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Abstract

inflammation and cancer.

Background: Toll-like receptors (TLRs) and the transcription factor nuclear factor-kB (NFkB) are important in

Methods: We examined the association between breast cancer risk and 233 tagging single nucleotide

polymorphisms within 31 candidate genes involved in TLR or NFkB pathways. This population-based study in the
Seattle area included 845 invasive breast cancer cases, diagnosed between 1997 and 1999, and 807 controls aged
65-79.

Results: Variant alleles in four genes were associated with breast cancer risk based on gene-level tests: MAP3K1,
MMP9, TANK, and TLR9. These results were similar when the risk of breast cancer was examined within ductal and
luminal subtypes. Subsequent exploratory pathway analyses using the GRASS algorithm found no associations for
genes in TLR or NFkB pathways. Using publicly available CGEMS GWAS data to validate significant findings (N = 1,145
cases, N = 1,142 controls), rs839312 near MAP3K1 was confirmed to be associated with breast cancer risk (P=0.04, OR
1.15,95% Cl 1.01-1.30). Further, two SNPs in TANK that were significant in our data, rs17705608 (P = 0.05) and rs7309
(P=0.04), had similar risk estimates in the CGEMS data (rs17705608 OR 0.83, 95% Cl| 0.72-0.96; CGEMS OR 0.90,
95% Cl 0.80-1.01 and rs7309 OR 0.83, 95% Cl 0.73-0.95; CGEMS OR 0.91, 95% CI 0.81-1.02).

Conclusions: Our findings suggest plausible associations between breast cancer risk and genes in TLR or NFkB

that examine these effects.

pathways. Given the few suggestive associations in our data and the compelling biologic rationale for an
association between genetic variation in these pathways and breast cancer risk, further studies are warranted
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Background

Tumor-promoting inflammation has been linked to can-
cer development in prior research [1-5], and has become
recognized as an “enabling characteristic” of other can-
cer hallmarks such as angiogenesis, cell proliferation and
survival, and metastasis [6,7]. The presence of inflamma-
tory messengers in the tumor microenvironment is an
important feature of cancer-related inflammation. Many
such messengers, including cytokines and chemokines,
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are produced in response to signaling by transcription
factors, such as nuclear factor-kB (NF«B) [1,3,4].

As modulators between inflammation and cancer,
NEkB pathway genes play a central role in innate im-
munity and acute inflammatory response [8,9]. In nor-
mal cells, NF«B is activated by various stimuli, such as
pathogens and pro-inflammatory cytokines, and controls
the expression of multiple target genes, such as TNF,
IL6, and MMP9 [10-13]. In tumor cells, genetic muta-
tions can compromise NFkB activation, and deregulated
expression of genes controlled by NFkB can affect cell
proliferation, apoptosis, and cell migration [8,14,15].
Deregulated activation of NFkB has been seen in many
common types of cancer, and previous findings suggest
that NFkB may be important in breast cancer [16-18].
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While NF«B-related pathway genes are critical in in-
nate and adaptive immune responses, genes in toll-like
receptor (TLR) signaling pathways are also important as
they activate NFkB in addition to other signaling path-
ways [19]. In normal epithelial cells and cancer cells,
TLRs regulate cell proliferation and survival through
triggering MAPK and NF«B as well as by mediating the
release of cytokines and chemokines [20]. In vitro stud-
ies have observed that TLRs are highly expressed in
breast cancer cell lines, suggesting that reduced TLR ex-
pression could potentially inhibit cell proliferation and
survival in breast cancer [21-23].

Further, there is evidence of variants in TLR or NFkB-
related pathways affecting gene function. For example,
an insertion/deletion (94ins/delATTG) in the promoter
of NFKBI has been shown to affect transcription [24]. In
mice studies, polymorphisms identified in the promoter
region, first intron, and 3" untranslated region (UTR) of
TNF have been shown to affect production of the cyto-
kine TNF [25]. Likewise, two prior studies found the allele
-308A in TNF was associated with elevated TNF expres-
sion in vitro [25,26]. Additionally, two missense polymor-
phisms in7LR4, rs4986790 (D299G) and rs4986791
(T399I), have been shown to affect the extracellular do-
main of the TLR4 receptor [27]. Prior studies such as
these suggest that polymorphisms in TLR or NFkB-
related pathways could affect gene function, and therefore
may play a role in cancer susceptibility.

This study examined the association between tagging
single nucleotide polymorphisms (tagSNPs) within can-
didate genes in either TLR or NF«B signaling pathways
and breast cancer risk in post-menopausal women. We
also conducted an exploratory analysis of multiple genes
in TLR or NFkB pathways. We focused this study on
older women as circulating levels of pro-inflammatory
factors increase with age and breast cancer incidence is
highest in this age group.

Methods

Study population

Participant recruitment has been described previously
[28]. Briefly, cases were women aged 65-79 when diag-
nosed with invasive breast cancer between April 1997
and May 1999 in the three-county Seattle metropolitan
area. Cases were ascertained through the Cancer Surveil-
lance System, a population-based cancer registry in-
cluded in the Surveillance, Epidemiology and End results
(SEER) program [29]. Controls were identified from the
general population using Health Care Financing Admin-
istration records and were assigned reference dates to
match the distribution of diagnosis dates for cases. Con-
trols were frequency matched to cases in 5-year age
groups. Of the 1,210 and 1,365 eligible cases and con-
trols, 975 (81%) and 1,007 (74%) completed in-person
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interviews. DNA was extracted from blood that was col-
lected from 891 cases and 878 controls at the time of
interview. Among these participants, adequate DNA was
available for 887 cases and 872 controls. Study protocol
was approved by the Fred Hutchinson Cancer Research
Center institutional review board and written informed
consent was obtained from all study participants.

Information that detailed histology, estrogen receptor
(ER) status, and progesterone receptor (PR) status was
obtained from the Cancer Surveillance System. Tumors
were categorized as luminal (ER or PR positive) or non-
luminal (ER and PR negative) subtype. Histology was
categorized by ICDO codes as ductal (8500), lobular
(8520), ductal/lobular (8522), or other (8000, 8481, 8490,
8501, 8512, 8521, 8530, 8980).

Single nucleotide polymorphism (SNP) selection

As part of a study of breast cancer and inflammation,
we examined 1,536 SNPs in pro- or anti-inflammatory
genes. For this study, we selected a total of 233 SNPs
from 31 genes in TLR or NF«B signaling pathways. The
following genes were included: AZI2, IFIH1, IKBKE,
IRAK4, IRF3, MAP3KI1, MAP3K7, MMP9, NFKBI,
NFKB2, RELA, RELB, TANK, TBK1, TICAMI, TICAM?2,
TIRAP, TLR3, TLR4, TLR7, TLR9, TNF, TNFRSFIA,
TNFRSF1B, TOLLIP, TRAF3, TRAF6, UBE2C, UBE3A,
VISA, and ZBP1. Using the software SNAGGER [30] on
publicly available HapMap and SeattleSNPs data, tagSNPs
were selected among Caucasians based on an r” value of
at least 0.80 and a minor allele frequency (MAF) of 0.05.
The tagSNPs were chosen from regions representing the
candidate genes plus 4,000 base pairs both 3" and 5" of
the gene. SNP selection was prioritized based on func-
tional importance, giving SNPs in coding regions priority
over those in other regions. To ensure that at least one
SNP from each bin would be successfully genotyped, more
than one tagSNP was chosen where a bin included more
than 10 SNPs. Additionally, coding SNPs within candidate
genes with a MAF of at least 0.02 and also SNPs found to
be associated with cancer risk in previous studies were in-
cluded in the panel. For example, rs889312 in the region
surrounding MAP3KI1 was selected for analysis based on
its significance in prior genome-wide association studies

(GWAS) [31,32].

Genotyping assay

Genotyping was performed on 887 cases and 872 con-
trols using the Illumina GoldenGate multiplex platform
(N SNPs=1,536). Additional assays were run on the
KASPAR platform at KBioscience for SNPs not covered
on the Illumina platform or that appeared to be failing
on Illumina after an interim review (N SNPs = 102). For
the current analysis, all 233 SNPs were genotyped on
[llumina and four were additionally typed on KASPAR.
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Of these four SNPs, three failed on Illumina and passed
on KASPAR (rs7251, rs10025405, and rs1927907) and one
was successfully typed on both platforms (rs5746026) that
had a cross-platform concordance of 99.7%. We used re-
sults from Illumina to analyze rs5746026 as the call rate
was 100%. Replicate aliquots were included for 143 (8%)
of the 1,759 participants. Of these replicate-pairs, nine
had discordant genotypes of at least 1% among passing
SNPs. Monomorphic SNPs or those with call rates less
than 90% were excluded from analysis. All SNPs included
in this study had Hardy-Weinberg Equilibrium (HWE)
p-values greater than 0.001 among Caucasian controls.

Statistical methods

To account for potential confounding due to population
stratification, we used principal components analysis to
restrict our sample to 1,652 white women [33]. Briefly,
principal components were computed from 872 controls
after standardizing the 1,349 SNPs that passed our qual-
ity control checks according to the method outlined by
Price et al. [33] The first principal component was suffi-
cient to distinguish white from non-white women. Prin-
cipal components were computed for the entire sample
of 1,759 cases and controls after standardizing the 1,349
SNPs to the control population. We determined clusters
of white and non-white subjects using the same restric-
tion criteria from the control population. The final study
sample consisted of 1,652 individuals that clustered with
white women and self-reported their race as white or
Hispanic.

Using these 845 cases and 807 controls, the relative
risk of breast cancer associated with each SNP was ap-
proximated using logistic regression to compute odds ra-
tios (OR) and 95% confidence intervals (CI). All models
were adjusted for continuous linear age at reference and
were log-additive. However, dominant models were fit
when genotype cell counts were less than 5 for either
cases or controls. We adjusted for multiple comparisons
within a gene by using a minP permutation test with
10,000 replications to assess the significance of each
gene [34]. For genes found to be significant (P <0.05)
based on the minP permutation test, we used logistic re-
gression to examine the association between SNPs and
the risk of ductal histology (N =565) and luminal breast
cancer (N =744) subtype compared to all controls.
These models were adjusted for continuous linear age at
reference and were log-additive.

The gene set ridge regression in association studies
(GRASS) algorithm was used to conduct exploratory
pathway analyses for genes in TLR or NF«B pathways
[35]. We examined the association between breast can-
cer risk and two pathways for genes in our dataset by
selecting genes from the Kyoto Encyclopedia of Genes
and Genomes (KEGG) “Toll-like receptor signaling pathway”
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(http://www.genome.jp/kegg/pathway/hsa/hsa04620.html).
The first pathway included TLR3, TLR4, TLR7, TLRS,
TIRAB, TICAMI, TICAM?2, TOLLIP, IRAK4, TRAFS3,
TRAF6, MAP3K?7, IRF3, and IKBKE. The second path-
way included these genes in addition to NFKBI,
NFKB2, RELA, and RELB. Prior to running any models
with GRASS, we imputed any missing SNP values. All
imputation was performed using BEAGLE 3.3 with a
reference panel of phased genotype data from 283
European individuals sequenced by the 1000 Genomes
Project [36]. Pathways were determined as significant
based on a permutation test with 10,000 replications.

Finally, we used publicly available data from the Can-
cer Genetics Markers of Susceptibility (CGEMS) Breast
Cancer Genome-Wide Association Scan to validate our
significant findings [37]. A Holm multiple test procedure
was used to compute permutation corrected p-values
with 10,000 replications for individual SNPs within sig-
nificant genes in our data [38]. For SNPs found to be
significant (Holm P <0.05), the risk of breast cancer as-
sociated with each SNP was computed using logistic re-
gression in the CGEMS data, after adjusting for age in
5-year groups. BEAGLE was used to impute seven SNPs
that were not already present within the CGEMS data
using phased genotype data from the 1000 Genomes
Project as a reference panel. Six SNPs with successful
imputation (r* > 0.90) were used for analysis.

All analyses were performed using Stata 11 or R
version 2.10.1.

Results

Cases and controls did not vary substantially in demo-
graphic characteristics (Table 1), but there were some
key differences for other factors. More cases than con-
trols had a high body mass index (63% vs. 57%, respect-
ively), and family history of breast cancer was more
frequent in cases than controls (60% vs. 46%). Specific-
ally, 39% of cases and 29% of controls had a first degree
relative with breast cancer. Although a similar fraction
of cases and controls had ever had a full-term birth,
fewer cases than controls had 3 or more full-term births.
Among cases, the majority of tumors were of ductal hist-
ology (67%) and luminal subtype (91%).

We examined variation in the risk of breast cancer as-
sociated with 233 SNPs representing 31 genes in TLR or
NF«B pathways. After correcting for multiple compari-
sons using the minP permutation test, variation in
MAP3KI, MMPY9, TANK, and TLR9 was found to be
significant at the gene level (Table 2). Results from
non-significant genes are presented in Additional file 1:
Table S1. The single SNP we assayed in the region sur-
rounding MAP3KI, rs889312, was associated with breast
cancer risk (OR 1.24, 95% CI 1.06—1.44). In MMP9 we ex-
amined two coding SNPs and one intronic SNP. There
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Table 1 Selected characteristics of breast cancer cases
and controls

Controls (n=807) Cases (n =845)

n % n %
Age at reference
65-69 253 314 264 31.2
70-74 301 373 329 389
75-79 253 314 252 29.8
Education
<HS 108 134 103 122
HS grad 325 403 332 393
Some college 232 287 275 325
College grad+ 142 176 135 16.0
Body mass index at reference
<185 14 1.8 14 1.7
185-24.9 322 412 293 356
25-29.9 244 312 290 352
30+ 202 258 226 275

Number of full-term births

Nulliparous 73 9.0 76 9.0
1 55 6.8 79 93
2 161 20.0 222 26.3
3 221 274 216 256
4+ 297 36.8 252 29.8

Age at menopause

<45 233 289 211 25.1
45-49 211 26.1 239 284
50-54 241 299 260 309
55+ 122 15.1 131 156

Family history of breast cancer

None 236 536 190 40.0
1st degree 129 293 184 387
2nd degree 75 17.0 101 213
Histology

Ductal 565 66.9
Lobular 105 124
Ductal/lobular 70 83
Other 105 124
ER/PR status

ER- PR- 73 89
ER+ PR- 80 9.8
ER- PR+ 7 09
ER+ PR+ 657 80.4

was evidence that one of the coding SNPs, rs17576
(Q279R), was associated with an increased risk of breast
cancer (OR 1.21, 95% CI 1.04—1.40). Among controls, this
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SNP was not found to be in high LD with the other two
SNPs we examined in MMP9 (all pairwise r* < 0.50). Of
the six SNPs we examined in TANK, two were signifi-
cantly associated with a 20% decreased risk of breast
cancer: rs17705608 located in the flanking 5" UTR and
rs7309 located in the 3" UTR. These SNPs were in
moderate LD among controls (r* = 0.67) and had iden-
tical relative risk estimates (rs17705608 OR 0.83, 95%
CI 0.72-0.96; rs7309 OR 0.83, 95% CI 0.73-0.95). The
four other intronic SNPs did not show evidence of af-
fecting breast cancer risk and were not in LD with any
other SNPs in this region (all pairwise r” < 0.50). Of the
two SNPs we examined in TLRY, only the synonymous
coding SNP rs352140 (P545P) was associated with
breast cancer risk (OR 0.85, 95% CI 0.74—0.97).

The results for these four genes were almost identical
when analyses were confined to cases with ductal and
luminal subtypes respectively (Table 3). For most SNPs,
the magnitude of risk associated with each subtype was
the same as with the overall risk of breast cancer. Fur-
ther, only TLR9 was not significant at the gene level for
either ductal or luminal subtypes (minP P=0.14 and
0.09, respectively).

As an exploratory pathway analysis, we used the
GRASS algorithm to examine genes in the KEGG “Toll-
like receptor signaling pathway” (Figure 1). The first
pathway we examined, which included TLR3, TLR4,
TLR7, TLRY, TIRAB TICAM1, TICAM?2, TOLLIP, IRAK4,
TRAF3, TRAF6, MAP3K7, IRF3, and IKBKE, was not
significant after performing a permutation test (P = 0.24).
Likewise, after permutation testing the second pathway
we examined, which included these same genes in
addition to NFKB1, NFKB2, RELA, and RELB, was not
significant (P = 0.28).

We attempted to validate significant findings by
assessing the risk of breast cancer associated with SNPs
from our Seattle study using data from the CGEMS
GWAS repository. Most SNPs found to be significant in
our data were not found to be significant in the CGEMS
data (Table 4). Only rs889312 from the region near
MAP3K1 was replicated, and without correction for
multiple comparisons (P =0.04 in CGEMS), with the
suggestion of a slight increased risk of breast cancer (OR
1.15, 95% CI 1.01-1.30). Although the associations with
breast cancer were of similar magnitude and direction
for most SNPs when comparing the two datasets, the
risk of breast cancer associated with rs352140 in TLR9
was in the opposite direction (OR 1.06, 95% CI 0.94—
1.19) from that found in our data (OR 0.85, 95% CI
0.74-0.97).

Discussion
We found that the risk of breast cancer was associated
with genetic variation in four genes in either TLR or
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Table 2 Risk of breast cancer associated with SNPs in TLR or NFkB pathway genes
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Function Maj/Min Controls Cases OR 95% CI p SNP Gene
Allele (n=807) (n=2845) perm p wide
o 1 2 o 1 2 P
MAP3K1 (chr 5: 56146657 - 0.006
56227736)
rs889312 Intergenic A/C 434 318 49 417 337 8 124 106 144 0006 0.006
MMP9 (chr 20: 44070954 - 0.03
44078607)
1517576 Coding: Q279R A/G 366 357 78 338 393 106 121 104 140 001 0.03
152274756 Coding: R668Q, G/A 611 178 12619 204 17 114 094 140 0.19 -
R668P
rs3918262 Intron A/G 518 246 31 507 282 43 118 100 140 005 0.1
TANK (chr 2: 161701712 - 0.04
161800928)
rs17705608 Flanking 5" UTR A/G 263 404 134 321 406 113 083 072 09 001 0.05
rs7568498 Intron A/C 558 208 35 569 244 27 103 08 122 078 -
rs1921310 Intron A/G 449 303 49 504 300 36 085 072 100 005 0.17
rs1267074 Intron T/A 397 310 94 382 373 84 105 091 122 048 -
1s1267034 Intron A/G 623 159 19 631 191 18 111 091 135 031 -
rs7309 3" UTR A/G 196 392 212 240 421 179 083 073 095 0.008 0.04
TLR9 (chr 3: 52230138 - 0.03
52235219)
rs352140 Coding: P545P A/G 219 391 191 267 406 167 085 074 097 002 003
rs187084 Flanking 5" UTR A/G 302 362 137 290 381 169 113 098 129 008 0.08
@All models are log-additive and adjusted for continuous linear age at reference.
PPermutation p-values that are not significant according to the Holm multiple test procedure [38] are not presented.
Table 3 Risk of ductal and luminal breast cancer associated with SNPs in TLR or NFKB pathway genes
Maj/Min Controls Ductal OR 95% Cl Gene Luminal OR 95% Cl Gene
Allele (n=807) (n=565) wide (n=744) wide
0 1 2 0 1 2 P 0 1 2 P
MAP3K1 0.01 0.003
rs889312 A/C 434 318 49 281 220 60 124 104 146 361 301 77 127 108 148
MMP9 0.02 0.02
rs17576 A/G 366 357 78 216 276 67 124 105 146 296 340 100 123 106 143
152274756 G/A 611 178 12 424 129 8 103 082 129 541 183 15 117 095 144
rs3918262 A/G 518 246 31 327 195 35 129 108 156 444 248 40 120 101 143
TANK 0.002 0.004
rs17705608 A/G 263 404 134 230 256 75 078 067 092 284 358 97 082 071 095
rs7568498 A/C 558 208 35 385 161 15 098 080 1.9 495 223 21 104 087 125
rs1921310 A/G 449 303 49 347 191 23 080 067 096 446 261 32 084 071 100
1s1267074 T/A 397 310 94 251 253 56 107 091 126 326 336 76 109 094 127
rs1267034 A/G 623 159 19 412 137 12119 095 148 546 176 17 117 096 144
rs7309 A/G 19 392 212 179 264 118 078 067 091 216 375 148 080 069 092
TLR9 0.14 0.09
rs352140 A/G 219 391 191 180 268 113 085 073 099 234 359 146 085 074 098
rs187084 A/G 302 362 137 190 254 117 116 100 134 254 337 148 113 098 130

2All models are log-additive and adjusted for continuous linear age at reference.
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Figure 1 Toll-like Receptor (TLR) Signaling Pathways. Classical TLR signaling pathways that result in NFkB activation are either MyD88-
dependent (A) or MyD88-independent (B). In MyD88-dependent pathways TLR signaling occurs through the IRAK4/ IRAKT complex, while in

activation. MyD88-independent signaling pathways can also result in the activation of IRF3 or IRF7. Genes assayed by this study are bolded and
italicized. This figure was adapted from the KEGG “Toll-like receptor signaling pathway” (http://www.genome.jp/kegg/pathway/hsa/hsa04620.
html).

MyD88-independent pathways TLRs signal through TICAM1. TRAF6 then signals to the IKK complex through MAP3K7, which finally leads to NFkB

Table 4 Risk of breast cancer associated with SNPs in the CGEMS GWAS data

Maj/Min Controls (n=1142) Cases (n=1145) OR? 95% Cl P
Allele 0 1 2 0 1 2

MAP3K1

rs889312 A/C 607 447 88 552 499 94 1.15 1.01 1.30 0.04
MMP9

1517576 A/G 464 542 136 452 541 152 1.05 0.93 119 0.39
TANK

rs17705608 A/G 412 535 195 442 538 165 0.90 0.80 1.01 0.07

rs7309 G/A 303 541 286 312 570 241 091 0.81 1.02 0.10
TLR9

rs352140 T/C 356 560 226 337 572 236 1.06 0.94 1.19 036

2All models are log-additive and adjusted for age in 5 year groups.
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NF«B pathways: MAP3K1, MMP9, TANK, and TLR9.
Results were unchanged within cases with ductal or lu-
minal subtypes. However, after replicating our results
using the CGEMS GWAS data, only rs889312 from the
region near MAP3KI was associated with breast cancer
risk.

MAP3K1 is a key player in TLR signaling pathways
and produces downstream signaling for the NF«B path-
way as well as the ERK and JNK kinase pathways
[39,40]. Our finding for rs889312 is consistent with pre-
vious results, as variants near MAP3K1 have been found
to be significant in three prior GWAS studies [31,32,41].
Easton et al. found rs889312 to be significantly associ-
ated with breast cancer risk in 4,398 breast cancer cases
and 4,316 controls [31]. They confirmed this finding in
21,860 cases and 22,578 controls using data from the
Breast Cancer Association Consortium (BCAC) GWAS,
which combined 22 case-control studies. Further, the
magnitude of risk in the Easton et al. study was compar-
able to that found in our study population for rs889312
(OR 1.13, 95% CI 1.10-1.16). In a more recent GWAS,
Turnbull et al. also found that rs889312 was associated
with an increased risk of breast cancer among 12,576
cases and 12,223 controls (OR 1.22, 95% CI 1.14-1.30)
[32]. In the CGEMS GWAS, they did not directly assess
rs889312 but they found that rs16886165 significantly
affected the risk of breast cancer after combining 5,440
cases and 5,283 controls [41]. After we imputed
rs889312 in the CGEMS data, we found it was in moder-
ate LD with rs16886165 (r?>=0.68). A candidate gene
study, which used 1,267 Dutch breast cancer cases and
20,973 controls from the BCAC GWAS, did not find
rs889312 to significantly affect breast cancer risk (OR
1.03, P=0.72), though they did find that this SNP was
associated with lymph-node status (P =0.04) [42]. How-
ever, as the population used in this Dutch study was a
subset of the BCAC GWAS, it is important to note that
their results correlate with those from the BCAC
GWAS.

We also investigated variation in MMP9, as MMPs in-
fluence cancer progression and contribute to tumor
angiogenesis, growth, and metastasis by degrading the
extracellular matrix and activating growth factors [43].
MMP9 expression is regulated by NF«B [44], and in one
study was shown to be correlated with NFkB activation
in patients with squamous cell carcinoma of the uterine
cervix [45]. Although no GWAS studies have found
SNPs in MMP9 to affect breast cancer risk, many prior
studies have published results that support an associ-
ation between MMP9 and breast cancer risk. Two previ-
ous analyses of expression found MAMP9 plasma
concentrations were greater in breast cancer cases com-
pared to controls [46,47]. In a Polish study of 270 breast
cancer cases and 300 controls, Przybylowska et al. found
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increased levels of MMP9 in tumor samples compared
to normal breast tissue and an increased risk of breast
cancer associated with the T allele for rs3918242 in
MMP9 (OR 2.6, 95% CI 1.3-4.9) [48]. In a candidate
gene study of 959 cases and 952 controls from Sweden,
Lei et al. found a non-significant increased risk of breast
cancer associated with TT homozygotes for rs3918242
(OR 1.88, 95% CI 0.97-3.63) [49]. However, findings
from two prior meta-analyses of case-control studies
(one which used 15,328 cases and 15,253 controls)
showed no association between rs3918242 and breast
cancer risk [50,51]. Our study is the only one to date to
find an association between the coding SNP rs17576 in
MMP9 and breast cancer risk.

Another NF«B gene we investigated was TANK (also
known as TRAF2), which is a critical upstream compo-
nent in the NF«B activation pathway and therefore could
be a factor that relates to inflammation as well as cancer
development and progression [12,13,52,53]. Although
two SNPs in TANK (rs17705608 and rs7309) were sig-
nificantly associated with breast cancer risk in our study
sample, interestingly no prior GWAS or candidate gene
studies have reported on genetic variants in TANK af-
fecting the risk of breast cancer. In the CGEMS GWAS
data, neither of these SNPs was strongly associated with
breast cancer risk (rs17705608 OR 0.90, 95% CI 0.80—
1.01; rs7309 OR 0.91, 95% CI 0.81-1.02).

As TLR pathways are central in tissue repair and re-
generation [19,54,55], we investigated several TLRs in-
cluding TLR9. No GWAS studies to date have found
that breast cancer risk is influenced by variants in TLR9.
We found that rs352140 in TLR9 was associated with
breast cancer risk (OR 0.85, 95% CI 0.74-0.97). Al-
though this SNP is synonymous and does not alter the
protein sequence, it could affect the protein via pertur-
bations in mRNA splicing and stability, altered structure
of mRNA, and (though less well-established) effects on
protein folding [56]. Our result for rs352140 was in con-
trast to a small Croatian study that found no association
in 130 breast cancer cases and 101 controls (and which
may have been underpowered to detect this association)
[57]. However, expression studies have found breast can-
cer patients to have high levels of TLR9 [21,58,59].
Berger et al found that women with breast cancer had
higher circulating levels of TLR9 compared to controls,
and that TLR9 mRNA expression was correlated with
NF«B activity in breast cancer patients [58]. Therefore,
future studies should continue to assess the relationship
between polymorphisms in TLR9 and breast cancer risk.

In exploratory pathway analyses we did not observe an
association between TLR-NFkB related genes and breast
cancer risk. Although the results from these exploratory
pathway analyses do not suggest that breast cancer risk
is affected by combined variation in the genes that we
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examined from the KEGG “Toll-like receptor signaling
pathway”, this study may have been limited to detect
such an association given our sample size and the ab-
sence of some key genes within this pathway (such as
MyD88, TLR1, and TLR?2). Given the biologic plausibility
that genes within this pathway could affect cancer devel-
opment and progression, it would be of interest for fur-
ther studies to include pathway analyses, particularly
those that have larger sample sizes, improved coverage
of SNP variation, and other sources of variation such as
epigenetic influences.

Although this study suggested variation in four genes,
MAP3KI1, MMP9, TANK, and TLRY, may affect the risk of
breast cancer, previous studies have observed associations
for other genes in TLR or NFxB pathways. For example,
prior studies have identified polymorphisms in 7LR4
(rs4986790) [60] and TNF (rs361525 and rs1800629)
[61-63] that affect breast cancer risk. A prior study, that
included a subset of the participants in this study, found
breast cancer risk was associated with a UTR 5" flanking
SNP (rs2009658) in lymphotoxin alpha (LTA) (OR 1.2,
95% CI 1.1-1.4) as well as a nonsynonomous coding SNP
(rs767455) in the TNF receptor TNFRSF1A (OR 1.2, 95%
CI1.1-14) [64].

There were some limitations to this study that should
be considered in the interpretation of our results. Our
sample size may not have been sufficient to capture the
true level of association between genetic variants with
low frequency and breast cancer risk. Also, the assays we
used may have misclassified or failed to detect variation
in the genes we analyzed. However, misclassification is
not likely a problem as the repeat samples were highly
concordant. There could also be missed variation due to
incomplete coverage of genes or due to our limited
number of SNPs. It is also possible that we did not
characterize important variation in these genes, since
particular variants, such as deletions, variants in repeat
regions, and copy number variants, were not detectable
on the platforms we used for genotyping. Another limi-
tation is that we did not genotype variants for every gene
in TLR or NF«kB related pathways. Therefore, potentially
important associations between key genes in these path-
ways may have been missed. In addition, although we
attempted to control for potential population stratification
by restricting our sample to white women using principal
components analysis, it is possible our analyses were sub-
ject to uncontrolled confounding from admixture.

There were a number of strengths to this study. For
one, our well-characterized study population is represen-
tative of post-menopausal women at risk of breast cancer
in the Seattle metropolitan area. Also the population-
based controls are representative of those at risk of dis-
ease. Further, our study sample is consistent with other
populations that have been used to analyze breast cancer
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risk, raising the likelihood that associations from this
study are generalizable to similar populations. Another
strength of this study was our use of a tagSNP approach
that maximized genetic coverage. Finally, by using data
from the CGEMS GWAS to validate our findings we were
able to draw stronger conclusions regarding the associ-
ation between genetic variants in TLR or NFkB pathways
and breast cancer risk.

Conclusions

Overall, the results of this study do not suggest a strong
association between breast cancer risk and the SNPs in
the candidate genes we analyzed in TLR or NF«B path-
ways. Despite our findings, there is a compelling biologic
rationale for an association between genetic variation in
these pathways and breast cancer risk. Given the few
suggestive associations in our data and results from prior
studies that implicate plausible associations between
breast cancer risk and genes in TLR or NF«B pathways,
further studies are warranted that examine these effects.
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