiRNA treated
lungs (Figure 4d).

Even if representative of the metastatic grade, lung
weight evaluation is not the best quantitative method,
and probably leads to an underestimation of the effect
produced by the ssiRNAs injection. Indeed, with this
method only 20 and 25% reduction of lung tumor weight
were observed following cyclin B1 and survivin ssiRNA
treatment, respectively. We thus developed a quantita-
tive assay based on MITF dosage. Indeed, as MITF is a
melanocyte specific transcription factor [41], it allows
quantification of the B16-F10 nodules present in the
lungs. When MITF expression is detected in lungs, its
level should be directly proportional to the number of
B16-F10 tumor cells. To verify this hypothesis, we ana-
lyzed MITF mRNA level in lungs containing increasing
number of B16-F10 tumors (Figure 5a). As expected, no
MITF mRNA was observed in lungs without B16-F10
tumors. In lungs presenting an intermediate number of
B16-F10 tumors, an intermediate level of MITF was ob-
served, whereas in lungs with a high level of tumor cells,
a high level of MITF was observed (Figure 5a). In
addition, we validated the linearity of our MITF assay
(see Additional file 2: Figure S1).

We then looked at the MITF mRNA level in lungs of
ssiRNA-treated mice, and observed a significant dimi-
nution after either survivin or cyclin B1 ssiRNA systemic
treatment compared to the level of MITF present in
lungs of glucose or negative control ssiRNA treated mice
(65 and 56% inhibition compared to negative control
ssiRNA, respectively, Figure 5b). These results are in
better agreement with our macroscopic and microscopic
observations, and confirm the anti-metastatic effect of a
systemic treatment of mice with ssiRNAs targeting genes
implicated in the cell cycle regulation.

Alternated treatment with doxorubicin and survivin
ssiRNA induces an additive diminution of melanoma lung
metastases

The poor prognosis attributed to melanomas largely
results from resistance to conventional chemotherapy
[3,42]. Doxorubicin, a topoisomerase II inhibitor, has been
used for years to treat diverse types of cancers, and it is
one of the most effective anticancer drugs currently
known. However, its clinical use is limited by dose-
dependent toxicity, low specificity against cancer cells and
emergence of resistance [43]. Indeed, melanoma tumors
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Figure 5 Quantification of the B16-F10 lung metastases using
dosage of MITF melanocyte specific transcription factor
expression. (a) Branched DNA analysis of RNA extracted from
wild-type or B16-F10 tumor-bearing lungs for determination of MITF
transcription factor mRNA expression level. (b) MITF RNA level was
analyzed by branched DNA in B16-F10 tumor-bearing lungs
untreated (control) or after a systemic treatment with survivin and
cyclin B1 or negative control ssiRNA delivered with in vivo-JetPEI®

(1 mg/kg, N/P=12.5). n = 6 to 9 animals per group. P values were

calculated; * p<0.05; ***p<0.001.

are known to be partially refractory to doxorubicin [3],
and high doses with subsequent toxic effects are necessary
to induce tumor regression. Since survivin was shown to
be a key factor in chemo-resistance, we hypothesized that
a treatment with survivin ssiRNA could enhance the effect
of doxorubicin on the inhibition of melanoma lung metas-
tasis growth. In order to answer this question, we first
established the optimal dose of doxorubicin, which would
induce tumor growth inhibition with the least toxicity. To
this end, three doxorubicin treatments (at day 4, 8 and 10)
at three different doses (1, 2.5 and 10 mg/kg) were
performed following B16-F10 tumor cells injection. Tumor
growth inhibition was evaluated by lung weight and toxicity
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was determined by body weight loss during the course of
the experiment. The treatment with doxorubicin at 1 mg/
kg was not toxic at all but had no effect on tumor growth
either. On the other end, the 10 mg/kg dose was very
efficient on lung tumors but induced a drastic body weight
loss, almost 15% at the end of the experiment, accompanied
by a general posture of the mice which was characteristic of
a high toxicity (Figure 6a and b). We thus retained the
intermediate dose of 2.5 mg/kg which had only a mild
effect on tumor growth inhibition but also shows minimal
toxicity for the animals. We then evaluated the effect of an
alternating treatment of doxorubicin and survivin ssiRNA
compared to a treatment with either doxorubicin or
survivin ssiRNA alone. The treatment with doxorubicin
and ssiRNA was performed every alternate day as illus-
trated on Figure 6¢. Doxorubicin (2.5 mg/kg) and survivin
ssiRNA (1 mg/kg) had an additive effect on lung metastasis
growth inhibition (Figure 6d). Whereas doxorubicin alone
at 2.5 mg/kg was poorly efficient, its combination with
survivin ssiRNA induced a significant metastasis inhibition
as determined by a lung weight decrease compared to
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controls, and this without producing any toxicity. A strong
diminution of the number and size of tumor nodules was
observed visually (data not shown). Moreover, dosage of
MITF mRNA level showed a 87% inhibition of tumor
growth (MITE level, 0.6 x 10° +/- 0.06 x 10°) following the
alternating treatment of doxorubicin and survivin ssiRNA
compared to controls (MITF level, 4.3 x 10° +/— 0.6 x 10°)
which was significantly higher than the survivin ssiRNA
conditions without doxorubicin (54% inhibition compared
to control, MITF level, 1.9 x 10° +/— 0.4 x 10°).

These results are very encouraging for the develop-
ment of survivin ssiRNA as a new strategy to circumvent
the inherent chemo-resistance of melanomas or to en-
hance the chemosensitivity of melanomas. This combi-
nation therapy using ssiRNAs and chemotherapy offers a
novel strategy for cancer treatment and is confirmed in
other cancers [44,45].

Conclusion
RNA interference is evolving as a promising strategy for
cancer treatment. However, delivery of siRNAs in vivo
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Figure 6 Additive effect of survivin ssiRNA and doxorubicin on the treatment of lung metastases. (a) Dose dependent effect of
doxorubicin (1, 2.5 or 10 mg/kg) on lung metastasis growth assessed by the overall mean lung weight relative to the body weight of the mice.

n =9 animals per group. (b) Body weight measurement from the beginning to the end of the treatment was evaluated to determine the toxicity
of doxorubicin treatments. (c) Schematic representation of the treatment procedure with doxorubicin alone, survivin ssiRNA alone, or both.

(d) Overall mean lung weight relative to the body weight of the mice after an alternated treatment of doxorubicin and survivin ssiRNA with PEI,
compared to treatment with doxorubicin or survivin ssiRNA alone. n = 9 animals per group. P values were calculated; * p<0.05; **p<0.01.
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still remains the major issue for the development of a
successful siRNA-based therapy. Our present study
highlights an emerging RNAi technology, based on the
use of sticky siRNAs delivered with PEI. These modified
siRNAs, by mimicking gene structure, enhance siRNA
delivery into cells and consequently lead to a better
inhibition of genes involved in malignancies. In order to
validate this new technology, we chose to design sticky
siRNAs against two well-known players of the tumor pro-
gression process, survivin and cyclin B1 [19,46,47]. The re-
sults presented in this work demonstrate that PEI-mediated
systemic delivery of sticky siRNAs against survivin and
cyclin Bl lead to an efficient inhibition of tumor growth.
Moreover, we showed in a previous study that no major in-
flammation is induced by linear PEI-mediated nucleic acid
delivery in vivo, as neither pro-inflammatory cytokines nor
hepatic enzymes were produced [48]. Altogether, these data
are very encouraging for the clinical development of such
therapies which could represent a promising approach for
melanoma treatment.

Additional files

Additional file 1: Table S1. PCR conditions for 5" RACE analysis.

Additional file 2: Figure S1. Linearity of MITF assay. Branched DNA
analysis of RNA extracted from wild-type or B16-F10 tumor-bearing lungs
to determine MITF mRNA expression level. Different volumes of lung
extract (0.1; 0.5; 1 and 5 pl) were analyzed, showing a good linearity of
the assay.
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ssiRNA: Sticky siRNA; PEI: Polyethyleneimine; N/P: PEI amine over nucleic acid
phosphate charge ratio.
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