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Abstract

Background: Biological entities do not perform in isolation, and often, it is the nature and degree of interactions

among numerous biological entities which ultimately determines any final outcome. Hence, experimental data on
any single biological entity can be of limited value when considered only in isolation. To address this, we propose
that augmenting individual entity data with the literature will not only better define the entity’s own significance

but also uncover relationships with novel biological entities.

To test this notion, we developed a comprehensive text mining and computational methodology that focused on
discovering new targets of one class of molecular entities, transcription factors (TF), within one particular disease,

colorectal cancer (CRQ).

Methods: We used 39 molecular entities known to be associated with CRC along with six colorectal cancer terms
as the bait list, or list of search terms, for mining the biomedical literature to identify CRC-specific genes and
proteins. Using the literature-mined data, we constructed a global TF interaction network for CRC. We then
developed a multi-level, multi-parametric methodology to identify TFs to CRC.

Results: The small bait list, when augmented with literature-mined data, identified a large number of biological
entities associated with CRC. The relative importance of these TF and their associated modules was identified using
functional and topological features. Additional validation of these highly-ranked TF using the literature
strengthened our findings. Some of the novel TF that we identified were: SLUG, RUNXT, IRF1, HIFTA, ATF-2, ABL1,
ELK-1 and GATA-1. Some of these TFs are associated with functional modules in known pathways of CRC, including
the Beta-catenin/development, immune response, transcription, and DNA damage pathways.

Conclusions: Our methodology of using text mining data and a multi-level, multi-parameter scoring technique was
able to identify both known and novel TF that have roles in CRC. Starting with just one TF (SMAD3) in the bait list,
the literature mining process identified an additional 116 CRC-associated TFs. Our network-based analysis showed
that these TFs all belonged to any of 13 major functional groups that are known to play important roles in CRC.
Among these identified TFs, we obtained a novel six-node module consisting of ATF2-P53-JNK1-ELKT-EPHB2-HIF1A,
from which the novel JNK1-ELKT association could potentially be a significant marker for CRC.
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Background

Advances in the field of bioinformatics have improved
the ability to glean useful information from high-density
datasets generated from advanced, technology-driven
biomedical investigations. However, deriving actionable,
hypothesis-building information by combining data from
experimental, mechanistic, and correlative investigations
with gene expression and interaction data still presents a
daunting challenge due to the diversity of the available
information, both in terms of their type and interpret-
ation. Because of this, there is a clear need for custom-
designed approaches that fit the biology or disease of
interest.

Gene expression datasets have been widely used to
identify genes and pathways as markers for the specific
disease or outcome to which they are linked [1-4].
However, gene expression datasets used alone cannot
identify relationships between genes within the system
of interest; identification of these relationships also
requires integration of interaction networks so that
changes in gene expression profiles can be fully under-
stood. One process in which this problem has become
particularly important is that of gene prioritization, or
the identification of potential marker genes for a spe-
cific disease from a pool of disease-related genes. Earl-
ier studies on associating genes with disease were
done using linkage analysis [5]. Many computational
approaches using functional annotation, gene expres-
sion data, sequence based knowledge, phenotype simi-
larity have since been developed to prioritize genes,
and recent studies have demonstrated the application
of system biology approaches to study the disease rele-
vant gene prioritization.

For example, five different protein-protein interaction
networks were analysed using sequence features and dis-
tance measures to identify important genes associated
with specific hereditary disorders [6]. In other studies,
chromosome locations, protein-protein interactions,
gene expression data, and loci distance were used to
identify and rank candidate genes within disease net-
works [6-9]. The “guilt by association” concept has also
been used to discover disease-related genes by identify-
ing prioritized genes based on their associations [7,10].
Network properties [11,12] have also been used to cor-
relate disease genes both with and without accompany-
ing expression data [11].

Integration of more heterogeneous data has also
been utilized in identification of novel disease-
associated genes. Examples of such integration include
CIPHER, a bioinformatics tool that uses human
protein-protein interactions, disease-phenotypes, and
gene-phenotypes to order genes in a given disease [13];
use of phenome similarity, protein-protein interactions,
and knowledge of associations to identify disease-
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relevant genes [14]; and machine-learning methods
and statistical methods utilizing expression data used
to rank the genes in a given differential-expression dis-
ease network [15-18] and in 1500 Mendelian disorders
[19]. Utilization of literature mining, protein-protein
interactions, centrality measures and clustering techni-
ques were used to predict disease-gene association
(prostate, cardiovascular) [20-23], while integration of
text-mining with knowledge from various databases
and application of machine-learning-based clustering
algorithms was used to understand relevant genes
associated with breast cancer and related terms [24].
In addition to CIPHER, additional bioinformatics tools
include Endeavour, which ranks genes based on dis-
ease/biological pathway knowledge, expression data,
and genomic knowledge from various datasets [25],
and BioGRAPH, which explains a concept or disease
by integrating heterogeneous data [26]. Most of
these described methods, while using a variety of
approaches, still use the Human Protein Reference
Database (HPRD, www.hprd.org) as the knowledge
base for protein-protein interactions. The variation
in these approaches to achieving comparable goals
demonstrates that using a single feature cannot ease
the complexity associated with finding disease-gene,
disease-phenotype, and gene-phenotype associations.
Moreover, the need for integration of the described
features is more pertinent for complex diseases, such
as cancer. To the best of our knowledge, this inte-
grated approach has not been studied in terms of tran-
scription factor (TF) interaction networks in colorectal
cancer (CRC).

It is well-established that TFs are the master regula-
tors of embryonic development, as well as adult
homeostasis, and that they are regulated by cell signal-
ling pathways via transient protein interactions and
modifications [27,28]. A major challenge faced by biol-
ogists is the identification of the important TFs
involved in any given system. Though advances in
genomic sequencing provided many opportunities for
deciphering the link between the genetic code and its
biological outcome, the derivation of meaningful infor-
mation from such large datasets is, as stated earlier,
still challenging. The difficulty is largely due to the
manner in which TFs function since TFs interacts with
multiple regulatory regions of other TFs, ancillary
factors, and chromatin regulators in a reversible and
dynamic manner to elicit a specific cellular response
[29]. While the specific focus on TFs within CRC for
this paper is due to their significant regulatory roles,
the focus on CRC is four-fold. First, this effort is part
of a major, collaborative multi-institute initiative on
CRC in the state of Indiana called cancer care engin-
eering (CCE) that involves the gathering of a large
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body of —omics data from thousands of healthy indivi-
duals and patients for the purpose of development of
approaches for preventive, diagnostic, and therapeutic
clinical applications of this data. Second, in spite of
major breakthroughs in understanding the molecular
basis of CRC, it continues to present a challenging
problem in cancer medicine. CRC has one of the worst
outcomes of most known cancers, with significantly
lower survival rates than those of uterine, breast, skin,
and prostate cancers. Early detection of CRC requires
invasive procedures due to the fact that knowledge of
useful biomarkers in CRC is relatively lacking and that
the drugs currently approved for treatment of CRC are
cytotoxic agents that aim to specifically treat advanced
disease. Currently, most patients with early stage CRC
are not offered adjuvant therapies, as these are asso-
ciated with significant toxicities and marginal benefits.
It is necessary to identify targeted therapeutics for
both early CRC, to decrease the toxicity and enable ad-
juvant therapies to prevent disease progression, and
later-stage CRC, to prevent mortality. Third, even
though TFs play a major role in CRC, still there is no
global TF interaction network analysis reported for this
disease. Tying in with the need for a global TF inter-
action network analysis in CRC, the focus on CRC is
lastly due to the need for identification of CRC-
specific TFs as potential disease markers, and here we
demonstrate the ability of a bioinformatics approach
incorporating knowledge from the literature, topo-
logical network properties, and biological features to
achieve this goal.

Our goal in this study was thus to obtain a TF inter-
action network for CRC utilizing a bibliomics approach —
ie, by extracting knowledge from PubMED abstracts
and ranking TFs according to their topological and
biological importance in the network. As explained
earlier, understanding of a disease-gene association
necessitates multiple features, which our methodology
incorporated by augmenting a set of experimental
data with relevant literature data to extract and correl-
ate TFs that have so far not been found to be asso-
ciated with CRC. We have demonstrated that using
literature-generated, domain-specific knowledge com-
bined with network and biological properties will yield
a CRC-specific TF interaction network that is biologic-
ally significant. The TFs identified by this approach
represent a pool of potentially novel drug targets and/
or biomarkers, which can be narrowed down to a
rank-ordered list for further analysis by domain
experts for further experimental validations. While this
is the first report identifying a TF interaction network
for CRC using such an approach, our methodology is
broadly applicable, simple, and efficient, especially for
preliminary stages of investigation.
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Methods

Overview of the text-mining strategy

Our strategy involved six major steps as shown in
Figure 1:

1 Collection and pre-processing of data
Discovery of associations using BioMAP (Literature
Augmented Data)

3 Validation of BioMAP associations using Gene
Ontology Distance and Protein-Protein
Interactions

4 Construction of TF interaction network (termed a
global interaction network since all available
PubMed literature was considered)

(a) Annotation of nodes using topological parameters

5 Ranking of TFs using multi-level, multi-parametric
features

(a) Un-weighted/weighted node prioritization
(b)Hyper geometric associations
(c) Construction of functional module

6 Validation of TFs (found in CRC pathways)via
pathway analysis

Each of these steps is described below in detail:

Data collection and pre-processing

Previous work in CRC has identified various disease-
relevant anomalies in genes, including #MLHI and MSH2
[3,30,31], MLH3 with hMLH]I [31], NEDD41 along with
PTEN mutation [32,33], Axin in association with Wnt
signalling pathways [34], MUC2/MUCI [35] and co-
expression of IGFIR, EGFR and HER2 [36,37], and p53
and APC mutations [37]. Several specific TFs, in addi-
tion to playing roles in DNA repair and cell signalling
defects, are known to play major roles in CRC. For ex-
ample STAT3, NF-kB, and c¢-Jun are oncogenic in CRC
[38]. HOXOY, p53, c-Myc, and S-catenin together with
TeflLef and MUCI [39] and SOX4, as well as high levels
of the CBFB and SMARCCI TFs have all been associated
with CRC [40]. Using these experimental studies reported
in the literature, we manually collected 45 keywords that
are well understood and validated in relation to CRC.
This initial list, called the ‘bait list, is given in Table 1.
The 39 biological entities in this list were manually eval-
uated using the criteria that each entity must have a
minimum of three references reported in the literature;
notably, the bait list contained only one TF, SMAD3.
The remaining six terms were related to CRC terminology/
types (e.g., colon rectal cancer, colorectal cancer, and
CRC). This list was used with BioMAP, a literature
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the overall methodology used to prioritize the TFs: (1) Data collection from peer reviews; (2) Discovery of associations using BioMAP (literature
augmented data); (3) Validation of BioMAP associations using Gene Ontology distance and protein-protein interactions; (4) Construction of the
global TF interaction network; (5) Ranking of TFs using multi-level, multi-parametric using: (i) weighted/un-weighted prioritization schema, (i)

hypergeometric associations, and (iii) Modules; and (6) Validation of TFs by pathway analysis.

mining tool developed and designed in-house to find
associations among biological entities such as genes, pro-
teins, diseases, and pathways [41], to retrieve and carry
out literature mining on abstracts from PubMed.

Discovering associations from BioMAP
The BioMAP tool identifies gene pair associations from
a collection of PubMed abstracts using the Vector-Space

if*idf method and a thesaurus consisting of gene terms
[41]. Each document, d;, was converted to an M dimen-
sional vector W;, where W;[k] denotes the weight of the
K" gene term in the document and M indicates the
number of terms in the thesaurus. W; was computed
using the following equation:

Wilk] = T;[k] + log (" /u[K]) (1)



Pradhan et al. BMC Cancer 2012, 12:331
http://www.biomedcentral.com/1471-2407/12/331

Table 1 Keywords used for literature mining

Page 5 of 21

Gene/pathway Association with CRC Ref
hMLH1/DNA repair Genetic or epigenetic inactivation [3,98]
MSH2/DNA repair Genetic or epigenetic inactivation [2]
MLH3/DNA repair Dominant negative mutations inhibit hAMLHT function [30,31]
MYH/Development Attenuate CRC in association with FAP [4,99]
CDK8/cell cycle regulation CDK8 Inhibition activates Wnt/b-catenin pathway [100,101]
bcc Genetic loss [102]
IGF-IR/IGF-IR, EGFR and HER2 Co-expression in advanced stages [36]
receptor tyrosine kinase signalling
TGFBRI1/TGF-beta signalling pathway Inhibits/prevents CRC [103,104]
Axin2/Cytoskeleton remodelling Mutations activates Wnt signalling [34]
APC/Cell cycle Genetic loss [105,106]
b-Raf/Ras signalling pathway Mutations are prognostic [107,108]
MSH6/DNA damage Mutations in HNPCC [109,110]
PTEN/cell signalling Genetic loss or functional inactivation linked to poor survival [32,33]
CXCL12 and CXCR4/Immune Inverse relationship between CXCL12 and CXCR4, 111
response — signalling pathway with over-expression of CXCL12 and down-regulation

of CXCR4 are linked to tumor progression
RAD18/DNA damage Polymorphism at Arg302Gin [112,113]
c-Met/HGF signalling pathway Over-expression linked to tumor progression [114]
HG/HGF signalling pathway Over-expression HGF in association with c-Met linked to metastasis [115]
MACC1/signalling pathway Over-expression associated with metastasis [116]
CASPASE-3/apoptosis-FAS [1171[118]
signalling/TNFR1/caspase-cascade
CASP10/caspase-cascade Somatic mutations linked to pathogenesis [119]
NAT1/metabolic pathways Genetic mutations [120,121]
GSTM1/detoxification pathway GSTMT expression associated with tumor progression [122]
GSTT1/cell cycle GSTT1 expression associated with high risk of CRC [122]
CYP2C9/lipid metabolism High risk associated with CYP2C9*1 gene [1231,[124]
Bcl-2/Apoptosis-FAS Loss of expression associated with stage Il relapse [125]
signalling/TNFRT signalling
PRMT1/DNA repair Expression of gene variant associated with CRC [126,127]
SMAD3/Cytoskeleton remodelling Expression is associated with the survival rate of CRC [128]
IGFBP1/IGF Beta receptor signalling pathway Expression is inversely proportional to survival rate in CRC [129]
PDGFBB/PDGF signalling pathway Higher expression associated with low survival rate [130]
PDGFRB/PDGF signalling pathway Higher expression associated with CRC tumor stroma [131]
PLK1/cell cycle Higher expression and a prognostic factor in CRC [132]
IFITM1/Beta-catenin signalling pathway Expression identified in CRC, important for pathogenesis, [133]

MBL2/lectin pathway
PMS2/DNA repair
CXCL2/Apoptotic pathways
IGF1R/IGFR signalling pathway

CYP27B1/Vitamin D pathway

CYP24/Vitamin D pathway
MUCINS/mucin expression pathway

metastasis and potential biomarker

Very population specific. Two school of thought (yes/no)
Loss in expression associated with CRC

Elevated expression associated with CRC

Regulates the expression of VEGF expression.
Can be used as prognostic factor.

Enzyme identified to be associated with
CRC- but more studies need to be performed

Useful gene/SNP/precursor for chemotherapy

Useful therapeutic target

NCI bulletin-April-17,2007
[134]
[135]
[136]

[137]

[138]
[139,140]
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where Ti is the frequency of the k” gene term in
document d;, N is the total number of documents in the
collection, and n[k] is the number of documents out of
N that contain the K gene term. Once the vector repre-
sentations of all documents were computed, the asso-
ciation between two genes, k and /, was computed
as follows:

association[k][l] = ZilWl[k] * Wil (2)
where k=1...m and [=1..m. This computed associ-
ation value was then used as a measure of degree of the
relationship between the & and /" gene terms. A deci-
sion could then be made about the existence of a strong
relationship between genes using a user-defined thresh-
old for the elements of the association matrix. Once a
relationship was found between genes, the next step was
to elucidate the nature of the relationship utilizing an
additional thesaurus containing terms relating to pos-
sible relationships between genes [41]. This thesaurus
was applied to sentences containing co-occurring gene
names. If a word in the sentence containing co-
occurrences of genes matched a relationship in the the-
saurus, it was counted as a score of one. The highest
score over all sentences for a given relationship was then
taken to be the relationship between the two genes or
proteins and was given as:

N
scorelk|[l][m] = Z i
=1
(pi = 1; Geney, Geney, Relation,,all occur in sentence;)
(3)

where N is the number of sentences in the retrieved
document collection, p; is a score equal to 1 or 0 de-
pending on whether or not all terms are present, Geney
refers to the gene in the gene thesaurus with index &,
and Relation,, refers to the term in the relationship the-
saurus with index m. The functional nature of the rela-
tionship was chosen using arg,, score [k][{][m]. A higher
score would indicate that the relationship is present in
multiple abstracts.

Validating associations of BioMAP using Gene Ontology
Distance and Protein-Protein Interactions

The TFs obtained from the literature mined data were
further annotated using the Gene Ontology for the fol-
lowing six functionalities: TF, TF activator, TF co-activator,
TF repressor, TF co-repressor activity, and DNA-binding
transcription activity. For all proteins (including TF, ki-
nase, proteins, ligands, receptors, etc.) obtained from the
literature-mined data set, we computed its Gene Ontol-
ogy Annotation Similarity (Gene Ontology Distance)
with respect to all other proteins in the data.
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Gene Ontology Annotations Similarity

Each protein pair was evaluated by computing the Gene
Ontology Annotation Similarity, which was calculated
using the Czekanowski-Dice [42] similarity method as
follows:

[G0(P)AGO(B)]
[GO(P;) UGO(P))] + [GO(P;) N GO(P))]
(4)

d(P;,P)) =

where A is the symmetric set difference, # is the num-
ber of elements in a set, and GO(P;) is the set of GO
annotations for P;. Similarly, we computed GO(P)) for
Pj. If the Gene Ontology Annotation Similarity d(P;P))
between two proteins was less than 1.0, they were
considered to be interacting, thus forming an inter-
action network. The GO annotations were identified
for each protein from UniProt [www.uniprot.org].
We then further scored the interactions in this net-
work using the protein-protein interaction algorithm
described below.

Protein-Protein Interaction Algorithm

Since the available knowledge about protein-protein
interactions is incomplete and contains many false posi-
tives, a major limitation common to all interaction net-
works is the quality of the interacting data used. To
remove error with respect to false-positives, we devel-
oped a protein-protein interaction algorithm, which out-
puts the interaction scores that are annotated on the
network as the interaction strength [41,43]. This algo-
rithm consists of six basic steps: (i) identify the protein
pair P(ij) and its associated structures given in the pro-
tein data bank (PDB); (ii) predict the probable interact-
ing residues of each PDB structure in the given pair
using the physico-chemical properties of its residues, in-
cluding hydrophobicity, accessibility, and residue pro-
pensity; (iii) compute the distance between the C-alpha
coordinates of the probable interacting residues of the
given pair; (iv) evaluate the ratio of the number of resi-
dues actually interacting with the probable interacting
residues based on the distance threshold of C-alpha coor-
dinates; (v) identify the protein pair as interacting or
non-interacting based on the given distance threshold;
and, (vi) evaluate the interaction of the gene pair - if
30% of the total number of PDB structures for the given
protein pair (i) satisfies the distance threshold, then the
pair is considered interacting.

Protein Interaction Score;
# of Interacting Residues

~ Probable Number Of Interacting Residues
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Interaction Between Proteins Score;;
_ #of Interacting PDB structures

 Total Number Of PDB structures

(6)

Construction of TF interaction network of CRC

The associations satisfying the above Gene Ontology
distance and protein-protein interactions criteria were
used to construct the TF interaction network of
CRC.

Determination of network topology

Network topology is an important parameter that
defines the biological function and performance of the
network [44]. Network properties such as degree, cen-
trality, and clustering coefficients, play an important
role in determining the network’s underlying biological
significance [45,46]. For the topological analysis, we
considered degree, clustering coefficient, and between-
ness (centrality). Degree is the number of edges con-
nected to node i. The clustering coefficient of node i is
defined as C; = %, where 7 is the number of con-

nected pairs between all the neighbors of node i, and
k; is the number of neighbors of n. Betweenness for
node i is the number of times the node is a member of
the set of shortest paths that connects all pairs of
nodes in the network, and it is given as Cg(n;) =
Z,‘<kgjk(ni)/gjk: where gj. is the number of links con-
necting nodes j and k, and gj(n;) is number of links
passing through i These network properties were
computed using the igraph package of statistical tool R
(http://www.r-project.org).

Ranking of TFs using multi-level, multi-parametric features
The TFs were ranked using multi-level, multi-
parametric features to better understand their signifi-
cance in the TF interaction network of CRC. Multi-
level refers to the various computational analysis stages
that are involved in the detection of the important
TFs, as indicated in Figure 1. Multi-parameter features
refer to topological and biological parameters and their
associated features. Topological parameters can iden-
tify relevant nodes in the network; however, annotating
the edges with biological parameters (edge strength)
will help reveal biologically important nodes in the
network.

Node Strength,
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The edges are annotated using the Gene Ontology An-
notation Similarity Score and the Protein Interaction
Propensity Score. As individual edge weights alone can-
not capture the complexity of the network [47,48], we
also computed the Gene Ontology Annotation Similarity
Score by considering the average edge weight of each
protein and its interacting neighbors [47,48]:

Gene Ontology Annotation Similarity Score;
N K
B >im12,-1(GO),;

= )

where N is the total number of nodes in the network, i
is the node in consideration, K is the number of immedi-
ate neighbors of node i, and j is the interacting neigh-
bors. The calculation of the Gene Ontology Annotation
Similarity Score is illustrated in Additional file 1. The
Protein Interaction Propensity Score for a given node was
computed based on the assumption that proteins mostly
interact among the domains of their own family [49] and
was thus computed as

Protein Interaction Propensity Score;
Zﬁil ]I»ilProtein Interaction Score; / %

= 9 (8)

Z?lel‘]\il Protein Interaction Score; /,,

where N is the total number of nodes in the network,
i is the node in consideration, and K is the number
of immediate neighbors of node i. An illustration of
the propensity score calculation is shown in Additional
file 1.

These methods yielded CRC-relevant nodes in our TF
interaction network. We then used node prioritization
algorithms to rank the nodes in the network using the
following steps:

(a) Un-weighted and weighted node prioritization

(i) Node prioritization based on un-weighted
topological and biological features: In this
method, the node prioritization used all four
features that were described and computed in the
previous steps and was calculated as,

N [ (Clust. Coeff. + Betweeness + Gene Ontology Annotation Similarity score + Protein Interaction Propensity score);

©)
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(ii) Node prioritization based on weighted topological
and biological features

Node Strength; =

N
Z [0.4(Protein Interaction Propensity Score)+

=1
0.2(Clust. Coeff. + Betweeness+
Gene Ontology Annotation Similarity score));

(10)

The actual weights, 0.4 and 0.2, were determined em-
pirically, and the higher weight was associated with the
feature Protein Interaction Propensity Score since it is a
structure-based feature.

Validation of proteins and its interaction

Prior to computing the hypergeometric analysis and
modules, we validated the proteins and their interactions
using KEGG (http://www.genome.ad.jp/kegg), HPRD
[50], and Random Forest classifier of WEKA [51].

(b) Node-node association prioritization based on
hypergeometric distribution

The basic assumption of hypergeometric distribution
is that it clusters the proteins with respect to their func-
tions. That is, if two proteins have a significant number
of common interacting partners in the network, then
they have functional similarities and therefore also con-
tribute to each other’s expressions [52]. The topological
parameter, betweenness, finds the centrality of a node in
the network. Hypergeometrically-linked associations be-
tween two nodes essentially link two nodes that may in-
dividually have very high betweenness scores but have
low edge weight scores. Additional file 2 describes the
advantages of using the hypergeometric distribution
metric. This parameter is also essential to identifying
those nodes that cannot be identified using standard
features.

The nodes with very high p-values have higher statistical
significance, suggesting that their functional properties play
a major role in the network. The p-value for each associ-
ation between two proteins, P; and P, was computed as fol-
lows:

7 (N - I’ll)'(N - 112)!111!}’12!
© Nlm!(ny — m)\(ny — m)\(N — ny — ny + m)!

(11)

where 7; and #, is the number of interacting proteins of
P; and Pj, m is the number of common proteins of P;
and P;, n; is the total number of proteins interacting

P(N7 7[1,}’!271’1’[)
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with P;, n, is the total number of proteins interacting
with Pj, n;-m is the number of proteins that interact
only with P;, ny-m is the number of proteins that inter-
act only with P;, and N is the total number of proteins in
the dataset.

(c) Construction of functional module

We defined a module as the sub-graph of a network if it
was associated with at least one TF. It is assumed that pro-
teins in a particular module perform similar functions and
could be together considered a module for that specific
function [53]. For module construction, the nodes with
high prioritization scores obtained through the un-
weighted and weighted topological and biological features
associations and the hypergeometric associations were con-
sidered. All direct interactions of the prioritized TFs were
used to extract modules.

(d) TF module ranking

For the module rankings, each node within the module
was annotated with the Node Strength obtained using
equations (9) and (10). The module score for each of the
modules was then computed as

Node St h;
Average Module Score; = Z,C:1 %

(12)

where, i is the i module and C = 3---M, where C
denotes the number of nodes in the module and M is
the largest module identified in the TF interaction net-
work. The p-values were then computed for each TF in
the modules as follows [54]:

<S><N S>
S\ 1 c I
p—value =1 — E A S S

i=0 N
C

(13)

where S is the total number of modules present in the
TF interaction network of CRC excluding the TF under
consideration; C is the module size; N is the total num-
ber of nodes in the whole network; 7 is the number of
modules with the specific TF under consideration; and k
is the module. A module that had TFs with p <0.05 were
considered for further analyses.

Validation by pathway analysis

The functional analysis of the highly ranked TFs and
their corresponding modules was calculated using
pathways identified by MetaCore™. The p-values for
these pathways were based on their hypergeometric dis-
tributions, which was dependent on the intersection
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between the user’s data (i.e., associations identified from
BioMAP and validated by Gene Ontology distance and
Protein Interaction Propensity Score) and the set of pro-
teins obtained from the MetaCore™ database in the
pathway, and were computed as:

p— value(r n, R, N)
min(n,R) .
- Zl max(r,R+n— (17 n, R, N)
_ Rinl(N - RN - n)!
B N

min(n,R) 1
><z:l—max r,R+n—N) 1'(R—1)'(n—1) (N R—n+ )
(14)

where N is the global size of MetaCore™™ database inter-
actions, R is the user list (identified from BioMAP), n is
the nodes of R identified in the pathway of consider-
ation, and r is the nodes in #n marked by association. The
pathways with p-value <0.05 were further analyzed for
their functional relevance. This analysis identified the
pathways associated with TFs, which could then be ex-
perimentally analyzed by biologists in order to validate
their associations and importance in CRC.

Results

Data collection and pre-processing

We used PubMed abstracts to obtain a global perspec-
tive of TFs in the TF interaction network of CRC. For
the key list given in Table 1, BloMAP extracted 133,923
articles from PubMed. From these PubMed abstracts,
BioMAP identified 2,634 unique molecular entities that
were mapped to Swiss-Prot gene names.

Construction of TF interaction network of CRC

For the 2,634 molecular entities, using the Gene Ontol-
ogy Annotation Similarity Score, we identified 700 gene
interactions that involved at least one TF (the network
consisted of 117 TFs and 277 non-TFs, for a total of 394
network proteins). Though the bait list had only one TF,
the output dataset contained a large number of TFs, in-
dicating the importance of TFs and their roles in CRC.
This also demonstrated that bait lists that are highly
relevant to the disease of interest can extract a large
amount of knowledge from regardless of the vastness of
the literature. In addition to the TF interactions, we
identified 900 interactions found solely among non-TF
entities. Also among the initial 700 interactions 553
interactions were identified in HPRD database.

Among the 394 proteins, only 215 had known protein
data bank (PDB) IDs, which produced a total of 3,741
PDB structures (X-ray). Of the initial 700 interactions,
377 interactions were associated with these 3,741 PDB
structures. These interactions were evaluated using the
previously-described in-house protein-protein interaction

Page 9 of 21

algorithm [41,43]. A 6 A C-alpha distance threshold and
10% threshold for minimum number of interacting resi-
dues were initially used to identify interactions between
PDB structures; if 30% of structures satisfied these con-
ditions, the protein pair was established to be probably
interacting [55,56]. From the 377 interactions, 264 inter-
actions satisfying the 6 A distance/structure criteria were
identified. In these 377 interactions, 278 interactions
were validated using HPRD database. These interactions
had more than 50% of the interacting residues while the
remaining 99 interactions had fewer than 50% of the
interacting residues.

In the constructed TF interaction network for CRC,
shown in Figure 2, the edges were annotated with the
Gene Ontology Annotation Similarity Scores and Protein
Interaction Propensity Scores (computations are depicted
Additional file 1).

Topological analysis of the TF interaction network of CRC
In the TF interaction network shown in Figure 2, the
node degree ranged from 0 to 48, with an average degree
of 4.29. A total of 133 nodes were identified with
betweenness measures (ie., these nodes passed through
the paths of other nodes), and 149 nodes were identified
with clustering coefficient measures. Table 2 lists the top
19 nodes identified using degree, clustering coefficient,
and betweenness. In addition to identification of the TFs
with the highest topological feature scores, other pro-
teins with similar topological rankings were also identi-
fied. All the nodes in the network were annotated with
these topological parameters.

Ranking of TFs using multi-level, multi-parametric features
Node prioritization un-weighted/weighted schema (using
topological and biological features)

The topological and biological features — betweenness,
clustering coefficient, Gene Ontology Distance Score, and
Protein Interaction Propensity Score — were computed
for the 394 nodes in the interaction network (Figure 2).
Nodes were ranked using the node strength, which com-
puted using both weighted and un-weighted scoring
schemes (discussed in the methods section); Table 3
shows the top 10 TFs for each scoring schema.

Validation of proteins and their interactions

Proteins and their interactions were validated using
KEGG, HPRD, and Random Forest. The proteins in each
interaction were validated using KEGG pathways and
the HPRD cancer signalling pathways. If a protein was
present in the KEGG colon cancer pathways, it was
annotated as HIGH. If a protein was in KEGG cancer
pathways or HPRD cancer signalling pathways, it was
annotated as MEDIUM. If a protein was not present in
any of the above pathways but in other pathways of
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remaining proteins.

Figure 2 Transcription Factor Interaction network. The red nodes indicate transcription factors while yellow represents the

KEGG, it was annotated as LOW. In the initial 700
interactions, there were 20 proteins associated with
CRC, 183 proteins associated with KEGG cancer path-
ways/HPRD cancer signalling pathways, and 128 asso-
ciated with other KEGG pathways. Interactions were
annotated as HIGH if both proteins were annotated
HIGH or a combination of HIGH-MEDIUM or HIGH-
LOW; MEDIUM if both proteins were annotated
MEDIUM or MEDIUM-LOW; and LOW if both pro-
teins were annotated LOW.

Node prioritization using hypergeometric distribution
Table 4 shows the top 10 TF associations with the
p-value <0.05.

Modules analysis

For each of the TFs in the TF interaction network
(Figure 2), functional modules of size greater than or equal
to three nodes were identified. This process yielded 70
modules with 3 nodes, 35 modules with 4 nodes, 18 mod-
ules with 5 nodes, 12 modules with 6 nodes, and 56

Table 2 Top ranked nodes identified for each of the topological parameters

Metric Top 20 ranked proteins

Degree

p53 (48), c-Jun (48), STAT3 (41), NF-kB-P65 (36), ESR1 (35), NF-kB/TNFRSFT1A (33), SMAD3 (33), SP1(32), STAT1 (32),

DANDS (31), c-Myc (30), E2F1 (28), SMAD2 (26), MEF2A (26), RARA (24), GCR (23), SMAD4 (20), HIFTA (18), MEF2C (18)

Clust. Coeff.

Betweenness

p53, Aktl, STAT3, RARA, E2F1, STAT1, c-Jun, NF-kB-P65, CREM, Elk-1, c-Myc, SMAD3, Lefl, HIFTA, NF-kB/TNFRSF11A, ESRT, GCR, PPARA, MEF2A
p53,c- Jun, STAT3, c-Myc, STAT1, RARA, ESR1, NF-kB-P65, SMAD3, E2F1, Akt1, MEF2A, NF-kB/TNFRSFT1A, MK14, SP1, DANDS, EP300, GCR, JAK2
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Table 3 Ten top-ranked nodes identified by each weighting scheme

Schema Top 10 nodes
Un-weighted p53, c-Jun, STAT3, ABLI, c-Myc, GLIT, CDC6, RARA, STATI, ESR1
Weighted p53, ABLI, c-Jun, GLI1, STAT3, NF-kB, PIAS1, c-MYC, ESR2, MK11

modules with 7 or more nodes. Each module was then
analyzed using the average module score (equation (12)),
and the significance of the TFs in each of these modules
was assessed at p<0.05 (equation (13)). Tables 5 and 6
show the TFs identified in top-scored modules and bottom-
scored modules for the two scoring schemas, respectively.

Validation using pathway analysis

For the bait list given in Table 1, literature mining identi-
fied an additional 2,634 entities which were then analyzed
for their relevance in CRC pathways. The significance of
the literature-mined molecules with respect to TFs,
ranked TFs, functional modules, and their associated
functional pathways was determined using MetaCore™™
from GeneGO. The MetaCore™ tool identified 39 sig-
nificant pathways for the bait list data with p-values
ranging from 3.591E-10 to 7.705E-3. However, when
augmented with literature-mined molecules, MetaCore™™
identified 286 significant pathways with p-values ranging
from 1.253E-17 to 2.397E-2. These 286 pathways were
analysed for their functional groups and were classified
as major if associated with more than 3 pathways, or
minor, if associated with 3 or fewer pathways. The 286
pathways identified were classified in 13 major func-
tional groups and 6 minor groups.

Discussion

Global analysis of TF interaction network of CRC

In the TF interaction network (Figure 2), all 700 interac-
tions were identified using the Gene Ontology Annota-
tion Similarity Score. However, only 264 interactions out
of 700 interactions could be further scored by the

Table 4 Ten top-ranked TF associations with significant
p-values (< 0.5)

TFs association p-value
ESR1: CCND1 1.5E-63
NF-kB: NF-kb-p65 6.13E-42
SMAD2: CBP 9.25E-23
MEF2A: MEF2D 1.145E-21
SMAD3: SMAD2 1.94E-16
SMAD2: SMAD4 2.92E-13
cJun : GCR 9.72E-8
RXRA: NCOR1 1.04E-6
c-JUN: ESRT 2.23E-6
ESR1: SP1 1.56E-5

Protein-Protein  Interaction method. Protein-protein
interaction criteria is significant as it has a greater prob-
ability of revealing an in-vivo interaction of functional
importance [43,44,55,56]; the protein-protein interaction
algorithm is built on structure data, and structure pro-
vides the basis of protein functionality.

We observed that a multi-parametric approach using
both Gene Ontology Annotation Similarity Score and
Protein Interaction Propensity Score can help identify
CRC-relevant interactions that may not have been iden-
tified if only one of the methods was used for con-
struction of the TF interaction network. For example,
when only the Gene Ontology Annotation Similarity
Score was used, interactions between ATF2_HUMAN
and MKO1_HUMAN (MAPK1, ERK) or ELKI_HUMAN
and MKO8_HUMAN (JNK1) were either scored very
low or missed all together. The interaction between
ATF2-MKO1 was identified only in the cellular function
(0.6), but not in the molecular function, when the Gene
Ontology Annotation Similarity Score was calculated.
However, using the Protein Interaction Propensity Score,
this interaction was scored high (0.74) as compared to
cellular and molecular function. This interaction would
also have been missed if only the molecular function for
the Gene Ontology Annotation Similarity Score was used.

Similar observations were made for ELK1_HUMAN
and MK08_HUMAN (JNK1), which had Gene Ontology
Annotation Similarity Scores of 0 for cellular function,
0.67 for molecular function, and 0 for biological process,
but had a Protein Interaction Propensity Score was 0.25.
The MAPK pathway, which is known to be important in
CRC [57-59], is not well established in literature with re-
spect to ATF2 and MKOI interaction. Similarly, ELK-1
and /NK isoforms are known separately as cancer rele-
vant genes regulating important oncogenic pathways,
such as cell proliferation, apoptosis, and DNA damage;
however, their possible interactions and biological conse-
quences in the context of CRC have not been reported
[60]. The identification of this possible interaction then
illustrates the benefit of augmenting literature data with
both Gene Ontology Annotation Similarity and Protein
Interaction Propensity Scores, which increases the prob-
ability of revealing novel interactions, ultimately result-
ing in a larger network perspective on CRC.

Topological network analysis
All the nodes in the interaction network shown in
Figure 2 were evaluated based on three topological
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Schema Nodes TFs identified
Un-weighted 3 p53, E2F1, STAT3, STATI, MEF2A
4 p73, c-Jun, NF-kB-P65, p53, STAT3, NF-kB/TNFRSF11A, ETS1, ETS2, E2F1, c-Myc, SMAD3
5 ESR1, c-Jun, SP1, DANDS, MEF2C, GCR, GRIP1, RARA
6 STAT3, c-Myc, p53, SMAD3, STAT1, NF-KB/TNFRSF11A, ESR1, NF-kB-P65, SP3, IRF1
Weighted 3 E2F1, p53
4 p73, c-Jun, NF-kB/TNFRSF11A, NF-kB-P65, STAT3, ETSIT, ETS2, c-Myc
5 DANDS, ESRI, c-Jun, SP1, MEF2C, GCR, RARA, GRIP1, NRSF
6 STAT3, c-Myc, p53, SMAD3, STAT1, NF-kB/TNFRSF11A, ESRI,

NF-kB-P65, SP3, ATF2, Elk-1

features: degree, betweenness, and clustering coefficient
respectively. As shown in Table 2, p53, c-Jun, c-Myc,
STAT3, NF-kB-p65, NF-kB/TNFRSFI11A, SMAD3, SPI,
STAT1, E2F1, MEF2A, and GCR were highly scored with
respect to all three features. On the other hand, SMAD2,
SMAD4, Elk-1, Lefl, CREM, EP300, JAK2, Aktl, PPARA,
and MK14 were scored by only one of the three topol-
ogical features. This type of topological stratification
can provide a strong triaging basis before further experi-
mental validation.

The top ranking nodes were further analysed for their
significance in CRC using literature evidence. For ex-
ample, p53, which had a maximum degree of 48 and also
scored highly on the other two parameters, is known to
be involved in pathways important in CRC in addition to
having \prognostic value [61,62]. In the case of c-Jun, its
activation by /NK is known to be critical for the apop-
tosis of HCT116 colon cancer cells that have been trea-
ted by curcumin, an herbal derivative with anti-cancer
properties [63,64]. Another important molecule identi-
fied was STAT3, which is a key signalling molecule re-
sponsible for regulation of growth and malignant
transformation. STAT3 activation has been shown to be
triggered by IL-6, and a dominant negative STAT3 vari-
ant impaired IL-6-driven proliferation of CRC cells
in vitro [65-67]. Other examples of TFs with high node
scores within the TF interaction network of CRC are

Table 6 TFs associated with bottom 3 modules

shown in Table 2. Analysis of these results shows that a
majority of the TFs identified using literature augmented
data and scored using topological methods are known to
be highly relevant with respect to CRC.

Ranking transcription factors using multi-level,
multi-parametric features

On comparing the results of un-weighted and weighted
feature analysis methods, as shown in Table 3, it can be
seen that six of the top ten nodes, p53, c-Jun, STAT3,
ABLI, ¢-Myc, and GLI11, were common to both. Com-
parison of the nodes obtained using only the topological
features (Table 2) with those nodes obtained using both
topological and biological features (Table 3)revealed that
eight nodes were common to both: p53, c-Jun, STATS3,
c-Myc, RARA, STATI, ESRI, and STAT3. The unique
nodes identified based on both features in Table 3 were
ABLI, GL11, CDC6, ESR2, MKI11, and PIASI. Recent
studies have identified GLII as highly up-regulated and
PIASI1as down-regulated in CRC [68-71]. There is no re-
port so far on association of ABLI with CRC, though
BCR-ABLI is the well-known, clinically-relevant drug
target in chronic myelogenous leukema [72]. These ana-
lyses resulted in the identification of additional and im-
portant TFs that underscore the importance of using a
multi-level, multi-parametric approach for ranking TFs.

Schema Nodes TFs identified
Un-weighted 3 REST, ITF2, TF7L2, Elk-1, GATA-1, SRF
4 FOXA1, FOXA2, FOXA3, GLI1, GLI2
5 ESR2, ITF2, TF7L2, Lefl, REST, c-Myc, PPARD, SLUG
6 CREBI, c-Jun, DANDS, SP1, SP3, TNF11, HANDI, VDR, STAT1, STAT3
Weighted 3 GATA-1, ITF2, REST, TF7L2, SRF, Elk-1
4 GLI1, GLI2, FOXA1, FOXA2, FOXA3
5 ESR2, ITF2, Lef1, c-Myc, PPARD, REST, TF7L2
6 CREB1, cJun, DANDS, SP1, SP3, NF-kB/TNFRSF11A, NF-kB-P65, HAND1, STAT3, STAT1, VDR, KPCA
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Validation of proteins and its interaction

More than 60% of the proteins in the interactions were
associated with KEGG colon cancer pathways, KEGG
cancer pathways, or HPRD cancer signalling pathways.
This indicates the relevance of the constructed network
with respect to cancer. Additionally, 55% of the interac-
tions were annotated as HIGH, 35% as MEDIUM and
10% annotated as LOW, indicating the relevance of the
network with respect to CRC. After annotating with
HIGH, MEDIUM, and LOW, a Random Forest classifier
was used to elucidate the significance of the networks.
The precision/recall for the weighted schema was 0.75
and 0.742 respectively, while for un-weighted, it was
0.63 and 0.57 respectively. The ROC for weighted
schema was as follows: HIGH = 0.957, MEDIUM = 0.835
and LOW =0.82. These ROC scores suggest that the
multi-parameter approach that was developed can help
to identify relevant TFs in the TF interaction network of
CRC.

The second node prioritization method, using hyper-
geometric distribution, helped identify functional asso-
ciations of the TF nodes within the TF interaction
network of CRC. Using this method, 83 associations
with p-value <0.05 that involved 26 unique TFs were
identified. Table 4 shows the 10 highly-scored associa-
tions along with their p-values. When compared with
the results from Table 2 and Table 3, the hypergeometric
distribution method identified nine additional TFs: ATF-
2, ETS1, FOS, NCORI1, PPARD, STAT5A, RARB, RXRA,
and SP3.

These TFs were then analyzed using the literature in
order to confirm any association with CRC. We found
that many of these TFs have not been extensively studied
in CRC, if at all. ATF-2 stimulates the expression of c¢-Jun,
¢yclin D, and cyclin A, and it is known to play a major
oncogenic role in breast cancer, prostate cancer, and
leukemia [73]. However, little is known with respect to
the role of ATF-2 in CRC, except for a recent study that
identified ATF-2 over-expression associated with ATF-3
promoter activity in CRC [74]. Similarly sporadic evi-
dence supports the notion that PPARD and PPAR-§ are
linked to CRC [75,76]. However, several others in the list
have not yet been shown to be important in CRC. For
example, RXRA/RARA, the ligand dependent TFs, have
not been directly associated with CRC, but have been
found to be associated in the network with PPAR s,
which in turn has been linked to CRC. The MEF2 family
of TFs, which are important regulators for cellular differ-
entiation, have no known direct association with CRC,
but MEF2 is known to associate with COX-2, whose ex-
pression plays an important role in CRC. MEF2 is ac-
tivated by the MAPK signalling pathway, along with
activation of Elk-1, c-Fos, and c-Jun. Activation of the
latter pathways have been shown to contribute to
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hormone-dependent colon cancer [77]. It appears that
the hypergeometric distribution analysis has identified a
new group of TFs of potential importance to CRC by
virtue of their interaction with genes that are known to
play an important role in CRC, although these TFs
themselves are not known to have any direct role in
CRC.

Module analysis

As stated earlier, proteins that are affiliated within a
module are more likely to have similar functional prop-
erties [52]. For this analysis, the modules considered
were sized in the range of 3 and above. This larger mod-
ule size identified low connectivity nodes which other-
wise would have been missed using only the topological,
hypergeometric analysis or smaller modules (i.e., only 2
or 3 nodes).

Table 5 shows the TFs that were associated with the
10 highest-ranked modules, all of which had p-values <
0.05 (from equation (13)). Table 6 shows the TFs identi-
fied in the bottom ranked 5 modules. Twenty TFs were
common among the 10 top ranked modules. The five
TFs unique between the two scoring schemas were:
MEF2A, SP3, IRF1, ATF-2, and Elk-1. IRFI, SP3 and
ATF-2 were additionally not identified as high-scoring
TFs in Table 2, 3, and 4. IRFI was identified among the
top scoring modules in association with PIASI, SP3, and
HIF1A. Of these associations, HIFIA over-expression
along with PIASI has been studied amd identified to be
associated with CRC. HIFIA has also been associated
with poor prognosis, and it is currently under consider-
ation as potential biomarker [78].

This module-level analysis also identified many new
TFs associated in the lower-scoring modules. The TFs
associated with the lower scoring modules listed in
Table 6 include VDR, HANDI1, GLI1, GLI2, PPARD,
Lefl, FOXA2, GATA-1, REST, ITF-2, TF7L2, and SLUG.
Out of this group, GATA-1 presents an example as a
novel TF with a possible link to CRC. The loss of ex-
pression of the GATA family is associated with several
cancers; loss of expression for GATA-4 and GATA-5, in
particular, have been reported in CRC [79]. No literature
evidence is available for the relationship between GATA-1
and CRC, but our analysis warrants further study in this
direction. Similar analysis and follow-up experimental val-
idation of all the remaining TFs identified in both the
high- and low-scoring modules can improve understand-
ing of their relevance with respect to CRC.

Further analysis of high-scoring modules showed that
the 3-node modules were mainly associated with p53,
particularly via E2F1. The 4-node modules were ranked
highly when the TFs c-Jun, p53, and NF-kB-p65, all of
which are known to be highly relevant to CRC, were
present. One of the highly scored 6-node modules
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was associated with ATF-2:p53;JNKI:Elk-1:EPHB2:HIFIA
(Figure 3). EPHB2 has been associated with the Ras path-
way, which in turn is a prominent oncogenic driver in
CRC [80], while Eph receptors have been identified to be
important in CRC [81], though more studies are neces-
sary for better understanding their specific role in CRC.
HIF1A over-expression is linked to serrated adenocar-
cinomas, a molecularly distinct subtype of CRC [82].

Also noteworthy among the 6-node modules is the
interaction between Elk-1 and JNK (Jun N terminal ki-
nase) isoforms (MK09 and MKI10 are JNK2 and /NK3,
respectively), as there are many promising potential links
between JNK isoforms and CRCs. These potential links
include the established roles of /NKs in the development
of insulin resistance, obesity, and Crohn’s disease [83],
all of which are well-known pre-disposing factors for
CRC [84]. The /NKI isoform promotes cancers of the
liver, stomach, skin, and ovary [85,86], so it is plausible
that other isoforms may also be involved in cancer. One
of these isoforms, /NK2, is known to regulate breast can-
cer cell migration [87] and has been reported to play a
dual role (both tumor promotion and suppression) in
liver cancer [88].

The /NK interacting partner, Elk-1, is one of the crit-
ical downstream components of the Ras-MAPK path-
way, but efforts to target this pathway using Ras or MEK
inhibitors have failed to produce clinical benefits in
CRCs and many other types of cancers [89]. One logical
explanation for this lack of clinical efficacy is the exist-
ence of one or more compensatory mechanisms to en-
sure the activation of same downstream component, in
this case Elk-1, and related TFs. JNK is known to phos-
phorylate Elk-1 on the same site as ERK1/2 and Ser-383,
allowing for regulation of its transcriptional activation
function [90]. The consequence of JNK-induced Elk-1
activation is not completely clear, but it is known to play

s Y

HIF1A

Figure 3 The novel, highly-scored functional module identified
shows the association of ELK-1:JNK1 and EPHB2:HIF1A.
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a role in cell proliferation and differentiation [91,92].
Elk-1 and JNK isoforms are known cancer-relevant genes
that separately regulate important oncogenic pathways,
including cell proliferation, apoptosis, and DNA damage
pathways [83,93]. Both Elk-1 and JNK have been estab-
lished as important drug targets in cancer, though not in
CRC, and have multiple drugs/inhibitors that are in vari-
ous phases of clinical trials [85,89]. Therefore, it is plaus-
ible that an active JNK-Elk-1 pathway in CRC could
potentially confer resistance to Ras or MEK inhibitors,
presenting a new drug targeting strategy.

A third example of CRC-relevant TFs identified via
the methodology used in this paper is GATA-1, which
was identified in the 5-node module along with RUNX1-
SPI. Recent studies have shown the association of
RUNX1 and RUNX2 with TGF-beta signalling pathways
in colorectal cancer [94], suggesting a potential associ-
ation of GATA-1 with CRC through RUNXI-SPI. Our
module analysis also revealed several less-studied TFs
and their associations in CRC that may be of interest for
future studies. These include IRFI and STAT3 in the
5-node module, as well as Bcl-2’s associations with 5
different TFs (STAT3, NF-kB, ESRI, p53, NF-kB-p65)
in the 6-node module.

These analyses show the advantages of using a multi-
level, multi-parametric feature for analysing TFs of im-
portance both in CRC and in other diseases. As each of
the analysis processes employs different criteria for rank-
ing, biologists will have greater, knowledge-driven power
to identify and select targets for further validation.

Validation using pathway analysis

To better understand the significance of the highly-
ranked TFs, modules, and the overall TF interaction net-
work, all 2,634 proteins (output from BIOMAP) were
analysed using MetaCore™™ for their significance in vari-
ous pathways from the original bait list (39 pathways)
and the literature augmented data-generated list (286
pathways). Figures 4A and B show the comparisons be-
tween the rankings and p-values of the bait list and the
literature augmented pathways. For analytic purposes,
the 286 pathways were further classified according to
their functional groups as given by MetaCore™™. Table 7
shows the frequency distribution of these pathways with
respect to their functional groups. From Table 7 it can
be observed that the top three functional groups were
Development, Immune Response, and Apoptosis and
Survival, which are well-known in CRC. Chemotaxis,
which is also listed in Table 7 as associated with four
pathways, is the unidirectional movement of a cell in re-
sponse to any given chemical gradient, which plays
an important role in innate and acquired responses.
The four chemotaxis-associated pathways were the
CXR4 signalling pathway, inhibitory action of IL-8
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Figure 4 A Ranking comparison between the Bait list pathways and Literature Augmented Data pathways. B: p-value comparison

and leukotriene B4-induced neutrophil-migration, and
leukocyte and chemotaxis, all of which have been asso-
ciated with CRC in literature [95,96], as well as Lipoxin in-
hibitory action of fMLP-induced neutrophil chemotaxis
pathway. This last pathway has not been well-studied in
CRC, though lipoxins are known to be associated with
anti-inflammatory and proresolving mediators in CRC
[97]. The analysis of the chemotaxis functional group
demonstrates that while using a small bait list or list of
experimental proteins may not fully depict the global pro-
file of a disease, using literature augmented data can help
to expand this profile and further help to understand new
pathways with respect to disease.

It is possible that functional grouping shows a
greater preponderance of pathways in areas where
TFs appears to be the major mode of regulation (e.g.,
development, immune response, and survival) and
lower prevalence of pathways in areas where post-
transcriptional mechanisms play major regulatory role
(e.g., signal transduction, DNA damage, and cytoskel-
eton regulation) due to the text mining process’s focus
on ‘transcription factors’. Nonetheless, the top three
functional groups are all primarily responsible for gen-
eral cell fate determination, and deregulation of all
these pathways is known to be the underlying basis of
oncogenesis.
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Table 7 Relationship between functional groups and
number of pathways (13 major functional groups
with >3 pathways and 6 minor functional groups
with <3 pathways) Total Number of Pathways =286

Functional groups

Number of pathways

Page 16 of 21

Global analysis of TFs in CRC pathways

Figure 5 shows the TF distribution profile in each func-
tional group for which the connectivity profile was ana-
lyzed. The Development, Immune Response, Transcription,
and Apoptosis and Survival functional groups were asso-

Development 75 ciated with the highest number of TFs (54, 48, 24, and
Immune response 59 20, respectively), whereas the Chemotaxis and Muscle
Apoptosis and survival 23 Contraction functional groups were associated with 2

. and 1 TFs, respectively. The most highly-ranked TFs
G-protein signaling 18 . o .

o identified through the analysis, p53, c-Jun, and c-Myc,
Transcription 16 were identified in multiple functional groups. TFs such
Cell cycle 14 as RARA/RXRA, VDR, and GATA, which are specific to
Cell adhesion 1 certain functional groups, were identified in our ranking
Cytoskeleton remodeling 11 analysis as well.

DNA damage 8 The global analysis that was carried out in this work
. 4 provides a distinct advantage by enabling the visual-
Signal transduction 6 o

' ization of all network TFs at a glance. It can be seen that
Translation 0 the highest connectivity TFs varied from one functional
Muscle contraction 3 group to another - STAT3 had 39 connections in Devel-
Chemotaxis 4 opment, p53 had 26 connections in DNA Damage, (iii)
Other small functional groups 14 ¢-Jun had 12 connections in Apoptosis and Survival, (iv)

GATA-1 had 5 connections in Cytoskeleton Remodeling,
and (v) c-Myc had 2 connections in Cell Adhesion.
Though c¢-Myc was not identified with very high

N
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Figure 5 Functional groups and associated transcription factors. The centermost transcription factors are associated with multiple
functional groups. The size of the functional group represents the relative number of pathways and transcription factors associated with it.
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Table 8 Analysis of 5 highly-scored modules in each size category, with respect to functional groups and pathways,

using MetaCore™ from GeneGO

Module Functional groups Pathway (p-value)
Module Size: 3
1. CHK2:p53:E2F1 Apoptosis and Survival DNA-damage-induced apoptosis (1.63E-6)

2. ATR:p53: E2F1 DNA Damage
Apoptosis and Survival
3. APEXT:HIF1A:p53

4. I-22:STAT3:STAT2

5. IL-9R:STAT1.STAT3

Module Size: 4

1. COX-2:NF-kB:p53: NF-kB-p65
2. TNFA: c-Jun: NF-kB:NF-kB-p65
3. p53:c-ABL:c-Jun: p73

4. ETS2:ETS1:c-Jun: c-Myc

5. MAPK11:MEF2C: MEF2A:c-Jun

Transcription
Immune Response

Immune Response

Immune Response
Apoptosis and Survival
Apoptosis and Survival
Immune Response

Immune Response

Module Size: 5
1. BCLX:DANDS:ESRT: c-Jun:SP1 Development
DNA Damage

2. TCF7L2:Lef1:c-Myc: PPARD:NRSF Development

ATM/ATR regulation of G1/S checkpoint (5.7 E-8)
DNA-damage-induced apoptosis (1.63E-6)

Role of AKT in hypoxia HIF1 activation (1.63E-9)
IL-22 signalling pathway (4.51E-6) (Inflammation)
IL-9 signalling pathway (1.64E-5)

MIF in innate immunity response (1.48E3) (Inflammation)

TNFR1 signalling pathway (2.44E-14)

p53 dependent apoptosis (7.67 E-9)

ETV3 effect on CFSI promoted macrophage differentiation(1.04E-5)
Function of MEF2 in T lymphocytes (0.0003)

TLR-signalling pathways (8.63E-10) (Inflammation)

Prolactin receptor signalling (3.52E-10)
Role of Brcal and Brca2 in DNA repair (8E-13)
Whnt signalling pathway (2.45E-11)

connectivity in any one functional group, it was present
in almost every functional group (and also as a priori-
tized TF). Additional files 3, 4 and 5 provide the Gene
Ontology molecular function and hub nodes for all the
functional groups and the connectivity profile order of
the TFs in each functional group.

Table 8 shows the highly scored modules that were
analysed with respect to their associated functional
groups, pathways and GO Terms From this table it can
be observed that the modules identified belonged mostly
to the Apoptosis and Survival, Immune Response, DNA
Damage, Development, and Transcription functional
groups. Microsatellite instability due to defective DNA
repair pathways and impairment of pathways that are
developmentally conserved (e.g., Wnt/beta-catenin path-
way) are the key molecular drivers of CRC origin, valid-
ating the significance of identifying the DNA Damage
functional. Moreover, three of the modules were also
associated with pathways are specific to inflammation,
providing new clues to possible mechanisms for the
widely accepted CRC-predisposing effect of inflamma-
tion. Thus the approach we developed not only validated
some of the well-established paradigms of CRC biology
but also provided actionable clues to yet-unstudied po-
tential mechanisms. From this table it can be concluded
that our methodology was able to reveal TFs that are
already proven to be prognostic, those are under on-
going studies for verifying prognostic values, and novel
ones that can be further studied. Additional file 6 gives

the profile of the prognostic values for more TFs not
included in Table 8.

Conclusions

The text mining approach developed in this paper was
able to correlate known and novel TFs that play a role in
CRC. Starting with just one TF (SMAD3) in the bait list,
the literature mining process was able to identify 116
additional TFs associated with CRC. The multi-level,
multi-parametric methodology, which combined both
topological and biological features, revealed novel TFs
that are part of 13 major functional groups that play im-
portant roles in CRC. From this, we obtained a novel
six-node module, ATF2-P53-JNK1-ELK1-EPHB2-HIF1A,
which contained an association between JNK1 and ELK1, a
novel association that potentially be a novel marker for
CRC.

The approach identified new possibilities, such as
JNK1, for targeted CRC therapies using inhibitors that
are undergoing clinical trials for non-cancer indications.
Furthermore, pending further validation, some of the
genes identified by our approach with possible new links
to CRC may well prove to be new biomarkers for drug
response and prognosis in CRC. For further follow-up,
we plan to work on multiple bait lists, annotate the text
mining data with gene expression, identify the gene sig-
natures for the known and novel pathways, use in-vitro
model validation, and, ideally, develop clinical trials.
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