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Abstract

Background: Hepatocellular carcinoma (HCC), one of the most common cancers world-wide occurs twice as often
in men compared to women. Predisposing conditions such as alcoholism, chronic viral hepatitis, aflatoxin B1
ingestion, and cirrhosis all contribute to the development of HCC.

Methods: We used a combination of methylation specific PCR and bisulfite sequencing, qReal-Time PCR (qPCR),
and Western blot analysis to examine epigenetic changes for the Polo-like kinases (Plks) during the development of
hepatocellular carcinoma (HCC) in Plk4 heterozygous mice and murine embryonic fibroblasts (MEFs).

Results: Here we report that the promoter methylation of Plk4 CpG islands increases with age, was more prevalent
in males and that Plk4 epigenetic modification and subsequent downregulation of expression was associated with
the development of HCC in Plk4 mutant mice. Interestingly, the opposite occurs with another Plk family member,
Plk1 which was typically hypermethylated in normal liver tissue but became hypomethylated and upregulated in
liver tumours. Furthermore, upon alcohol exposure murine embryonic fibroblasts exhibited increased Plk4
hypermethylation and downregulation along with increased centrosome numbers and multinucleation.

Conclusions: These results suggest that aberrant Plk methylation is correlated with the development of HCC in
mice.

Background
The Polo-like kinases (Plks) are a highly conserved
family of serine-threonine kinases, found from unicellu-
lar eukaryotic organisms to higher multicellular eukar-
yotes. The mammalian Plks (Plk1-4) have been shown
to play major roles in cell cycle regulation, centrosome
dynamics and the cellular response to stress. Further-
more, perturbations in individual Plk protein levels have
been associated with malignancies. For example, high
levels of Plk1 are indicative of a poor prognosis in eso-
phageal, non-small cell lung cancer and oropharyngeal
carcinomas [1,2] and have been observed in various
forms of cancers including gastric, breast, ovarian, endo-
metrial, gliomas, thyroid and melanomas [3]. In contrast,
Plk3 is downregulated significantly in carcinomas of the
lung, head and neck [4,5]. The Plk2 gene is downregu-
lated in lymphomas and B-cell malignancies [6]. In the
case of Plk4, over 50% of aged Plk4 heterozygous

(Plk4+/-) mice develop tumours in comparison to only
3% of their wild-type littermates, the major site of
tumour formation being the liver and lung [7]. In mice,
Plk4 is haploinsufficient for tumour suppression, while
in humans, loss of heterozygosity (LOH) for the Plk4
gene was found in 60% of a small sample of human
hepatocellular carcinomas (HCC) cases [7]. The
increased rate of tumourigenesis is likely related to the
generation of aneuploidy, as altered Plk4 levels result in
abnormal centrosome numbers [8], furthermore Plk4
may also play a key role in a DNA damage response
pathway consistent with its phosphorylation of p53 [7],
and Chk2 [9]. In general, overexpression of Plk1 is typi-
cally considered to be oncogenic in nature while the
remaining Plks likely function as tumour suppressors.
Recently it has become evident that the hypermethyla-

tion of CpG islands of tumour-suppressor genes, histone
modification and chromatin remodelling are common
events in cancers (for review see [10]). Individual Plk
gene epigenetic modifications associated with malig-
nancy have previously been documented for Plk2 where
its methylation-dependent silencing was detected at a
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high rate in B-cell malignancies and Burkitt’s Lym-
phoma as well as in follicular lymphoma [11,12]. The
correlation between the methylation status of the Plks
and malignancy has not been studied in detail. In this
regard, as noted below, we initially identified a gender
disparity for the development of HCC in Plk4+/- mice.
Previously, the development of HCC was attributed to
haploinsufficiency for Plk4 rather than via loss of het-
erozygosity [7]. Given that there is accumulating evi-
dence that epigenetic changes are a driving force in the
development of HCC [13], we were interested in deter-
mining whether a relationship exists between individual
Plk epigenetic modifications in the context of Plk4 hap-
loinsufficiency and the development of HCC.

Results and Discussion
Plk methylation status in ageing mice and HCC samples
Sex specific predisposition to cancer may reflect the
underlying effects of the methylation patterns of key
cancer genes. While the mechanism remains unclear,
gender disparity for HCC has previously been established
in both humans and mice, where males are 3-5 times
more likely to develop HCC than females [14,15]. There-
fore, in the present study, we examined the rate of HCC in
female and male Plk4+/- mice and found that in females
the rate of HCC was approx 12% (n = 32) in comparison
to 35% (n = 60) in male Plk4+/- mice, indicative of a gen-
der disparity for HCC development. An analysis of the
mouse and human sequence databases revealed that three
of four murine and all four human Plk genes have CpG
rich regions at their 5’ termini suggesting they may also be
subject to regulation by promoter methylation. We exam-
ined the methylation status of the promoter region of the
Plk genes from DNA extracted from aging mice for
normal liver and liver tumours, and detected an increase
in methylation status of the Plk4 gene in 22/29 tumours
including 16/22 liver tumours studied in male mice
(Figure 1a). Methylation status was confirmed via bisulfite
sequencing of the Plk4 CpG island, in which 30-40% of
the 38 CpG sites analyzed were methylated (Additional
File 1). In contrast to the situation in males, we detected
no Plk4 methylation in a small number of liver tumours
found in females. Interestingly, at 6 months of age, no sig-
nificant level of Plk4 CpG island methylation was detected
in either male or female livers (Figure 1b). However, at
9 months of age and corresponding to our observed phe-
notype in aged mice, higher levels of Plk4 promoter
methylation were detected in male mice in comparison to
their female littermates (Figure 1c). In total, almost 80% of
the HCC samples examined were methylated at Plk4
(Figure 1d). Similar disparities in the methylation status of
individual genes associated with malignancy were pre-
viously found for RASSF1A in lung cancer, with males
showing higher levels of methylation [16].

The effect of aberrant Plk methylation on expression
Lower Plk4 levels likely play a role in malignancy by
affecting genomic stability through a mechanism related
to Plk4’s role in centrosome duplication [8] and/or DNA
damage pathways [17]. We therefore examined the levels
of Plk4 transcripts and found that the levels were sub-
stantially lower in males versus female mice as early as
9 months of age (Figure 1e) and were greater than
10 fold lower in livers and liver tumours from aged
Plk4+/- mice compared to wild type males and females
and Plk4+/- females (Figure 1f). Similarly, Plk4 protein
was also significantly reduced in tumours (Figure 1g). It
is noted that, while livers from Plk4+/- mice were grossly
normal, they displayed variable amounts of Plk4 tran-
scripts with an average that is significantly lower than
that found in Plk4+/+ mouse livers. Similarly, at the pro-
tein level, in Plk4+/-, we see varied amounts. It is noted
that the Plk4+/- mice typically develop HCC 18-24
months on with some cases as early as 13 months. We
propose that this likely reflects varying stages of progres-
sion towards the development of HCC; suggesting that
reduced levels of Plk4 as a result of promoter methyla-
tion may precede the appearance of visible tumours. Low
levels of Plk4 have been shown to result in the generation
of mono-polar spindles and aneuploidy in both cell lines
and tissues [7,8]. This exemplifies the possibility that epi-
genetic modifications may play a role in gender biases for
malignancy and corresponds to our observation that epi-
genetic modifications of the Plk4 gene leads to further
Plk4 downregulation, particularly in males.
There is accumulating evidence that the Plk family of

proteins often share the same targets or signalling path-
ways, thereby placing their substrates under tighter or
opposing controls [18]. It was therefore of interest to
determine whether Plk4 haploinsufficiency was also cor-
related with altered CpG island methylation and expres-
sion levels for the remaining Plks. Unlike the situation
found in haematological malignancies [11], we found no
significant change in either the methylation status or
expression levels for Plk2 in tumours, aging mice or
association with gender (Figure 2a-b). There were also
no discernible changes in Plk3 protein levels (Figure 2c).
Interestingly, the methylation status for Plk1 was oppo-
site to that for Plk4. Normal tissue, regardless of age,
showed methylation in the Plk1 promoter region in 80%
of the samples tested (Figure 3a-b). However, Plk1 was
found to be hypomethylated in 80% of HCC and other
tumours found in Plk4+/- mice (Figure 3a-b). Further-
more, this loss of promoter methylation corresponded
to a large increase in Plk1 transcript levels (Figure 3c)
and an increase in Plk1 protein level in HCC samples
relative to normal liver tissue (Figure 3d). While the
presence of increased Plk1 protein within tumours is by
no means novel and is consistent with its potentially
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oncogenic role in malignancy, our findings indicate a
novel mechanism for Plk1 regulation in that its expres-
sion may be influenced by its promoter methylation sta-
tus, and, our results suggest that the transforming
capacity of Plk4 heterozygosity may be linked to aber-
rant methylation of Plk1 and Plk4.

Plk methylation status in human HCC samples
In order to determine if Plk4 methylation status is corre-
lated with the development of HCC in humans, we also
examined a limited number of human liver samples (See
Additional File 2). We found that in normal human hepa-
tic tissue the Plk4 promoter region was not methylated in
samples taken from patients with no history of HCC.
In the case of HCC samples, we detected Plk4 CpG island

hypermethylation and downregulation of Plk4 transcript
levels as well as barely detectable methylation of the Plk1
promoter region. In 3 of 6 samples we found that the
corresponding Plk1 transcript levels were higher than in
the normal control (Additional File 2e). We did not
detect any changes for Plk2 and Plk3 promoter methyla-
tion (data not shown). Since we began this aspect of our
study, Pellegrino et al. (2010) examined a large cohort of
human HCC samples and reported Plk2-3 downregula-
tion in human hepatocellular carcinoma correlated with
either promoter hypermethylation and/or loss of hetero-
zygosity at the Plk2-3 loci [19]. In the case of Plk4, many
of the samples displayed loss of heterozygosity with no
methylation within the Plk4 promoter region. They did
not report any analysis for the methylation status of Plk1.

Figure 1 Plk4 CpG island methylation and expression levels in elderly Plk4+/-male mice and HCC samples. Shown in each case (a-c) is a
representative figure of typical results based on determination of Plk4 promoter methylation in 6-9 females and males for both Plk4 wild type
and Plk4+/- genotypes. (a) Methylation status of Plk4 promoter regions of genomic DNA extracted from liver tumours in Plk4+/- mice as
determined by MSP. U = unmethylated, M = methylated. (b) Plk4 CpG island methylation of liver samples from mice aged 6 months and (c) 9
months. (d) Graphical representation summarizing percentage of Plk4 promoter methylation in liver tumours from 18-24 month old Plk4+/- male
mice. (e) Relative levels of Plk4 transcripts as determined by qPCR. RQ values were normalized to the level of Plk4 transcripts in livers from 9
months old Plk4+/+ animals. The error bars represent the upper and lower limit of the standard error from the mean expression level (RQ).
(f) Relative levels of Plk4 transcripts in liver tissue and tumours from elderly mice. (g) Level of Plk4 protein in liver tissue extracts as determined
by Western blot analysis. Actin levels were used as a loading control. N = normal tissue, T = tumour tissue.
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Their inability to detect methylation changes for Plk4 and
ours for Plks2-3 may be a reflection of the use of different
primers for methylation specific PCR (MSP) (Additional
file 3) which samples a small subset of the potentially
methylated residues within a CpG island. Together these
results suggest that in general, epigenetic changes within
the Plks may contribute to malignancy in humans.

Global methylation status and p53 activity
In general, global hypermethylation increases with age;
however, studies on aberrant methylation of genes asso-
ciated with HCC, like in many other malignancies, are
characterized by an overall general increase in global
hypomethylation along with increased rates of hyper-
methylation of tumour suppressors [20]. We employed
an ELISA-based assay (Epigentek) in order to quantita-
tively measure genomic methylation. Interestingly, we
found no significant difference between the 9 month old
wild type males and age-matched wild type and Plk4+/-

females (Figure 3e). However, consistent with what has
been shown with age progression, we found an overall
increase in the global methylation of genomic DNA in
wild type male mice and both Plk4 wild type and hetero-
zygous female mice from 9 to 20 months. In contrast,
there was a decrease in global methylation in Plk4+/-

male mice over the same time period (*p < 0.05). Further-
more, significantly higher levels of global methylation
were found in young Plk4+/- male mice compared to

their wild type littermates (**p < 0.001), while the oppo-
site is true for the Plk4+/- female mice, where they had
significantly lower levels of global methylation compared
to young wild type females (***p < 0.05). Although, as the
females age, both genotypes have similar levels of global
methylation. These results suggest that there is an inter-
play between gender and Plk4 haploinsufficiency that
affects global methylation in liver tissue.
p53 has also been found to be an upstream negative

regulator of Plk4 via histone deactylation (HDAC) [21].
We therefore examined p53 levels in normal and tumour
tissue and found that both p53 and p21 were upregulated
in tumour tissue compared to the normal tissue (Figure
3f). p53 is also a substrate for Plk4 [22] and p53 levels/
activity are upregulated as a result of haploinsufficiency
in MEFs [17]. These observations suggest that increased
p53 levels/activity, a consequence of Plk4 haploinsuffi-
ciency, may also contribute to repressive chromosome
structure and the reduced transcript profiles seen in aged
and tumourigenic Plk4+/- mice.

The effect of chronic alcohol exposure on Plk4
methylation status in MEFs
Alcohol has become an emerging environmental player in
the modification of the epigenome [23]. In humans,
chronic alcoholism has been shown to increase availability
of blood homocysteines, which in turn modify s-adenosyl
methyltransferase (MATs) levels, an enzyme responsible
for the transfer of methyl groups to DNA. Furthermore,
these patients showed a significant increase in global DNA
methylation by up to 10% [24]. There is increasing evi-
dence that alcohol consumption, a known risk for the
development of HCC, can increase the methylation status
of promoters with a subsequent decrease in gene expres-
sion [24-26]. In liver cells, the presence of alcohol results
in an increase in the formation of reactive oxygen species,
which are in turn responsible for hepatocyte damage, cel-
lular apoptosis, and the tumour promoting effect of etha-
nol [27]. Interestingly, we have preliminary evidence of
increased Plk4 methylation in human cirrhotic livers with
no evidence of viral infection (see Additional File 2). This,
coupled with the associated correlation between alcohol-
ism and HCC development led us to examine the methyla-
tion status and expression of the individual Plks in a cell-
based model of chronic ethanol exposure.
When wild type MEFs were exposed to a 25-50 mM

dose of alcohol for 7 days, we found increased Plk4 pro-
moter methylation and a significant decrease in corre-
sponding Plk4 transcript levels (Figure 4a-b). (Note that
in MEFs there was no methylation detected for the Plks
pre-treatment). We also observed an increase in Plk1
promoter methylation although in this case the change
in expression was not significant, displaying a large
degree of variation. Furthermore, we found a large
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Figure 2 Plk2 methylation of CpG island and protein
expression levels for Plk2 and Plk3 in relation to both age and
gender in mice. (a) Levels of Plk2 protein in liver tissue extracts as
determined by Western blot analysis. (b) Plk2 CpG island
methytlation status as determined by MSP analysis. (c) Levels of Plk3
protein in liver tissue extracts as determined by Western blot
analysis. Shown are representative figures of 6-9 females and males
for both Plk4 wild type and Plk4+/- genotypes. N = normal, T =
tumour. Note: we did not analyze Plk3 for methylation status as no
CpG islands were detectable for the Plk3 gene with MethPrimer.
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increase in the proportion of cells containing multiple
centrosomes or multinucleation (Figure 4c), phenotypes
correlated with reduced Plk4 levels in Plk4+/- mice [7].
Additionally, this observation mimicked the effect of
lower Plk4 levels evident in Plk4+/- MEFs, which display
increased centrosome numbers and ploidy with passa-
ging [28,29]. Unexpectedly, in contrast to the situation
found in vivo for chronic alcohol exposure [24-26], we
found no evidence for increased global hypomethylation
in MEFs (Figure 4d). However, these results do suggest
that in MEFs that the Plk4 promoter may be a target for
regulation by methylation in response to metabolic
stress. This idea is supported by the fact that chronic
alcohol exposure of MEFs has been shown to increase
levels of reactive oxygen species (ROS) [30], as well as
increase levels of p53 and p53 downstream targets such
as p21 [31]. Interestingly, consistent with this p53 has
been shown to indirectly repress Plk4 expression via
HDAC in response to stress [22]. Additionally,
while ROS have generally been shown to induce global

hypomethylation [32], there is increasing evidence that
they may also induce promoter hypermethylation.
For example, both the E-cadherin and catalase
promoters have been shown to become methylated post
ROS exposure [33,34]. This is an area for future
consideration.

The effect of concurrent drug treatment on MEFs
chronically exposed to alcohol
Unlike mutations or deletions that lead to the aberrant
expression of tumour suppressor genes, epigenetic modifi-
cations, like DNA methylation, are reversible via the use
of hypomethylating drugs that inhibit DNA methyltrans-
ferase activity and/or inhibit HDACs [35]. Concurrent
alcohol and epigenetic drug treatments revealed that 5-
aza-2’-deoxycytidine, a DNA hypomethylator, and valproic
acid, which has been shown to be an HDAC inhibitor, par-
tially restored Plk4 transcript levels, while no significant
differences were seen with trichostatin A (an HDAC inhi-
bitor) treatment (Figure 4e).

Figure 3 Analysis of Plk1 CpG island methylation status and expression, global methylation, and expression levels for p53 and p21 in
normal and liver tumour tissue samples. (a) Plk1 CpG island methylation status for HCC samples compared to normal tissue as determined by
MSP for aged-matched littermates. U = unmethylated, M = methylated. (b) Graphical representation summarizing the percentage of methylated
Plk1 promoters in both normal liver tissue and tumours. (c) Plk1 transcript levels in normal liver and HCC samples as determined by qPCR. RQ
values were normalized to the level of Plk1 transcripts in Plk4+/+ livers. The error bars represent the upper and lower limit of the standard error from
the mean expression level (RQ) (d) Plk1 protein levels were examined by Western blot analysis. GAPDH protein levels were used as a loading
control. N = normal, T = tumour. (e) The percent of global methylation of genomic DNA extracted from liver was determined by an ELISA assay
specific for methylated DNA. (*p < 0.05), **p < 0.001, ***p < 0.05). The error bars represent the upper and lower limit of the standard error (f) p53
and p21 protein levels as detected by Western blot analysis. GAPDH levels were used as a loading control. N = normal, T = Tumour.
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Modification of the methylation status and corre-
sponding expression levels of both Plk4 and Plk1 are
likely contributing factors in the development of HCC
in both mice and humans. This creates interesting possi-
bilities in that epigenetic modifications are potentially
reversible through the use of demethylating and HDAC
inhibiting drugs as both prophylactic and therapeutic
tools. This may lead to the development of novel treat-
ment options for HCC.

Conclusions
We determined that a gender disparity exists for the
development of HCC in the Plk4 mouse model. This dis-
parity was correlated with increased DNA methylation at

the Plk4 locus and higher risk of developing hepatocel-
luar carcinomas in aged male Plk4 heterozygous mice as
compared to female mice. In contrast, we discovered the
opposite correlation for Plk1 where in normal liver tissue
the Plk1 promoter is hypermethylated while in tumours,
Plk1 CpG islands become hypomethylated and the gene
upregulated. This represents a novel form of regulation
for Plk1 that may have implications for its expression in
other tumour types. Furthermore, we determined that
chronic alcohol exposure, well known to be implicated in
the development of cirrhosis leading to HCC, also leads
to Plk4 promoter hypermethylation and downregulation,
accompanied by defects in the control of centrosome
numbers and by the occurrence of multinucleation in

Figure 4 The effect of chronic ethanol exposure on murine embryonic fibroblasts (MEFs). (a) MEFs were exposed to ethanol for a period
of 7 days at which time the methylation status of individual Plk CpG islands was determined by MSP analysis. U = unmethylated, M =
methylated. (b) Plk4 and Plk1 transcript levels in Plk4 wild type (Plk4+/+) MEFs were determined after 7 days of ethanol exposure by qPCR. RQ
values were normalized to the level of transcript found in untreated control MEFs. Standard error was calculated based on the minimum and
maximum values from the mean expression levels (RQ) (c) Immunofluorescence analysis Plk4+/+ MEFs exposed to 25 mM and 50 mM ethanol for
a period of 7 days. Centrosomes were detected by g-tubulin staining and DNA by Hoechst staining. A graphical representation of cells exhibiting
multiple centrosomes and multinucleation is underneath. Shown are the results of three independent experiments in which more than 200 cells
were analyzed each time for each condition. Error bars indicate standard error. (d) Global methylation analysis of genomic DNA from MEFs after
7 days alcohol exposure as determined by MSP analysis of B1 elements. The error bars represent the upper and lower limit of the standard error
from the mean. (e) Plk4 transcript levels as determined by qPCR of MEFs exposed to ethanol for 7 days in the presence of 5-aza-2’deoxycytidine
(AZA), trichostatinA (TSA) and valproic acid (VPA). RQ values were normalized to the level of Plk4 transcript in untreated control MEFs. The error
bars represent the upper and lower limit of the standard error from the mean expression level (RQ).
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cells. Aberrant Plk4 methylation and expression in
chronically exposed MEFs could be rescued by treatment
with known hypomethylating and/or HDAC inhibiting
drugs.

Methods
Methylation specific PCR and global methylation
DNA from tissues was extracted as follows: 20-60 mg of
tissue was digested with Pro K at a concentration of
0.5 mg/mL for 48 hrs at 55°C, followed by phenol chloro-
form extraction. DNA from formalin fixed paraffin
embedded tissue was isolated using the FFPE DNA isola-
tion kit following manufacturer’s instruction (Qiagen).
DNA from cells was isolated by trypsinization for 5 min-
utes, neutralization with media, centrifugation at 100 g
for 5 minutes, resuspension with 200 ul of media, fol-
lowed by Pro K treatment (20 mg/mL). Bisulfite modifi-
cation was performed as previously described by Herman
et al. 1996 [36]. The DNA was further purified with a
Wizard Mini DNA clean up kit (Promega), followed by
desulfanation with 2M NaOH for 10 min and ethanol
precipitation. MSP was performed after bisulfite treat-
ment of DNA. Mouse fully methylated genomic DNA
(NEB) was used a as a positive control when assessing
murine Plks. Primers were designed via MethPrimer [37]
within the CpG islands of each individual Plk gene (see
Table 1). Global methylation levels for liver tissue were
determined by the MethylFlash Methylated DNA Quanti-
fication Kit (Epigentek), an ELISA-based colourimetric
assay. The assay was done according to the manufac-
turer’s instructions, using 100 ng of genomic DNA. The
Wallac Victor3 1420 multilabel counter was used to mea-
sure the assay at 450 nm. Relative quantification was
determined by normalizing the readings to the positive
control provided with the kit. In ethanol treated mouse
embryonic fibroblasts global methylation was assessed by
determining the methylation status of B1 elements with
MSP as previously described by Jeong et al. 2005 [38].
Briefly, there are 30, 000 copies of the 163 base pair ele-
ment dispersed throughout the mouse genome. Each ele-
ment contains 6 CpG dinucleotides. The methylation
status of these elements is also responsive to DNA

methyltransferase inhibitors like Azacytidine and there-
fore they are excellent indicators of global methylation.
In order to determine the percentage of B1 element
methylation densitometry was performed with analysis
via the Syngene Gene tools version 3.07 software. Statis-
tical analysis on the normalized results were performed
with the Statsoft Statistica v7.0.61.0 and a one-way
ANOVA t-test where p < 0.05 was significant.

Tissue Samples
All murine samples were obtained from our breeding
colony, with all protocols for animals approved by the
University of Windsor Animal Care Committee accord-
ing to the Canadian Council on Animal Care guidelines.
Plk4+/- mutant mice on a 129Sv/CD1 background were
obtained as described [28] and backcrossed with CD1
mice to establish a colony of Plk4 wild type and Plk4
heterozygous littermates. Mice were maintained under
normal light cycle and on regular chow. All tissue sam-
ples were obtained from aged matched littermates. For
murine hepatocellular carcinoma (HCC) samples, it is
noted that Plk4+/- mice develop a high rate of liver and
lung tumours by 18-24 months of age [7] and thus the
analysis was performed on spontaneously occurring
hepatocellular carcinomas.

Cell lines
Mouse embryonic fibroblasts (MEFs) were harvested
from Plk4 wild type CD1 mice at day 12.5 post coitum
as described previously in [28] and cultured with
DMEM supplemented with 20% FBS (Sigma), 1% peni-
cillin G sodium 10,000 U/mL, streptomycin sulphate
10,000 ug/mL, and gentamycin 10 mg/mL.

Western blot analysis
Protein from fresh tissue was extracted using the Tri-
zol reagent (Invitrogen) according to manufacturer’s
provided protocols. Cell lysates were obtained from
cells treated with buffer containing 50 mM Tris-HCl
pH 7.4, 150 mM NaCl, 1 mM EDTA, 0.5% Triton X
with EDTA free protease inhibitor cocktail tablets
(Roche). Western blot analysis was performed using

Table 1 Mouse primer sequences

Target Gene Sense Primer Antisense Primer

Plk1 U 5’aca aac acc tct ttt ata tct aca tc 3’ 5’tgg ttt gag tat tag ttg att ttg g 3’

Plk1 M 5’acg aac acc tct ttt ata tct acg tc 3’ 5’gtt ggt tcg agt att agt cga ttt c 3’

Plk2 U 5’ caa act tta ccc aaa acc tac tcac 3’ 5’ata ggg tta gtt tgg atg ttt gtt t 3’

Plk2 M 5’ aaa ctt tac cca aaa cct act cg 3’ 5’ggt tag ttc gga cgt ttg ttc 3’

Plk4 U 5’cac act ctc cac ttc tta aaa aca a 3’ 5’ att tta tta tta gtg ttt gtg tta tgg 3’

Plk4 M 5’aca ctc tcc act tct taa aaa cga a 3’ 5’ aat tta tta tta gcg ttc gcg tta c 3’

B1 Element U 5’-taa cct caa act caa aaa tcc acc-3’ 5’gtt ggg tgt agt ggt ata tat ttt taa ttt ta 3’

B1 Element M 5’ctcgaactcaaaaatccgcc 3’ 5’ gtc ggg cgt agt ggt ata tat ttt t 3’
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20 ug of total protein. Primary antibodies were as fol-
lows: p53 (Sigma), Plk1 (Abcam), p21, Plk2, Plk3
(Santa Cruz), Plk4, GAPDH (Cell Signaling), and Actin
(Sigma). Secondary antibodies were anti-rabbit (Amer-
sham) and anti-mouse horseradish peroxidase (HRP)
(Sigma).

Analysis of gene expression
RNA was extracted from cells and tissues using the
RNAeasy kit (Qiagen) according to manufacturer’s
recommendations. cDNA was generated using the “First
Strand cDNA synthesis kit” according to the manufac-
turer’s instructions. Quantitative real time PCRs (qPCR)
were conducted in an ABI 7300 instrument using
250 ng of cDNA with TaqMan Gene Expression Assays
(Applied Biosystems) for mouse Plk1 and Plk4. Rodent
GAPDH probe was used as an internal control. Relative
quantity (RQ) values were generated by the ABI 7300
system SDS software. The error bars represent the
upper and lower limit of the standard error from the
mean expression level (RQ) as analyzed by the SDS soft-
ware. The error bars are calculated based on 95% confi-
dence limits.

Immunofluorescence
MEF cells were fixed in 3.7% paraformaldehyde and
probed with a mouse g-tubulin primary antibody
(Sigma) followed by an anti-mouse alexa fluor 568 sec-
ondary antibody (Invitrogen). The cells were then briefly
incubated in Hoescht 33342. Cells were analyzed with a
Zeiss Axioskop 2 mot plus microscope and Northern
Eclipse imaging software. Conditions for immunofluor-
escence were as described previously [28].

Ethanol and drug treatments
Wild type MEFs were exposed to 25 mM or 50 mM
ethanol per day for 7 days. Trichostatin A, 5 aza-2’-
deoxycytidine, and valproic acid were administered con-
currently at concentrations of 1 nM, 10 nM, and
0.5 mM respectively.

Additional material

Additional file 1: Bisulfite sequencing PCR for the Plk4 promoter
region in HCC. The CG sites within the Plk4 promoter were sequenced
in hepatocellular carcinoma cases and compared to a fully methylated
control and normal wild type liver samples

Additional file 2: Profiling the methylation of the Polo-like kinases
in human liver and HCC. Human normal liver and tumour samples
were assessed in order to determine the methylation status of the
individual Plks and to determine the transcript levels of Plk1 and Plk4

Additional file 3: Materials and methods for experiments conducted
in additional files 1 and 2 Contains the description of BSP, MSP, qPCR,
and a table with all the human primers used.
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