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Abstract

Background: Epidermal growth factor receptor (EGFR) and its downstream factors KRAS and BRAF are mutated in
several types of cancer, affecting the clinical response to EGFR inhibitors. Mutations in the EGFR kinase domain
predict sensitivity to the tyrosine kinase inhibitors gefitinib and erlotinib in lung adenocarcinoma, while activating
point mutations in KRAS and BRAF confer resistance to the anti-EGFR monoclonal antibody cetuximab in colorectal
cancer. The development of new generation methods for systematic mutation screening of these genes will allow
more appropriate therapeutic choices.

Methods: We describe a high resolution melting (HRM) assay for mutation detection in EGFR exons 19-21, KRAS
codon 12/13 and BRAF V600 using formalin-fixed paraffin-embedded samples. Somatic variation of KRAS exon 2
was also analysed by massively parallel pyrosequencing of amplicons with the GS Junior 454 platform.

Results: We tested 120 routine diagnostic specimens from patients with colorectal or lung cancer. Mutations in
KRAS, BRAF and EGFR were observed in 41.9%, 13.0% and 11.1% of the overall samples, respectively, being mutually
exclusive. For KRAS, six types of substitutions were detected (17 G12D, 9 G13D, 7 G12C, 2 G12A, 2 G12V, 2 G125),
while V600E accounted for all the BRAF activating mutations. Regarding EGFR, two cases showed exon 19 deletions
(delE746-A750 and delE746-T751insA) and another two substitutions in exon 21 (one showed L858R with the
resistance mutation T590M in exon 20, and the other had P848L mutation). Consistent with earlier reports, our
results show that KRAS and BRAF mutation frequencies in colorectal cancer were 44.3% and 13.0%, respectively,
while £GFR mutations were detected in 11.1% of the lung cancer specimens. Ultra-deep amplicon pyrosequencing
successfully validated the HRM results and allowed detection and quantitation of KRAS somatic mutations.

Conclusions: HRM is a rapid and sensitive method for moderate-throughput cost-effective screening of oncogene
mutations in clinical samples. Rather than Sanger sequence validation, next-generation sequencing technology
results in more accurate quantitative results in somatic variation and can be achieved at a higher throughput scale.

Background

The epidermal growth factor receptor (EGFR) plays a
key role as a receptor tyrosine kinase (TK), controlling
several signalling pathways that stimulate cell growth,
proliferation and survival. Mutations involving the EGFR
axis can cause its constant activation, leading to uncon-
trolled cell proliferation. Not surprisingly, EGFR
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mutations have been identified in several types of cancer
and it is a target of many anticancer therapies, including
small-molecule TK inhibitors (e.g., gefitinib and erlotinib
for lung cancer) and monoclonal antibodies (e.g., cetuxi-
mab and panitumumab for colon cancer). Moreover, the
mutational status of EGFR and its downstream mole-
cules have implications for the responsiveness to treat-
ment and prognosis.

Somatic mutations in the kinase domain of the EGFR
gene (exons 18-21) are reportedly associated with sensi-
tivity of lung cancers to TK inhibitors [1-5]. About 90%
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of the sensitising mutations are in-frame deletions in
exon 19, affecting the conserved amino acids LREA, and
the point mutation L858R in exon 21. Such EGFR muta-
tions increase sensitivity to TK inhibitors, most likely
through induction of critical structural modifications of
the ATP-binding site in the TK domain. Unfortunately,
during the course of treatment, some patients eventually
develop acquired resistance to TK inhibitors, often due
to the secondary T790M mutation in EGFR exon 20
[6,7]. Furthermore, a significant proportion of cancer
patients show no benefit from anti-EGFR therapies
because of the independent activation of downstream
signalling, especially the Ras/Raf/MAPK pathway. Muta-
tions in the KRAS gene occur early in the development
of many cancers and are found in more than 90% of
pancreatic adenocarcinomas, 40% of colorectal cancers
(CRC) and 33% of non-small cell lung carcinomas
(NSCLC) [8]. Commonly restricted to codon 12/13 in
exon 2, and rarely codons 59 and 61 in exon 3 [8,9],
these mutations cause impaired GTPase activity and
result in a continual stimulus for cellular proliferation.
Somatic KRAS mutations have been associated with
resistance to EGFR-targeted agents in lung cancer and
metastatic CRC [10], and are mutually exclusive with
EGFR mutations in large series of NSCLC [4,11].

Likewise, KRAS and BRAF mutations are inversely
associated in CRC, consistent with the fact that both
induce similar effects through the same pathway, since
the B-Raf protein kinase is activated by membrane-
bound Ras. BRAF mutations are found in many types of
cancer, predominantly in up to 80% of melanoma and
nevi [12]. V60OE amino acid substitution in the activa-
tion segment accounts for 90% of BRAF mutations and
is significantly associated with microsatellite instability
[13]. Data from retrospective studies suggest that
mutated BRAF, which is present in 5-10% of colorectal
tumours, can affect the response to anti-EGFR monoclo-
nal antibodies in patients with wild type KRAS [14-16],
40-60% of whom do not respond to such therapy [17].

Current guidelines in the US state that patients with
metastatic CRC being considered for EGFR-targeted
therapies should be tested for KRAS and BRAF muta-
tions [18], and recommend EGFR testing for patients
with advanced NSCLC to predict response to first-line
TK inhibitors [19,20]. Moreover, the European Society
of Pathology has started a helpdesk and a quality assur-
ance program for KRAS testing in CRC [21]. Rapid, sen-
sitive and reliable methods for mutation detection are
therefore required for stratification of patients to receive
molecularly targeted treatment.

High-resolution melting (HRM) is a recently developed
technique that shows great potential for scanning germ-
line and somatic mutations [22]. This method is based on
a real-time PCR amplification in the presence of a
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saturating intercalating fluorescent dye and subsequent
separation of the DNA strands in a temperature gradient,
during which the fluorescence is registered with high
resolution. If there are mutant alleles in the sample, the
formed heteroduplexes of wild type and mutant alleles
are separated at lower temperatures, generating a differ-
ent melting pattern. The HRM assay is useful as a pre-
screening test and positive samples should be sequenced
to identify the specific nucleotide alterations. However, at
the limit of somatic mutation detection with real time
PCR technologies, sequencing by Sanger is not suitable
as a confirmatory method and validation of results may
require a more quantitative sequence variation assay.

Ultra-deep sequencing is undoubtedly the most sensi-
tive technology currently available for mutation scan-
ning. This method is well suited for detection of
somatic mutations, which may be present in a small
fraction of tumour cells within a background of normal
tissue. Benchtop sequencers, like the GS Junior 454,
have brought high-throughput sequencing to molecular
diagnostic laboratories, and development of cancer
mutation detection assays using this platform is there-
fore of special interest.

Herein, we describe a HRM assay to identify hotspot
mutations in EGFR, KRAS and BRAF oncogenes, and
investigate the potential application of ultra-deep ampli-
con pyrosequencing for somatic variation detection in
clinical samples.

Methods

Patient samples

Informed consent was obtained from all patients prior
to the study, which was conducted in accordance with
the Helsinki Declaration and approved by the internal
Clinical Research Ethics Committee (CEIC) of the Hos-
pital de Terrassa (Spain). Analysis of KRAS, BRAF and
EGFR mutations was performed in 120 formalin-fixed
paraffin-embedded (FFPE) tumour samples, according to
the clinicians’ orders. The specimens included 81 CRCs,
27 lung carcinomas and 12 metastatic tumours from
primary colorectal (n = 2) or lung (n = 10) cancers.
Before starting the routine mutation testing, an addi-
tional series of 32 CRC samples was used to compare
our results with those obtained in another centre using
the DxS TheraScreen KRAS mutation kit (Qiagen, Izasa,
Barcelona, Spain). For KRAS mutation screening by
ultra-deep pyrosequencing, five known CRC samples
were selected, including two wild type (33K and 75K)
and three mutants: 51K (G12V), 81K (G12D apparently
heterozygous) and 97K (G12C).

DNA extraction
Tumour-rich areas marked by the pathologist on a
hematoxylin and eosin histologic section were manually
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macrodissected by block trimming or target tissue dis-
section, and up to 10 sections of 5 pum thickness were
collected in a microtube for genetic testing. In general,
the estimated percentage of cancer cells in the selected
tissue was greater than 70% of total cells. Genomic
DNA was extracted using the QIAamp DNA FFPE Tis-
sue Kit (Qiagen), quantitated with the Epoch Multi-
Volume Spectrophotometer System (BioTek, Izasa, Bar-
celona, Spain), and stored at -20°C until use.

Mutation screening by HRM

Design of HRM primers

At first, existing primer pairs from previously published
HRM studies were tested to ensure good discrimination
between wild type and mutant samples in our platform.
If they were inappropriate or unavailable, new primers
were designed. Since FFPE-derived DNA is often frag-
mented and because the influence of variation in the
melting curve shape decreases with an increasing
sequence length, short amplicons were preferred. The
inclusion of single nucleotide polymorphisms (SNPs)
within the amplicon was minimised and, if the primer
was placed over a sequence variant, mismatched bases
with no allelic preference were introduced. Primer pairs
for all target regions were analysed for specificity and to
ensure similar melting temperatures using Primer-
BLAST software [23], and DNA melting predictions
were performed with the web servers Stitchprofiles.uio.
no [24] and DINAMelt [25]. As shown in Table 1, exist-
ing primers were used for KRAS [26] and EGFR exons
19 and 21 [27], and newly designed primers for EGFR
exon 20 and BRAF. All the amplicons spanned <250 bp
and covered most common mutations.

Table 1 HRM primer sequences

Gene Exon Primer sequence Amplicon
size

KRAS 2 F: 5-GGCCTGCTGAAAATGACTGAATATAA- 170 bp [26]
3
R: 5-AAAGAATGGTCCTGCACCAGTA-3

BRAF 15 F:5- 164 bp
TCATGAAGACCTCACAGTAAAAATAGG-3
R: 5-AGCAGCATCTCAGGGCCAAA-3'

EGFR 19 F: 5-GTGCATCGCTGGTAACATCCA-3' 250 bps§ [27]
R: 5-AAAGGTGGGCCTGAGGTTCA-3'

EGFR 20 F: 5'-ACCTCCACCGTGCA(T*)CTCAT-3' 128 bp
R: 5- ATTACCTTTGCGATCTGAACACACC
,3’

EGFR 21 F: 5-CCTCACAGCAGGGTCTTCTCTG-3 210 bp§ [27]

R: 5-TGGCTGACCTAAAGCCACCTC-3'

F: forward, R: reverse.
§ These amplicons span the entire exon.

(*) Mismatched base introduced to prevent SNP interference (c.2361G > A)
and allelic preference.
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HRM assay

Samples were assayed in duplicate using the LightCycler
480 system (Roche, Barcelona, Spain). Each 10 pl reac-
tion contained about 70 ng DNA diluted in 1.8 ul, 1x
LightCycler HRM Master Reaction Mix (Roche), 3 mM
MgCl,, and 200 nM primers (HPLC purified). Wild type
and non-template control samples were added for each
amplicon tested. The same touchdown PCR program
and melting conditions were used for all amplicons: 95°
C for 10 min; 45 cycles of 95°C for 10 s, 62-54°C (1°C/
cycle) for 15 s and 72°C for 10 s; 95°C for 1 min; 40°C
for 1 min; a melt of 72-92°C (0.01°C/s, 45 acquisitions/°
C); and 40°C for 10 s. Data were acquired and analysed
with the accompanying Gene Scanning software. Nor-
malised and temperature-adjusted melting curves of test
samples and wild type controls were compared, and
samples with an aberrant melting pattern were judged
to carry a somatic mutation.

Sanger sequencing

Amplified products of mutation positive or ambiguous
samples were recovered from the plate, column purified
with the High Pure PCR Product Purification Kit
(Roche), and submitted to StabVida (Oeiras, Portugal)
for direct sequencing on a 3730XL ABI DNA sequencer
(Applied Biosystems, Foster City, CA) using the Big Dye
terminator V1.1 DNA sequencing kit and the HRM
primers.

HRM sensitivity testing

To test the analytical sensitivity of our HRM assay we
used patient FFPE-derived DNA, assuming that a sample
carrying a heterozygous (Ht) mutation contained 50%
mutant alleles. Genomic DNA of the KRAS mutant sam-
ple 81K (G12D Ht) was mixed with wild type DNA of
sample 75K in dilutions containing 50%, 25%, 10%, 5%,
2.5% and 0% mutant alleles. Moreover, decreasing
amounts of template DNA were used to investigate the
limits of KRAS mutation detection. Samples 81K (G12D
Ht) and 100K (wild type) were compared using 40, 20,
10 and 5 ng DNA.

Mutation screening by ultra-deep pyrosequencing

Design of fusion primers

The primers used to generate KRAS amplicon libraries
were composed of three parts fused together (Figure 1).
The 5’-portion was a 25-mer corresponding to the adap-
tors A and B required by the 454 sequencing system
and ending with the sequencing key “TCAG”. Multiplex
Identifiers of 10 bp (MIDs 1-5 from the standard 454
set), placed after the key, were used to barcode the dif-
ferent samples. And the 3’-portion was designed to
anneal with a specific sequence on either side of KRAS
exon 2, resulting in a 409 bp amplicon (total size with
adaptors and MIDs). The presence of the same MID tag
in the forward and reverse primer of each pair, and the
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MID2 ACGCTCGACA
MID3 AGACGCACTC
MID4 AGCACTGTAG
MIDS ATCAGACACG

/

Primer A - Key |

mMiD1 |

Forward KRAS-specific

5 CGTATCGCCTCCCTCGCGCCATCAG [ACGAGTGCGT] ACACGTCTGCAGTCAACTGGAAT 3’

5 CTATGCGCCTTGCCAGCCCGCTCAG [ACGAGTGCGT] ATGGTCCTGCACCAGTAATATGCA 3’

Primer B - Key |

mMiD1 |

Reverse KRAS-specific

Figure 1 Fusion primer design for KRAS screening with the GS Junior 454 system. The primers consist of three parts: the GS Junior 454
adaptor, containing the sequencing primers A and B and the sequencing key “TCAG” (underlined), followed by a 10-bp multiplex identifier (MID)
tag that varies between samples, and the KRAS-specific sequence. Five primer pairs were designed using MIDs 1 to 5 and generating an
amplicon of 409 bp that contains KRAS exon 2. Complete sequences of forward and reverse primers are shown for MID1.

length of the generated amplicons, within the 400-500
bp range offered by Titanium chemistry, allowed for
bidirectional sequencing with primers A and B.
Amplicon preparation

PCR was conducted in a 50 pl final volume containing:
1x PCR buffer, 1.5 mM MgCl,, 500 nM fusion primers,
2 ul genomic DNA (0.3-1.5 pg), 200 pM dNTPs, 2.5 U
of BioTaq polymerase (Bioline, Ecogen, Barcelona,
Spain) and PCR grade water. Program conditions were:
5 min at 95°C; followed by 35 cycles of 30 s min at 95°
C, 30 s at 59°C and 30 s at 72°C; and 8 min at 72°C.
PCR products were analysed by 1.5% agarose gel electro-
phoresis and column purified with the High Pure PCR
Purification Kit (Roche). Amplicons were further puri-
fied with Agencourt AMPure XP beads (Beckman Coul-
ter, Izasa, Barcelona, Spain), and quantitated by
fluorometry in a LightCycler 480 instrument (Roche)
using the Quant-iT PicoGreen dsDNA Assay Kit (Invi-
trogen), as described by the manufacturer. The five
amplicon libraries, with concentrations ranging from
6.63 x 10° to 5.05 x 10" molecules/pl, were equimolarly
pooled to create a KRAS multiplexed library at 1 x 107
molecules/ul.

Pyrosequencing

To make the most of the capacity of the sequencing
plate, this library was mixed with another of BRCA
amplicons to be sequenced in a single run. Emulsion
PCR of the combined library was carried out using the
GS Junior Titanium emPCR Kit (Lib-A) and pyrose-
quenced on the GS Junior 454 platform (Roche). An
input of 3 molecules of library DNA per capture bead
was used and 500,000 enriched beads were loaded on
the instrument. The library was sequenced in a

Titanium PicoTiterPlate (PTP) with Titanium reagents,
and base calling was performed with the amplicon filter
settings.

Data analysis

Processed and quality-filtered reads were analysed with
the GS Amplicon Variant Analyzer. The KRAS amplicon
(excluding adaptors and MIDs) was used as the refer-
ence to align amplicon reads, template-specific portions
of the fusion primers were considered as the forward
and reverse primer, and the known mutations of the
samples selected were defined as substitutions relative
to the reference sequence. Correspondence of samples
and MID tags was specified and, as the same MID was
present in both orientations, an “either” encoding multi-
plexer was used to demultiplex the reads.

Results

Validation and sensitivity of KRAS HRM assay

Mixtures of KRAS mutant (G12D Ht) and wild type
DNAs were used to test the analytical sensitivity of the
HRM assay. Figure 2 shows the difference plots (A) and
melting peaks (B) for different dilutions of mutant
DNA, and demonstrates that this assay can detect 2.5%
mutant alleles, which corresponds to 5% tumour cells
carrying a heterozygous mutation.

Wild type KRAS amplicons have a biphasic melting
curve due to the presence of different melting domains
(Figure 2-A). Accordingly, two melting peaks are
observed in the first-derivative plot of normal samples,
while mutant samples show another peak, generated by
heteroduplexes melting, the height of which is propor-
tional to the fraction of cells bearing the mutation (Fig-
ure 2-B). This peak alters considerably the characteristic
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Figure 2 Sensitivity of the KRAS HRM assay. Mixtures of mutant (G12D heterozygous) and wild type genomic DNA samples reveal gradual
curves. A) Adjusted melting curves (top) and differential plots (bottom) showing the presence of 50%, 25%, 10%, 5%, 2.5% and 0% mutant
alleles. B) Melting peaks of mutant sample dilutions compared to the wild type control (left) and corresponding sequence traces (right). In the
chromatograms, mutation peaks can be distinguished from the background because they are symmetrical and vertically aligned with the wild
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shape of the curve, even with low amounts of mutant
DNA. Thereby, the presence of 2.5% mutant alleles is
visible in the graph but not in the chromatogram (Fig-
ure 2-B), where the peaks can be confused with the
background, consistent with the higher sensitivity of
HRM compared to direct Sanger sequencing.

On the other hand, the limited amount of FFPE tis-
sue is a common problem, especially when working
with lung cancer specimens. To investigate the lower
limit of KRAS mutation detection, the HRM assay was
performed with template DNA amounts of G12D Ht
and wild type samples ranging from 40 to 5 ng.
Mutant samples showed an abnormal profile across
the entire range of template amounts tested and could
be readily identified (not shown). Therefore, as little
as 5 ng (or even less) of mutant DNA would be
enough to detect the KRAS mutation in non-degraded
samples.
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KRAS, BRAF and EGFR mutation detection by HRM

A total of 120 routine diagnostic FFPE samples from
patients with colorectal (n = 81), lung (n = 27) and
other (n = 12) cancers were screened for mutations in
the EGFR pathway. Melting patterns and sequence
traces of representative mutations for each amplicon are
depicted in Figure 2-B and Figure 3, with Table 2 show-
ing the results obtained.

For KRAS, six different substitutions were detected at
codon 12/13, predominantly G12D, whereas V600E
accounted for all the BRAF mutations found (Table 2).
Five mutations in the EGFR gene were detected in four
patients. Two patients had exon 19 deletions (delE746-
A750 and delE746-T751insA), one patient showed the
common sensitising mutation L858R in exon 21
together with the resistance mutation T590M in exon
20, and the other harboured the uncommon exon 21
point mutation P848L, which appears to behave as a
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Figure 3 Panel of HRM assays and sequence traces for BRAF and EGFR. Normalised shifted melting curves and melting peaks of HRM
amplicons are compared between wild type (green) and representative mutant samples (red). Mutant samples show left-shifted curves and
aberrant melting profiles, with a lower homoduplex peak and a more or less visible heteroduplex peak on its left, except for EGFR exon 19
deletions, in which the sequence of the deleted allele has a higher melting temperature.
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Table 2 Variants detected by HRM analysis

Gene Nucleotide Protein No. Total
detected %
KRAS 35G > A G12D 17 183
38G > A G13D 9 9.7
34G>T G12C 7 7.5
356 > C G12A 2 22
356> T G112V 2 22
34G > A G12S 2 22
Total no. of cases with mutated KRAS 39 41.9
Total no. of cases 93 100
BRAF 1799T > A V600E 7 130
Total no. of cases with mutated BRAF 7 13.0
Total no. of cases 54 100
EGFR 2236-2250del15 delE746-A750 1 2.8
2237-2252del16 delE746- 1 28
T757insA
2369C > T, 2573T > T790M, L858R 1 2.8
G
2543C > T P848L 1 2.8
Total no. cases with mutated EGFR 4 111
Total no. of cases* 36 100

* Exon 20 was not analysed in 13 samples.

functionally silent polymorphism [28] (Table 2). In addi-
tion, a SNP in exon 21 (2508C > T at R836) was also
detected in one patient.

All the mutant samples identified by HRM were con-
firmed by direct Sanger genomic sequencing. In addi-
tion, 28 random samples identified as wild type in the
HRM analysis, as well as three samples with ambiguous
melting patterns due to poor amplification, showed wild
type chromatograms. Therefore, using HRM and Sanger
sequencing, no false positives were detected in the 51
mutations assessed and no false negatives were found
among the 31 cases analysed.

Only three specimens that showed insufficient ampli-
fication in the HRM assay because of the low amount
or quality of the starting material were subjected to
standard PCR amplification using the HRM primers
followed by direct sequencing. Minimisation of reac-
tion-to-reaction variability was especially important in
these cases. To standardise sample preparation, we
quantitated the extracted DNA by spectrophotometry,
adjusted the samples to the same concentration and
used the same amount of template in each reaction.
Even though 5 ng is allowed for proper amplification
of good quality samples, an excess of template (about
70 ng) was used to overcome the challenge posed by
compromised DNA quality. Previous reports consis-
tently suggest that inclusion of >30 ng purified DNA
increases the success rate up to 96% [29]. For good
HRM analysis, amplification curves were checked to
produce a crossing point < 30 and to reach a similar
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plateau height. If duplicates of a sample showed differ-
ent melting patterns, the assay was repeated for that
sample. And when insufficient amplification precluded
detection of subtle differences between small melting
peaks, PCR products were sequenced to avoid false
negative results.

KRAS mutation detection by ultra-deep pyrosequencing
A pilot experiment was set up to evaluate the feasibility
of applying amplicon pyrosequencing to detect somatic
variation in FFPE tumour samples. With this aim, two
wild type and three known mutant samples were
selected for screening the entire KRAS exon 2.

A multiplexed KRAS amplicon library was prepared,
mixed with BRCA amplicons, and subsequently
sequenced with GS Junior 454, achieving a throughput
of 26 million high-quality filtered bases and 7.7 x 10*
filtered reads (41.3% key pass reads) for the library (con-
taining the “TCAG” key). Considering only the KRAS
amplicons, 9 to 12 thousand reads were obtained for
each of the five samples selected (Figure 4).

The known KRAS genotype was validated in all cases,
and frequencies of the previously defined variants were
calculated from combined data of forward and reverse
reads. Samples 33K and 75K were confirmed as wild
type, while mutant samples showed the following varia-
tion frequencies: 22.8% G12V for 51K, 35.7% G12C for
97K, and 38.9% G12D for 81K. No additional variants
were detected above the minimum frequency setting of
1% even though a DNA polymerase enzyme without
proofreading activity was used in the PCR amplification.
An illustrative example of the sequence variations
detected within sample 97K is shown in Figure 4.

In the case of sample 81K, considered heterozygous
on the basis of the Sanger chromatogram (Figure 2-B,
top right), the observed percentage of 38.9% mutant
alleles is in accordance with the estimated ratio of 85%
tumour cells in the dissected tissue uniformly carrying a
heterozygous mutation. Further analyses with pure het-
erozygous samples, such as control cell lines, could be
useful to calculate the standard error of this type of
measurement for future experiments.

Discussion
The development of novel targeted therapies has created
the need for molecular characterisation of cancers to
allow more appropriate treatment decisions. We
explored two approaches based on HRM and next-gen-
eration sequencing technologies to assess the mutational
status of KRAS, BRAF and EGFR in diagnostic settings.
The HRM assay described herein successfully identi-
fied hotspot mutations of these genes in 120 FFPE diag-
nostic specimens. In CRC samples, the mutation
frequencies of KRAS codon 12/13 and BRAF V600E



Borras et al. BMC Cancer 2011, 11:406
http://www.biomedcentral.com/1471-2407/11/406

Page 8 of 10

Reference Variant Max 33K 51K 75K 81K 97K
KRAS Gl2C 35.68 0.00 (9,193) 0.00(11,919) 0.00 (10,622) 0.00 (9,327) 35.68 (11,226)
KRAS G12D 38.90 0.00 (9,193) 0.00(11,919) 0.01(10,622) 38.90(9,327) 0.00(11,226)
KRAS G12v 22.80 0,00 (9.192) 22.80(11.919 0,00 (10.622) 0.00(9.327) 0.00(11,226)

Sample 97K: ¢.34G>T

Yariation %
40

Number of Reads

30 A

20 -

10 A

12,000

+ 10,000

F 8,000

+ 6,000

+ 4,000

b 2,000

Reference Sequence Position

TATAAGGCCCTGCTCAAAAT GACT CAATATAAACTTGCTGGTAGTTGCAGCTGGTGGCGTAGGCAAGAGTGCCTT GACGATAC

o

\4

c.34G > T mutation (G120Q).

TATAAGGCCTGCGCTCAAAATCACTCAATATAAACTTOGTGGTAGTTGCAGCTGGTGGCGTAGGCAAGAGTGCCTT GACGATAC
TATAAGGCCTCCTGCAAAATGACTCAATATAAACTTGTGGTAGTTGCAGCTTGTGGCGTAGGCAAGAGTGCCTT GACGATAC
TATAAGGCCTGCCTGAAAATGACTCAATATAAACTTGTGGTAGTTGCAGCTGGTGGCGTAGGCAAGAGTGCCTT GACGATAC
TATAAGGCCTCCT GCAAAATGACTCAATATAAACTTGTGGTAGTTGCAGCTTGTGGCGTAGGCAAGAGTGCCTT GACGATAC
TATAAGGCCTCCTGAAAATCGACTCAATATAAACTTGTGGTAGTTGCAGCTGGTGCGCGTAGGCAAGAGTGCCTTGACGATAC

Figure 4 Variants detected by ultra-deep pyrosequencing of KRAS amplicons. The variants frequency table (top) summarises the
frequencies of the previously defined variants detected within each sample, with the corresponding number of combined reads shown

between parentheses. Below, the plot of sequence variations detected in sample 97K and a partial image capture of the global alignment,
displayed as consensus reads, are shown as an example of 454 sequencing output. The only change detected within this sample is the known

were 44.3% and 13.0%, respectively, and their mutual
exclusiveness was confirmed. Our results are coincident
with those reported previously [30,31]. In lung cancer,
EGFR mutations were detected in 11.1% of samples,
none of which was mutated for KRAS. Despite the small
size and heterogeneity of our sample, this percentage is
close to the 16.6% reported in a large-scale screening for
EGFR mutations in Spanish lung cancer patients [5].

Compared to a commercially available mutation test,
such as the DxS TheraScreen KRAS mutation kit (Qia-
gen), our HRM assay detected all KRAS mutations pre-
viously found. Moreover, our HRM KRAS mutation
analysis has the advantage that it can be performed
together with detection of BRAF and EGFR mutations in
the same assay.

As FFPE tissues are the most common clinical speci-
mens available for mutation analysis, assessment of the
analytical sensitivity of the KRAS HRM assay was per-
formed with patient FFPE-derived DNA instead of con-
trol cell lines bearing known KRAS mutations. Using
dilution series, the assay was able to detect 2.5% mutant
alleles or 5% tumour cells carrying a heterozygous muta-
tion. This analytical sensitivity is within the 1.5-6%
range obtained with cell lines in other KRAS assays

based on standard PCR following HRM [30,32,33], and
much higher than that of direct sequencing, which con-
tinues to be regarded as the “gold standard” although it
requires a mutant allele threshold of 10% [34].

Unlike most published HRM studies, which identify
wild type and mutant samples according to the normal-
ised temperature-shifted differential plot, we based our
analysis on the interpretation of melting peaks. We
found this curve to be more sensitive and reproducible,
as small variations between samples caused a spread of
wild type curves around the baseline of the differential
plot. Instead of being a drawback, the presence of multi-
ple melting domains generates a particular curve mor-
phology that differentiates mutant and wild type melting
patterns more clearly, even with low amounts of mutant
DNA, as seen in the KRAS assay.

Another strength of our assay is the use of a touch-
down PCR covering a range of annealing temperatures
(between 62°C and 54°C) to ensure that all the primer
pairs hybridise specifically to the template DNA and
adequate amounts of PCR product are finally obtained.
Then, the use of a wide melting interval (72°C to 92°C)
allows all the amplicons to melt, so they can be analysed
together in a single plate, saving time and cost.
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Optimisation of the reaction volume to 10 pl instead of
20 pl could also be carried out.

The main limitation of our HRM assay is the need to
sequence a few positive samples to identify the specific
nucleotide alterations. When many types of mutations
may exist within an amplicon, as in the case of KRAS
exon 2, it is difficult to assign a melting profile to each
one, even more so if, as we observed, the pattern varies
with the amount of the mutant allele. Moreover, clini-
cally important mutations and neutral variants generate
almost identical curves and can be confused, as occurs
with L858R and P848L mutations in EGFR codon 21
(not shown). Thus, direct Sanger sequencing is always
necessary to avoid misdiagnosis. However, in a lower
mutant allele concentration, Sanger sequencing may be
insufficient to validate the results (Figure 2B), and a
much higher sensitivity and accuracy may be necessary
in some of the scenarios discussed above. We achieved
our result with ultra-deep pyrosequencing of KRAS
amplicons with GS Junior 454, which determined the
frequencies of mutant alleles and confirmed the known
KRAS genotypes. This sequencing experiment also
demonstrated excellent performance in terms of
throughput and reads per run. The five KRAS amplicons
were similarly represented, with 9 to 12 x 10 reads per
sample, an excess with respect to the depth of coverage
required for accurate assessment of somatic mutations,
considering that a 1% variation of a single-base change
and multibase deletion will need 5,000-fold coverage to
obtain a good statistical chance of 50 variation reads
[35]. Moreover, the use of MIDs allowed massively par-
allel sequence analysis of multiple samples to be
performed.

Conclusions

In conclusion, our HRM assay is a simple, robust and
inexpensive method that allows multiple mutation hot-
spots to be rapidly screened and is thus highly suited to
mutation detection in DNA derived from FFPE tissues.
Ultra-deep pyrosequencing of KRAS amplicons with GS
Junior 454 proved to be a highly sensitive and quantita-
tive technique to analyse somatic mutations in cancer
specimens, and which can also be used in a high-
throughput assay.
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