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Abstract

Background: Humanized KS-interleukin-2 (huKS-IL2), an immunocytokine with specificity for epithelial cell adhesion
molecule (EpCAM), has demonstrated favorable tolerability and immunologic activity as a single agent.

Methods: Phase 1b study in patients with EpCAM-positive advanced solid tumors to determine the maximum
tolerated dose (MTD) and safety profile of huKS-IL2 in combination with low-dose cyclophosphamide. Treatment
consisted of cyclophosphamide (300 mg/m2 on day 1), and escalating doses of huKS-IL2 (0.5–4.0 mg/m2 IV
continuous infusion over 4 hours) on days 2, 3, and 4 of each 21-day cycle. Safety, pharmacokinetic profile,
immunogenicity, anti-tumor and biologic activity were evaluated.

Results: Twenty-seven patients were treated for up to 6 cycles; 26 were evaluable for response. The MTD of
huKS-IL2 in combination with 300 mg/m2 cyclophosphamide was 3.0 mg/m2. At higher doses, myelosuppression
was dose-limiting. Transient lymphopenia was the most common grade 3/4 adverse event (AE). Other significant
AEs included hypotension, hypophosphatemia, and increase in serum creatinine. All patients recovered from these
AEs. The huKS-IL2 exposure was dose-dependent, but not dose-proportional, accumulation was negligible, and
elimination half-life and systemic clearance were independent of dose and time. Most patients had a transient
immune response to huKS-IL2. Immunologic activity was observed at all doses. Ten patients (38%) had stable
disease as best response, lasting for ≥ 4 cycles in 3 patients.

Conclusion: The combination of huKS-IL2 with low-dose cyclophosphamide was well tolerated. Although no
objective responses were observed, the combination showed evidence of immunologic activity and 3 patients
showed stable disease for ≥ 4 cycles.
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Background
Cell adhesion molecules, such as epithelial cell adhesion
molecule (EpCAM; CD326), play a pivotal role in the
pathogenesis of cancer [1]. EpCAM is expressed on the
surface of epithelial cells where it is involved in the
onset, development, maintenance, repair, and homeo-
static functions of epithelia. As a homotypic cell adhe-
sion molecule, EpCAM is closely integrated within the
WNT and cadherin–catenin pathways. It has recently
been shown to modulate the expression of proto-onco-
genes, such as c-myc [2].
Initially described as a tumor-associated antigen, EpCAM

is highly expressed in gastrointestinal, lung, prostate, breast,
ovarian, and other cancers of epithelial origin [3-7]. Its
overexpression in these tumors may be considered as a
factor that disrupts the regulatory balance and facilitates
aberrant cellular proliferation, differentiation, migration,
and intracellular signaling processes that underlie tumor
growth and metastasis [1]. Interestingly, the prognostic
impact of EpCAM expression varies with tumor type [8,9].
The pleiotropic activity of EpCAM, together with high
surface expression in some tumor types, makes it a natural
candidate for targeting with therapeutic antibodies or anti-
body–drug conjugates.
A variety of approaches have been investigated to thera-

peutically target EpCAM-expressing tumors, including
anti-EpCAM scFv–Pseudomonas exotoxin A fusion con-
struct evaluation in patients with squamous cell carcin-
oma of the head and neck [10], vaccination with EpCAM
protein to induce EpCAM-specific T-cell responses in
patients with colorectal carcinoma [11], and a number of
monoclonal, bi-specific and tri-specific anti-EpCAM anti-
body therapies [12-16].
Humanized KS-interleukin-2 (huKS-IL2) is an immuno-

cytokine conjugate consisting of a humanized antibody
specific for EpCAM linked at its Fc end to 2 molecules of
interleukin-2 (IL2). The EpCAM antibody component of
huKS-IL2 targets IL2 to EpCAM-positive tumors for the
generation of cytotoxic T-cells and activation of the innate
immune system, i.e. natural killer (NK) cells, in the tumor
microenvironment. In preclinical studies, huKS-IL2 de-
monstrated significant anti-tumor effects when adminis-
tered intravenously or directly into EpCAM-positive
tumors [17]. Preclinical data provide a rationale for evalu-
ating huKS-IL2 in combination with other therapies, such
as radiofrequency ablation or low-dose cyclophosphamide,
with both therapies augmenting the anti-tumor response
induced by huKS-IL2 [17,18]. The observed synergy with
low-dose cyclophosphamide is believed to be due to
downregulation of regulatory T-cells, thus enhancing with
the immunomodulatory effect of IL2.
When administered as a single agent, huKS-IL2 was

well tolerated in a phase 1 study of patients with advanced
prostate cancer, which defined a maximum tolerated dose
(MTD) of huKS-IL2 of 6.4 mg/m2 [19]. The present phase
1b study aimed to assess the safety and to determine the
MTD of huKS-IL2 administered following a single
low-dose of cyclophosphamide in patients with EpCAM-
expressing advanced solid cancers. Pharmacokinetic (PK)
profile, immunogenicity, anti-tumor and biologic activity
were also evaluated.

Methods
Study objectives
The primary objectives of this multicenter, open-label,
phase 1 study were to assess the safety and tolerability,
and determine the MTD of huKS-IL2 administered
following a single low dose of cyclophosphamide in
patients with EpCAM-positive advanced cancers. Sec-
ondary objectives were to characterize the PK profile of
huKS-IL2 after cyclophosphamide, to study its effects on
immunogenicity and immunologic function, and to ob-
serve survival and anti-tumor activity. The study proto-
col was approved by the local Institutional Review Board
(IRB)/Independent Ethics Committee at each participat-
ing center and the regulatory authorities, as appropriate
(University of Wisconsin Health Sciences IRB, Commit-
tee for Protection of Human Subjects of Dartmouth Col-
lege, the Fox Chase Cancer Center IRB, and City of
Hope IRB). The study was conducted in accordance with
Good Clinical Practice and the ethical principles of the
Declaration of Helsinki. All patients gave their written
informed consent prior to study entry.

Patient selection
Patients (age ≥ 18 years) with advanced or recurrent solid
tumors were eligible after failing standard therapy. Tumor
tissue had to demonstrate EpCAM expression by immu-
nohistochemistry on ≥ 25% of the tumor cells, as centrally
assessed. Other eligibility criteria included: Karnofsky
Performance Status score ≥ 70%, adequate baseline organ
function, as defined by aspartate transaminase, alanine
transaminase ≤ 2.5 × the upper limit of normal (ULN),
bilirubin ≤ 1.5 × ULN, no history of significant renal
impairment or chronic kidney disease, normal creatinine,
or creatinine clearance ≥ 60 mL/min, adequate pulmonary
function (≥ 70% of predicted values for forced vital
capacity and forced expiratory volume in 1 second, O2

saturation ≥ 90%) unless due to malignant disease to be
treated, no significant impairment of hematopoietic and
cardiac functions, and blood sodium, potassium, and
phosphorus within normal limits. The major study exclu-
sion criteria were known brain metastases, immediate
need for palliative radiotherapy or systemic corticosteroid
therapy, immunosuppression, autoimmune disease (except
autoimmune thyroiditis and vitiligo). Pregnancy or lacta-
tion, known serious uncontrolled medical condition,
known hypersensitivity to study drugs or excipients, or
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prior exposure to huKS-IL2, were also exclusion criteria.
Patients had to be able to safely discontinue concomitant
antihypertensive therapy for at least 48 hours, and to
tolerate concomitant treatment with indomethacin or
other nonsteroidal anti-inflammatory drugs.

Treatment
Eligible patients received up to 6 cycles of cyclophospha-
mide (300 mg/m2 intravenous [IV] on day 1), followed
by 4-hour IV infusions of huKS-IL2 (EMD 273066,
EMD Pharmaceuticals, Inc., Durham, NC) on days 2, 3,
and 4 at escalating doses (0.5, 1.0, 2.0, 3.0, and 4.0 mg/m2),
with cycles repeated every 21 days. Study medication
huKS-IL2 was supplied as frozen concentrated solution
(1 mg/mL) in single-dose glass vials with sufficient
overage to remove a 4-mL dose, which was admixed
with 25 mL of 0.9% sodium chloride prior to infusion.
Patients were sequentially assigned to a specific dose
level, no intra-patient dose escalation was allowed.
MTD was defined as the dose level, comprising at
least 6 patients, immediately below the dose that eli-
cited a dose-limiting toxicity (DLT) in at least 2 out of
3 or 6 patients enrolled at a given dose level. A DLT
event was defined as a grade 3 or 4 adverse drug reac-
tion according to the National Cancer Institute Common
Terminology Criteria for Adverse Events version 3.0 (NCI
CTCAE v 3.0) that occurred during the first cycle. Escal-
ation to the next dose cohort was allowed if a DLT oc-
curred in < 1 of 3 or < 2 of 6 patients treated.

Outcome measures
Safety and tolerability
Adverse events (AEs) and laboratory values were moni-
tored continuously throughout the study and were
graded by severity and relationship to study drug. Blood
samples for hematology, chemistry, and assessment of
immunologic function were collected before or after
huKS-IL2 dosing on cycle days 1–5, 9, and 16 for cycles
1 and 2; on cycle days 1, 9, and 16 for cycles 3–6; and
within 30 days of treatment discontinuation.

Pharmacokinetics of huKS-IL2
Blood samples for huKS-IL2 PK analysis were collected
before and after infusion on days 2–5 of each cycle.
Serum huKS-IL2 concentrations were measured using a
validated enzyme-linked immunosorbent assay (ELISA)
method at the bio-analytical laboratory of BioProof AG,
Munich, Germany. This assay had a lower limit of quan-
tification of 25 ng/mL in neat serum. It showed an inter-
batch precision at the 3 quality control levels between
1.0% and 4.2% and inter-batch accuracy between 90.6%
and 93.7%. Serum concentrations were then merged
with final clinical data (administration, randomization,
demographics, and sampling information) and subjected
to noncompartmental PK analysis for PK parameter esti-
mation using the validated software tool KineticaW, ver-
sion 4.4.1 at Merck Serono, Department of Exploratory
Medicine, Darmstadt, Germany. Key PK parameters
determined included area under the concentration–time
curve (AUC) from time zero to 24 hours after the start
of infusion (AUC0–24h), maximum or peak serum con-
centration (Cmax), AUC from time zero to infinity
(AUC0–∞), total body clearance (CL), and apparent ter-
minal half-life (t1/2).

Immunogenicity
To evaluate immunogenicity, blood samples were drawn
on days 1 and 2 (before infusion of cyclophosphamide
and huKS-IL2, respectively) and days 8 and 16 of cycle
1, and days 1 and 8 of subsequent cycles. A bridging
ELISA assay to detect and quasi-quantify antibodies
directed against huKS-IL2 in human serum samples was
developed and validated. Murine KS (for anti-idiotype
antibodies), huFc-IL2 (for anti-Fc-IL2 antibodies) and
IL2 cleaved from huKS-IL2 (for anti-IL2 antibodies)
were used as capture reagents. In all 3 assays, biotin-
conjugated huKS-IL2 was used for detection. The im-
mune response against huKS-IL2 was quasi-quantified
by back-calculating the obtained optical densities to a
calibration curve consisting of a serial dilution of a poly-
clonal goat-anti-huKS-IL2 antiserum.

Biologic activity, anti-tumor response, and survival
Peripheral blood mononuclear cell (PBMC) populations
from whole blood were enumerated using flow cytometric
analysis during the first 2 cycles of treatment. In vitro
T-cell activity in response to tetanus toxoid protein was
assessed. Tumor response was evaluated according to
Response Evaluation Criteria in Solid Tumors (RECIST,
version 1.0) following cycles 2, 4, and 6 and at the time of
study completion, if the last course of treatment was not
the 2nd, 4th, or 6th cycle. Survival was assessed by patient
follow-up for 1 year after the last treated patient’s first
dose of huKS-IL2.

Statistical analysis
Data were analyzed using descriptive statistics. The
safety population included all patients who received at
least 1 dose of huKS-IL2 or cyclophosphamide and who
had at least 1 follow-up visit for safety assessment. The
MTD population comprised patients who completed
cycle 1 of treatment. Unless discontinuation was due to
DLT, patients withdrawn before cycle 1 completion for
other reasons were replaced. The efficacy population
included all patients who received at least 1 dose each of
huKS-IL2 and cyclophosphamide, and who had at least
1 post-baseline assessment of tumor status. The PK
population included all patients who had completed at



Table 1 Patient baseline demographics

Patient
characteristic

huKS-IL2 dosing cohort, mg/m2 Total
(N = 27)0.5 1.0 2.0 3.0 4.0

(n = 3) (n = 4) (n = 7) (n = 6) (n = 7)

Age, years

Median 47 55 59 57 63 58

Range 47–58 46–69 46–68 49–61 53–67 46–69

Sex, n (%)

Men 0 1 (25) 4 (57) 1 (17) 4 (57) 10 (37)

Women 3 (100) 3 (75) 3 (43) 5 (83) 3 (43) 17 (63)

Tumor type,
n (%)

Ovarian
carcinoma

3 (100) 2 (50) 3 (43) 4 (67) 3 (43) 15 (56)

Lung
carcinoma

0 0 0 2 (33) 2 (29) 4 (15)

Colon 0 2 (50) 1 (14) 0 0 3 (11)

Prostate 0 0 1 (14) 0 1 (14) 2 (7)

Othera 0 0 2 (29) 0 1 (14) 3 (11)

Tumor stage,
n (%)

I 0 0 1 (14) 0 1 (14) 2 (7)

II 0 1 (25) 0 0 0 1 (4)

III 3 (100) 3 (75) 1 (14) 4 (67) 2 (29) 13 (48)

IV 0 0 5 (71) 2 (33) 4 (57) 11 (41)

Prior
chemotherapy,
n (%)

3 (100) 4 (100) 6 (86) 6 (86) 6 (86) 25 (93)

Prior
radiotherapy,
n (%)

0 2 (50) 3 (43) 3 (43) 3 (43) 10 (37)

a Other includes 1 patient each of melanoma, acinic cell carcinoma, and
adenocarcinoma of unknown origin.
huKS-IL2, humanized KS-interleukin-2.
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least 1 infusion of huKS-IL2 and who provided all
planned PK samples on day 2 of cycle 1. Overall survival
was analyzed according to the Kaplan–Meier method
from day 1 of therapy until death or last follow-up; this
analysis was performed only on treatment arms with at
least 6 patients enrolled and on the overall group. Dose
proportionality of huKS-IL2 was assessed by comparing
AUC0–24h and Cmax on day 2 of cycle 1 with the various
absolute administered doses (mg) using linear regression
analysis. Peak and trough concentrations of huKS-IL2 in
serum and AUC0–24h were compared within and bet-
ween cycles for evidence of drug accumulation. Before
study initiation, up to 30 patients were planned for en-
rollment with a sample size of 3–6 patients per dose
cohort for each of 5 dose cohorts.

Results
Patient demographics
From May 2005 to January 2008, 27 patients (10 men
and 17 women) with a median age of 58 (range 46–69)
years were enrolled.
Patient baseline demographics are shown in Table 1.

The most common tumor histology was ovarian cancer,
which was diagnosed in 15 (56%) patients. Other tumor
types were lung cancer in 4 (15%) patients, colon cancer
in 3 (11%) patients, prostate cancer in 2 (7%) patients,
and 1 patient each with melanoma, acinic cell carcin-
oma, and adenocarcinoma of unknown origin. All but 2
patients had received prior chemotherapy.

Drug exposure
The median time on study was 25 days (range, 1–109 days),
with patients exposed to median cumulative doses of
12 mg/m2 huKS-IL2 (range, 1–54 mg/m2) and 1,182 mg/m2

cyclophosphamide (range, 440–3,841 mg/m2).

Safety and adverse events
Treatment-emergent adverse events (TEAEs) were
observed in all 27 patients. Common, and mostly mild/
moderate, TEAEs were nausea (82%), pyrexia (74%),
chills (70%), rash (56%), fatigue (48%), diarrhea (41%),
vomiting (41%), and headache (41%). Severe grade 3 and
4 AEs were observed in 14 patients (52%) and consid-
ered treatment- and dose-related in 11 patients (Table 2).
Five of 7 (71%) patients assigned to the 4.0 mg/m2

dosing cohort experienced a treatment-related grade 3
or 4 TEAE compared with 2 of 6 (33%) patients in the
3.0 mg/m2 cohort, and 2 of 7 (29%) patients in the
2.0 mg/m2 cohort. Most common treatment-related grade
3 or 4 TEAEs were lymphopenia and hypophosphatemia
(Table 2).
Other TEAEs classified as being of particular clinical

importance included 3 instances of grade 2 transient/re-
versible hypotension (0.5, 1.0, and 4.0 mg/m2 cohorts).
Another patient, in the 2.0 mg/m2 cohort, experienced a
reversible grade 2 increase in serum creatinine lasting
3 days that was considered serious. In all patients, all
toxicities improved to a lower grade or resolved.
Dose-limiting toxicities
Four patients experienced a total of 7 DLTs during cycle 1
(Table 3). These DLTs were hypoxia, dyspnea, bron-
chospasm, gamma-glutamyltransferase (GGT) increased,
thrombocytopenia, neutropenia, and anemia. With the
exception of grade 3 dyspnea and GGT increase in a single
patient lasting 25 and 19 days, respectively, all other DLTs
resolved within 2 or 3 days. The MTD was exceeded
following huKS-IL2 dosing at 4.0 mg/m2 at which level 2
patients experienced DLTs of thrombocytopenia/neutro-
penia and anemia. Six patients were dosed with 3.0 mg/m2,
with 1 patient experiencing DLT events of dyspnea,
bronchospasm, and elevated GGT. One out of 7 patients
in a 2 mg/m2 dose cohort experienced a DLT of severe



Table 2 Treatment-related NCI CTCAE Version 3.0 Grade 3 or 4 treatment-emergent adverse events

System organ class, n (%) huKS-IL2 dosing cohort, mg/m2 Total (n = 27)

0.5 1.0 2.0 3.0 4.0

(n = 3) (n = 4) (n = 7) (n = 6) (n = 7)

Any treatment-related TEAE of NCI CTCAE Grade 3 or 4 2 (67) 0 2 (29) 2 (33) 5 (71) 11 (41)

Blood/lymphatic system disorders

Lymphopenia 1 (33) 0 1 (14) 2 (33) 1 (14) 5 (19)

Anemia 0 0 0 0 1 (14) 1 (4)

Neutropenia 0 0 0 0 1 (14) 1 (4)

Thrombocytopenia 0 0 0 0 1 (14) 1 (4)

WBC count decreased 0 0 0 0 1 (14) 1 (4)

Investigations

Blood phosphorus equivalents increased 0 0 0 0 1(14) 1 (4)

GGT increased 0 0 0 1 (17) 0 1 (4)

Gastrointestinal disorders

Ascites 1 (33) 0 0 0 0 1 (4)

Nausea 0 0 0 0 1 (14) 1 (4)

Vomiting 0 0 0 0 1 (14) 1 (4)

Metabolism/nutrition disorders

Hypophosphatemia 0 0 1 (14) 0 1 (14) 2 (7)

Respiratory/thoracic/mediastinal disorders

Dyspnea 0 0 0 1 (17) 0 1 (4)

Bronchospasm 0 0 0 1 (17) 0 1 (4)

Hypoxia 0 0 1 (14) 0 0 1 (4)

CTCAE, Common Terminology Criteria for Adverse Events; GGT, gamma-glutamyltransferase; huKS-IL2, humanized KS-interleukin-2; NCI, National Cancer Institute;
TEAE, treatment-emergent adverse event; WBC, white blood cell.
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hypoxia. The MTD of huKS-IL2 in combination with
cyclophosphamide was determined to be 3.0 mg/m2.

Pharmacokinetics of huKS-IL2
Primary huKS-IL2 serum PK parameters on day 2 of
cycle 1 after huKS-IL2 first dose administration are sum-
marized in Table 4 by dose cohort. Peak serum concen-
trations of huKS-IL2 were observed within 1 hour after
the end of the 4-hour infusion period (Figure 1). A dose-
dependent, but not dose-proportional, increase in Cmax

and AUC0–24h was observed following administration of
the first huKS-IL2 doses (Figure 2a and b). There was
Table 3 Patients with dose-limiting toxicity events

huKS-IL2 dosing cohort, mg/m2 Patient age, years DLT

2.0 63 Hypoxia

3.0 59 Dyspnea

Bronchospasm

GGT increased

4.0 55 Thrombocytopeni

Neutropenia

63 Anemiab

a National Cancer Institute Common Terminology Criteria for Adverse Events grade.
b Patient entered study with anemia, but was hospitalized after dosing for a blood
DLT, dose-limiting toxicity; GGT, gamma-glutamyltransferase; huKS-IL2, humanized K
no clinically relevant drug accumulation observed either
within or between cycles. Terminal elimination half-life
and systemic clearance did not tend to change with
huKS-IL2 dose or over time (data from consecutive
cycles on file but not presented here).

Immunogenicity
Immunogenicity samples from 26 patients were avail-
able. Overall, 23 of 26 (88.5%) patients treated with
huKS-IL2 developed a transient immune response
against the drug. In general, and independent of dose
cohort, the peak immune response was observed in the
AE gradea Day started (cycle) Duration, days DLT outcome

3 2 (1) 2 Recovered

3 3 (1) 25 Recovered

3 4 (1) 2 Recovered

3 4 (1) 19 Recovered

a 4 8 (1) 3 Recovered

3 8 (1) 3 Recovered

3 5 (1) 2 Recovered

transfusion.
S-interleukin-2.



Table 4 Pharmacokinetic profile of huKS-IL2: serum pharmacokinetic parameters obtained on day 2 of cycle 1

Parameter huKS-IL2 dosing cohort, mg/m2

0.5 1.0 2.0 3.0 4.0

(n = 3) (n = 4) (n = 6) (n = 6) (n = 7)

Cmax, ng/mL

Mean (%CV) 132.6 (8.9) 316.4 (12.1) 567.6 (52.6) 1252.9 (24.8) 1323.9 (26.9)

Min-Max 119.1–141.0 268.6–350.0 295.4–1052.0 888.1–1712.0 897.3–1687.9

AUC0-24h, ng/mL•h

Mean (%CV) 724.8 (16.5) 2989.7 (59.4) 4850.9 (106.1) 13329.1 (59.7) 12332.5 (28.7)

Min-Max 593.0–826.8 1344.6–5374.7 1184.4–14596.4 6686.3–28917.9 7236.1–16825.5

AUC0-∞, ng/mL•h

Mean (%CV) 823.4 (22.4) 3849.4 (84.9) 6440.9 (128.7) 19769.3 (112.1) 13083.9 (30.0)

Min-Max 627.8–993.9 1406.5–1921.7 1179.8–22682.1 6464.9–64645.7 7418.1–18043.6

t1/2, h

Mean (%CV) 2.7 (20.1) 6.5 (92.4) 4.4 (115.9) 8.5 (100.1) 5.1 (16.4)

Min-Max 2.1–3.2 2.0–13.3 0.9–14.4 3.2–25.6 4.0–6.0

CL, L/h

Mean (%CV) 1.24 (40.2) 0.84 (75.7) 1.81 (78.4) 0.49 (59.7) 0.66 (41.1)

Min-Max 0.83–1.79 0.26–1.72 0.20–3.27 0.08–0.97 0.32–1.09

Data presented are the arithmetic mean (% coefficient of variation) and minimum–maximum values; AUC, area under the concentration–time curve; AUC0-24h, AUC
from time zero to 24 hours after the start of infusion; AUC0-∞, AUC from time zero to infinity; CL, total body clearance; Cmax, maximum concentration; CV,
coefficient of variation; t1/2, apparent terminal half-life.
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first treatment cycle (day 8 or 16) and declined toward
baseline values in subsequent cycles (Figure 3). In most
patients (n = 14), antibodies against both the complemen-
tarity-determining regions (anti-idiotype) and the Fc-IL2
moiety of huKS-IL2 were detected, whereas in 2 patients
(1 each in the 1 and 2 mg/m2 cohorts) only anti-Fc-IL2
antibodies were found, and 4 patients (2 in the 0.5, 1 in
the 3, and 1 in the 4 mg/m2 cohorts) exclusively developed
anti-idiotype antibodies. In total, only 3 patients (1 in each
of the 0.5, 1, and 4 mg/m2 cohorts) showed treatment-
related antibodies to IL2. In 2 of these 3 patients (1 and
4 mg/m2 cohorts), anti-idiotype and anti-Fc-IL2 antibodies
were also found, whereas in 1 patient (0.5 mg/m2 cohort),
the IL2 antibodies were detected concurrently with Fc-IL2
Figure 1 Mean (standard deviation) serum concentration profiles on
antibodies. The immune response against huKS-IL2 ap-
peared to slightly increase with the dose level, since higher
relative concentrations of anti-drug antibodies were ob-
served in the 3.0 and 4.0 mg/m2 cohorts.

Effects on immunologic function
PBMC counts decreased during the first few days of
infusion, reflecting treatment-related lymphopenia. For
most PBMC populations (cytotoxic NK cells, CD4+ T-
cells, CD8+ T-cells, and T-reg cells), rebound to values
higher than baseline was observed at day 8, with return
to baseline or near-baseline values by day 1 of the sub-
sequent cycle, again mirroring the temporal pattern of
recovery from lymphopenia (Figure 4). Treatment with
day 2 of cycle 1.



Figure 2 Dose–response relationship of huKS-IL2. Day 2, cycle 1, as shown by Cmax (a) and AUC0–24h (b). Cmax, maximum or peak serum
concentration; AUC0–24h, area under the concentration versus time curve from time zero to 24 hours after the start of infusion.
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cyclophosphamide and huKS-IL2 resulted in increased
plasma secretory IL2 receptor (sIL2R) expression, with
highest values observed at the end of the first week and
a return to baseline by the end of the cycle without ap-
parent huKS-IL2 dose-related effects (data not shown).
Results of T-cell stimulation with tetanus toxoid did not
identify any trends in the magnitude, direction, or pat-
tern of change from day 1 to 8 that was related to the
dose of huKS-IL2 (data not shown).

Clinical response and survival
No objective responses were observed and 10 of 26
(38%) evaluable patients had stable disease as their best
response to therapy (Table 5). Stable disease was more
frequently observed in the higher huKS-IL2 dosing
cohorts (1 of 3 [33.3%] patients in each of the huKS-
IL2 0.5 and 1.0 mg/m2 cohorts; 2 of 6 [33.3%] in the
2.0 mg/m2 cohort, 3 of 6 [50%] in the 3.0 mg/m2 cohort,
and 3 of 7 [42.9%] patients in the 4.0 mg/m2 cohort).
In addition, in 3 of 20 patients who received huKS-IL2 at
a dose of ≥ 2.0 mg/m2, stable disease was observed for 4
or more cycles. Median overall survival was 9.5 months
(95% confidence interval, 6.6; 14.8 months) (Figure 5).
Seven patients (26%) were alive at the time of this
analysis with a median follow-up of 25.8 months (range,
7.4–37.3 months).

Discussion
With dose escalation up to 4 mg/m2/day × 3 days per
cycle, we identified an MTD of 3.0 mg/m2/day. This dose
is substantially lower than the MTD of 6.4 mg/m2/day
determined in a previous phase 1 trial of huKS-IL2 as
single-agent therapy in patients with prostate cancer [19].
In that study, 4 of 22 patients experienced DLTs (dyspnea,
hypotension, symptoms related to a vascular-leak synd-
rome: hypotension, chills, rigors, and crackling at the base
of the lung; hypertension, anemia, and asthenia) [19]. In
the current study, DLTs were observed in 4 of 27 patients.
At the highest dose level of 4.0 mg/m2, dose-limiting
myleosuppression occurred in 2 patients. Hypoxia, dyspnea,
bronchospasm, and GGT increase were also observed.
However, we could not identify a consistent pattern of
toxicity, and typical signs of a systemic vascular-leak syn-
drome were not detected. Profound (≥ grade 3) non-dose-
limiting lymphocytopenia was observed in 5 patients (at a
dose ≥ 2.0 mg/m2 in 4 patients). Consistent with other IL2/
cytokine-based therapies, these episodes of lymphopenia
may not reflect myelosuppression, but are likely due to
immunocytokine-induced lymphocyte trafficking to the
peripheral tissues [20], including tumor beds or draining
nodal tissues.
The estimated huKS-IL2 Cmax and AUC0–24h values

varied widely within and between huKS-IL2 dosing
cohorts, within cohort coefficients of variation ranging
from 8.9% to 52.6% for Cmax and from 16.5% to 106.1%
for AUC0–24h. A dose-dependent, but not dose-propor-
tional, increase in Cmax and AUC0–24h was observed for
huKS-IL2 over the tested dose range. Cmax was achieved
within 1 hour after the end of the 4-hour infusion
period. No clinically relevant accumulation of huKS-IL2
was observed either within (ratio for AUC0–24h ranging
from 0.69 to 1.37) or between (ratio for AUC0–24h ran-
ging from 0.55 to 1.23) treatment cycles. Terminal half-
life and systemic clearance did not tend to change with
dose or over time. These PK results are consistent with
those obtained in previous clinical studies [19], in which
Cmax was also achieved within 1 hour after infusion end
and displayed a dose-dependent, but not dose-propor-
tional, increase in concentrations and exposure.
There appear to be some similarities in the PK activity

of immunocytokines. Similarities between huKS-IL2 and
published PK data for hu14.18-IL2 (EMD 273063), a
humanized anti-GD2 monoclonal antibody linked to
IL2, included that Cmax was achieved at the end of the
4-hour infusion period, increases in Cmax and AUC were
dose dependent, and there was no accumulation of the



Figure 3 Serum levels of antibodies over time. (a) Anti-idiotype antibodies; (b) anti-Fc-IL2 antibodies; and (c) anti-IL2 antibodies.

Connor et al. BMC Cancer 2013, 13:20 Page 8 of 12
http://www.biomedcentral.com/1471-2407/13/20
immunocytokines [21]. However, in contrast to huKS-IL2,
a dose-dependent decrease in clearance was observed with
hu14.18-IL2, and both clearance and mean peak concen-
trations increased in cycle 2 [22]. These differences may
be related to the specific target antigens.
Most patients treated with huKS-IL2 had a transient

immune response, commonly anti-idiotype or anti-linker
(the engineered component that links the IL2 to the
antibody) antibody induction. Whether or not these
antibody responses have any detrimental/neutralizing
effects on huKS-IL2 is not known. As in other antibody-
based therapies, it is also possible that the induction of
anti-idiotype antibodies could enhance the anti-EpCAM
effects via downstream antibody responses. In a mono-
therapy phase 1 trial, immunologic activity of huKS-IL2
was demonstrated by increases in lymphocyte counts,



Figure 4 Immune cell monitoring. Cytotoxic natural killer cells (a); CD4+ T-cells (b); CD8+ T-cells (c); and T-reg cells (d). C1D1, cycle 1 day 1;
C1D2, cycle 2 day 2, etc.

Table 5 Best overall tumor response

Best
overall
response

huKS-IL2 dosing cohort, mg/m2

0.5 1.0 2.0 3.0 4.0 Overall

(n=3) (n=4) (n=6) (n=6) (n=7) (n=26)

n (%) n (%) n (%) n (%) n (%) n (%)

n (missing) 3 (0) 3 (1) 6 (0) 6 (0) 7 (0) 25 (1)

CR 0 0 0 0 0 0

PR 0 0 0 0 0 0

SD 1 (33.3) 1 (33.3) 2 (33.3) 3 (50.0) 3 (42.9) 10 (40.0)

PD 2 (66.7) 2 (66.7) 4 (66.7) 2 (33.3) 4 (57.1) 14 (56.0)
Notes: Includes subjects who withdrew due to PD prior to an objective tumor
response assessment. One subject discontinued the study due to treatment-
emergent adverse events without any post-baseline disease assessment.
CR, complete response; PD, progressive disease; PR, partial response; SD,
stable disease.
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NK cell activity, and antibody-dependent cellular cytotox-
icity [19]. In the current study, we monitored immune
response to therapy by serial flow cytometric evaluation of
PBMC populations (T-cell subsets, NK cells, and T-reg
cells), serum-soluble IL2 receptor determination, and
PBMC response to tetanus toxoid. Consistent with the
effects on immune function of exogenous IL2, PBMC
counts decreased during the days of huKS-IL2 infusion,
reflecting treatment-related lymphopenia/lymphocyte traf-
ficking. Rebound of PBMC populations to baseline levels,
and often higher, was observed within a week of the end
of infusion, with rebound appearing to be more pro-
nounced at higher huKS-IL2 doses. In contrast, there was
no evidence of dose-dependent huKS-IL2 effects on the
increase in sIL2R levels observed in vivo or the PBMC
response to tetanus toxoid in vitro.



Figure 5 Kaplan–Meier plot of overall survival. * The Kaplan–Meier method was applied only for dose-level groups with at least 6 patients.
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The rationale for combining huKS-IL2 with low-dose
cyclophosphamide in the present study was based on the
earlier observation that certain cytotoxic chemotherapeutic
agents sensitize tumors to the tumoricidal effects of the
immunocytokine within the tumor microenvironment [18].
Sensitization may occur as a result of reducing intra-
tumoral pressure and lowering the macromolecular diffu-
sion barrier, thus potentially permitting increased uptake of
the immunocytokine antibodies. Moreover, existing clinical
evidence suggests the combination of low-dose cyclophos-
phamide together with a continuous-infusion or IL2 or
other related biologics yields significant anti-tumor activity
in patients with advanced cancers [23,24]. These effects have
been shown to be related to differential loss of regulatory
T-cells compared with cytotoxic lymphocyte populations.
In a study that evaluated the cancer vaccine IMA901

in patients with renal cell carcinoma, pre-treatment with
a single dose of cyclophosphamide was shown to down-
modulate T-regs and contribute to overall survival [25].
Patients receiving cyclophosphamide had a significant
decrease of median T-reg levels 3 days after cyclophos-
phamide treatment. In the current study we cannot
specifically comment on the status of T-reg cells in
response to the cyclophosphamide alone, as the addition
of huKS-IL2 on days 2–4 resulted in loss of T-reg cells
followed by rebound, as would be expected with IL2
effect. However, a previous study that evaluated recom-
binant IL2 (rIL2) and low-dose cyclophosphamide in
patients with malignant melanoma and renal cell carcin-
oma reported that the regimen had minimal anti-tumor
activity—no remission in renal cell carcinoma patients
and partial or minor response in 3 (17%) melanoma
patients [26]. An additional 4 patients had stable disease
(1 with renal cell carcinoma and 3 with melanoma).
Based on pre-clinical ex vivo studies and animal models,

it is likely that immunocytokines have clinical effects by
both NK cell- and T-cell-mediated mechanisms [27,28].
The immunocytokines facilitate antibody-dependent
cellular cytotoxicity (ADCC) in vitro with both healthy
donor effector cells and with immune cells from patients
with advanced cancer. Similarly, depletion of NK cells
dampens the anti-tumor activity of immunocytokines in
mouse models. Although NK cells play a role in immuno-
cytokine therapy, pre-clinical data also support the key role
of T-cell-mediated effects, including the development of
memory that is protective against subsequent tumor chal-
lenge. Therefore, it is theorized that immunocytokine
therapeutic effects result from NK-mediated ADCC of
tumor cells that contributes to direct tumor cell death, and
that this effect results in release of antigens that can facili-
tate/potentiate the development of anti-tumor T-cell popu-
lations. These T-cells can then act as primary anti-tumor
effectors as well as providing long term memory effects.
The effects on T-reg cells and the potential benefit in terms
of induction of T-cell immunity was one of the main ratio-
nales for the use of cyclophosphamide in this study.
With regard to anti-tumor activity in the current study,

no objective responses were observed. Ten patients had
stable disease as best response and 7 patients were alive at
the time of analysis. As this was a phase 1 study, the
primary objective was not to evaluate response to therapy.
The clinical utility of immunotherapy in general has been
best seen in the setting of minimal residual or sub-clinical
disease. For this reason it was not expected that huKS-IL2
therapy (alone or with low-dose cyclophosphamide) would
demonstrate clinical responses in patients with end stage
clinically measurable (and often bulky) disease. Although
not studied as a specific endpoint, several subjects have
had excellent responses to additional cytotoxic therapies
and have become long-term survivors. Granted, the num-
ber of cases is very small; however, no pattern or distinct-
ive features such as pre-treatment lymphocyte patterns
are seen in these subjects. At this time continued follow-
up on this handful of cases is of particular interest.
For these reasons, one could argue that both the higher-

dose monotherapy and the combination of cyclophosphamide
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with lower doses of huKS-IL2 should/could be devel-
oped further. A potential next step that could address
these issues would be to move to a randomized phase 2
study of both regimens, with anti-tumor effect as the
primary outcome. Clearly a study such as this would re-
quire close monitoring and early stopping strategies in
case one regime is found to be more effective.

Conclusions
In this trial of low-dose cyclophosphamide and huKS-IL2
in patients with advanced solid tumors, the combination
was shown to be feasible and safe. MTD was determined to
be 3 mg/m2/day. A substantial proportion of patients across
dose levels experienced stable disease, with 3 patients (at
dose level ≥2.0 mg/m2) experiencing stable disease for
≥4 cycles. These findings may warrant further investigation
of the anti-tumor activity of huKS-IL2 in combination with
low-dose cyclophosphamide as a potential immunotherapy
for patients with EpCAM-positive solid tumors.
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