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Abstract

tissue microarray proteomics technology.

individuals and in those with early stage lung cancer.

Background: Raf-1 kinase inhibitor protein (RKIP) has been reported to negatively regulate signal kinases of major
survival pathways. RKIP activity is modulated in part by phosphorylation on Serine 153 by protein kinase C, which
leads to dissociation of RKIP from Raf-1. RKIP expression is low in many human cancers and represents an indicator
of poor prognosis and/or induction of metastasis. The prognostic power has typically been based on total RKIP
expression and has not considered the significance of phospho-RKIP.

Methods: The present study examined the expression levels of both RKIP and phospho-RKIP in human lung cancer

Results: Total RKIP and phospho-RKIP expression levels were similar in normal and cancerous tissues. phospho-RKIP
levels slightly decreased in metastatic lesions. However, the expression levels of phospho-RKIP, in contrast to total
RKIP, displayed significant predictive power for outcome with normal expression of phospho-RKIP predicting a
more favorable survival compared to lower levels (P = 0.0118); this was even more pronounced in more senior

Conclusions: This study examines for the first time, the expression profile of RKIP and phospho-RKIP in lung
cancer. Significantly, we found that phospho-RKIP was a predictive indicator of survival.

Background

Raf-1 kinase inhibitor protein (RKIP) is a member of a
conserved group of proteins called phosphatidylethano-
lamine-binding proteins (PEBP). RKIP was first identi-
fied by Yeung, et al., [1] and was reported to function
by inhibiting the Raf-1/MEK/ERK and NF-xB prolifera-
tive and survival signaling pathways [1-3]. Based on
modulation of these and other pathways, RKIP is
thought to function in a number of physiological and
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pathological processes [4]. For example, the importance
of RKIP in metastasis was demonstrated by the finding
that the restoration of RKIP expression inhibits prostate
cancer metastasis in a murine model [5,6] and, hence,
RKIP was identified as a metastasis suppressor gene. In
addition, over-expression of RKIP reverses tumor cell
resistance to apoptosis by both chemotherapeutic drugs
[7] and by TRAIL [8]. RKIP has also been implicated as
an immune surveillance cancer gene in these studies [8].
The expression level of RKIP is down-regulated in a
number of human cancers including highly metastatic
prostate carcinoma [6], breast carcinoma [9], colon can-
cer [10] and hepatocellular carcinoma [11]. RKIP was
also shown to be a prognostic marker in the pathogen-
esis of human prostate cancer [5], and in other cancers
[10,12,13]. The mechanism of RKIP dysregulation in
such malignancies is not clear. Recent findings
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demonstrated that Snail, a transcription factor overex-
pressed in many cancers and a metastasis inducer gene
product (reviewed in [14,15], negatively regulates RKIP
transcription and expression [16].

The inhibitory activity of RKIP on the Raf-1/MEK/
ERK pathway is, at least in part, regulated by PKC-
induced phosphorylation of RKIP at serine 153 [17].
The PKC family of serine/threonine kinases is a key
mediator of several physiological processes including
growth, differentiation, and transformation (e.g., see
review [17]). Mutant RKIP that has serine 153 substi-
tuted with valine failed to associate with Raf-1 and was
not phosphorylated following PKC stimulation. It has
also been reported that pRKIP binds to GRK-2 and,
thus, inhibits GRK-2-mediated phosphorylation of G-
protein coupled receptors (GPCRs) resulting in the inhi-
bition of receptor internalization and cell signaling
integrity [18].

In the present study, we have examined the expression
levels of total RKIP and pRKIP in human non-small cell
lung cancers (NSCLC) on a population basis using a
high-density lung tissue microarrays (TMA). Surpris-
ingly, we found that the expression of total RKIP was
similar in non-malignant bronchial epithelium, primary
tumors and metastatic lesions. Moreover, RKIP neither
predicted metastatic potential nor disease-specific death.
In contrast, pRKIP expression was a strong predictor of
outcome with relatively higher levels of pRKIP predict-
ing a better survival compared to relatively lower
expression.

Methods

Lung Tissue Microarray

The lung cancer tissue microarray (TMA) was con-
structed using archival samples from the Department of
Pathology and Laboratory Medicine in the UCLA Medi-
cal Center as previously described and characterized
[19]. The TMA was produced under an approved IRB
protocol (protocol 02-07-011-13; UCLA Institutional
Medical Review Board 2). A total of 671 patients’ sam-
ples were arrayed with at least 3 spots representing each
histology [19,20]. The patient demographics are shown
in Table 1. In this study, we considered non-small cell
lung cancer (NSCLC) of which there were 3,881 infor-
mative spots and 372 marker-informative cases.

Immunohistochemistry and TMA Scoring

Lung TMA blocks were sectioned immediately prior to
Immunohistochemistry (IHC). Rabbit-anti-human phos-
pho-RKIP (pRKIP) and rabbit anti-human total RKIP,
were obtained from Santa Cruz Biotechnology, Inc.
(Santa Cruz, CA) and Upstate Biotechnology (Lake Pla-
cid, NY) respectively). A standard two-step IHC proto-
col was used as previously described [19] using a 1:250
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Table 1 Patient demographics and Histopathologies

Age at Diagnosis

Median (Range) 66 (26 - 86)
25™ to 75" Percentile 60 - 73
Sex
Male 175 (47%)
Female 197 (53%)
Smoking History
Current Smoker 53 (14%)
Previously Smoked 257 (69%)
Second-Hand Smoke 1 (3%)
Non-Smoker 39 (11%)
Unknown 12 (3%)
Histology
Adenocarcinoma 222 (60%)
Squamous Cell Carcinoma 106 (29%)
Adenosguamous Carcinoma 0 (5%)
Bronchioloalveolar Carcinoma 4 (6%)
Clinical Stage
\ 209 (56%)
Il 3 (18%)
M1l 69 (19%)
\% 4 (6%)
Unknown 2 (W%)
Tumor Grade
1 64 (17%)
2 119 (32%)
3 161 (43%)
Unknown 8 (8%)
Tumor Size (cm)
Median (Range) 36 (04 -15.0)
25" 10 75'" Percentile 20-47
Lymph Node Metastases
Absent 224 (60%)
Present 104 (28%)
Unknown 44 (12%)
Distant Metastases
Absent 274 (74%)
Present 24 (6%)
Unknown 74 (20%)

dilution of a 0.2 mg/ml stock of primary anti-pRKIP or
1:500 dilution of a 1 pg/ml stock of RKIP and incubat-
ing for 18 hours at room temperature. Non-immune
rabbit IgG was used as a negative control and showed
no staining. Staining conditions were optimized on 15
full lung cancer and normal tissue samples before the
TMA was stained. A similar pattern of staining was
observed for the whole tissues as with the TMA cores.
For peptide competition, pRKIP peptide was purchased
from Santa Cruz Biotechnology. Anti-pRKIP or anti-
RKIP antibody was pre-incubated for 4 hours at room
temperature with 1:250, 1:500 and 1:1000 dilutions of
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100 ng/ml peptide. Antibody-peptide was then added to
tissue sections that had previously been shown to
express pRKIP, and incubated as described above.

The TMA was scored by a pathologist (Dr. A. Her-
nandez-Cueto) and spot checked by an additional
pathologist (Dr. Vei Mah). All were blinded to clinical
information during scoring. The percentage of relevant
target epithelium expressing high (score of 3) medium
(score of 2) low (score of 1) or below the level of detec-
tion (score of 0) was determined for each spot as pre-
viously described [19]. To quantify immunoreactivity of
each spot, we used an integrated intensity measure
using the formula: [(3x) + (2y) + (1z)]/100, where x, vy,
and z are the percentages of cells staining at intensities
3,2, 1 and 0, respectively as described [19,20].

Cell Culture

The human A549, H157 and BEA52B cell lines were
obtained from the American Type Culture Collection
(ATCC, Manassas, VA, USA). Cells were maintained in
RPMI 1640 (Life Technologies, Bethesda, MD, USA),
supplemented with 10% heat-inactivated fetal bovine
serum (FBS) (Life Technologies) (to ensure the absence
of complement), 1% (v/v) penicillin (100 U/ml), 1%
(v/v) streptomycin (100 U/ml), 1% (v/v) L-glutamine,
1% (v/v) pyruvate, and 1% nonessential amino acids
(Invitrogen Life Technologies, Carlsbad, CA, USA).
The cell cultures were incubated at 37°C and 5% car-
bon dioxide.

Western Blot Analysis

Cells were lysed at 4°C in RIPA buffer (50 mM Tris-HCl
(pH 7.4), 1% Nonidet P-40, 0.25% sodium deoxycholate,
150 mM NaCl) supplemented with one tablet of pro-
tease inhibitor cocktail, Complete Mini Roche (Indiana-
polis, IN). Lysates were transferred to microcentrifuge
tubes and sonicated in SONICATOR™, Model W-220F
(Heat-System Ultrasonic, Inc.), for 10 seconds. The sam-
ples were then centrifuged at 12,000 x g at 4°C for 5
min. Protein concentration was quantified using the
Bio-Rad protein assay (Bio-Rad Laboratories, Hercules,
CA). Gel loading buffer Bio-Rad (Bio-Rad Laboratories)
was added to the cell lysates, at a 1:1 volume. Samples
were boiled for 5 min and were separated on 12% SDS-
polyacrilamide minigels and transferred to nitrocellulose
membrane Hybond™ ECL™ (Amersham Pharmacia
Biotech, Germany) in Trans-Blot® SD semi-dry Transfer
cell System (Bio-Rad) and were subjected to Western
blot analysis as previously reported [21]. Levels of
B-actin were used to normalize the protein expression.
Relative concentrations were assessed by densitometric
analysis of digitized autographic images, performed on a
Macintosh computer using the public domain NIH
Image ] Program.
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Statistical Analysis

All statistical analyses were performed with StatView
Version 5.0 (SAS Institute, Cary, NC) or with the freely
available software package, R as previously described
[19,20]. The non-parametric multi-group comparison of
pRKIP expression across different histolopathologic
categories were done using Kruskal-Wallis test. Correla-
tive studies of dichotomized pRKIP expression against
other categorical variables were done using the Fisher
exact test or Pearson xz test. The Cox proportional
hazards model was used to determine the prognostic
value of various variables in a univariate and multivari-
ate setting. Survival curves were visualized using the
Kaplan-Meier method and the statistical significance
between the two groups was calculated using the log-
rank test.

Since each case was typically represented by more
than one spot, we used the pooled mean value of inte-
grated intensity to calculate clinical outcome [19]. We
used the median value of 1 to dichotomize these values
as “relatively low” or “relatively high” expression. Note
that “relatively high” does not mean overexpression;
these levels correspond to the normal range of pRKIP
expression.

Results

Reductions in RKIP expression has been shown to be an
indicator of metastatic spread in numerous cancers
[5,6,9-13,22-26] as well as a predictor of poor outcome
in colon, gastric, and prostate cancer [5,10,12]. Recent
evidence has also shown RKIP functionality can be
modulated through phosphorylation as well [27-29].
Here, we examined the expression of RKIP and phos-
pho-RKIP (pRKIP) in lung cancer to assess the predic-
tive and/or prognostic power of these proteins. We first
evaluated 3 lung cancer cell lines by Western blot analy-
sis to ascertain the relative levels of RKIP and pRKIP
(Figure 1). Both RKIP and pRKIP were expressed in all
three cell lines, but interestingly, the level of expression
was different among the cell types.

To further evaluate the in situ expression of total
RKIP and pRKIP in normal and diseased lung on a
population basis, we turned to a high-density lung tissue
microarray (TMA). The properties of the lung TMA
have been described previously [19] and are summarized
in Table 1. Of the 696 surgical specimens obtained from
671 patients, 372 primary cases of NSCLC were marker
informative and linked with outcome information (dis-
ease-specific survival). The TMA consisted of a total of
5,109 spots of benign and malignant histopathologies, of
which 3,881 were informative for pRKIP and RKIP. The
expression of RKIP and pRKIP was localized primarily
in the cytoplasm with some nuclear staining. Figure 2
show representative images of pRKIP and RKIP staining,



Huerta-Yepez et al. BMC Cancer 2011, 11:259
http://www.biomedcentral.com/1471-2407/11/259

A549

HI57 BEA52B

RKIP

pRKIP

B-Actin

Figure 1 RKIP and pRKIP protein expression lung cancer cell
lines. Different lung cancer cells lines were grown in RPMI with
10% of FBS. Total protein was extracted from the culture and then
separated by SDS-PAGE and transferred onto the nitrocellulose
membrane as described in Material and methods. The membrane
was stained with anti-RKIP or anti p-RKIP. (lane 1) A549 cell line,
(lane 2) H157 cell line, (lane 3) BEA52B cell line. The B-actin
antibody was used as a loading control. The findings revealed that
the differentially pRKIP expression between the different lung cell
lines analyzed.

respectively. Antibody specificity was confirmed based
on negative staining with an appropriate non-immune
antibody, a concentration-dependent titration of staining
intensity, a lack of extracellular staining, and specific
competition of antibody binding by a pRKIP peptide
(see Figure S1 in Additional file 1). For this study, we
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focused on the cytoplasmic expression of RKIP and
pRKIP. Expression was quantified using integrated mea-
sure of frequency and intensity of relevant cells of in a
given spot as described in Materials and Methods.

We compared the levels of RKIP and pRKIP expres-
sion across histopathologies and found no statistically
significant group difference among each category of
NSCLC (data not shown). We next examined RKIP and
pRKIP expression in normal, primary and metastatic
lesions. RKIP expression remained constant for normal
versus invasive cancer and metastatic lesions (Figure
3A). However, as shown in Figure 3B, when we exam-
ined pRKIP expression, we did find a slight, albeit highly
statistically significant group difference (P < 0.0001)
with pRKIP expression, in general, decreasing in expres-
sion from non-malignant (mean integrated intensity,
0.961) to invasive cancer (mean integrated intensity,
0.954) to lymph node (mean integrated intensity, 0.932)
and distant metastases (mean integrated intensity,
0.864).

PRKIP Expression is a Predictor of Disease Outcome

We next evaluated whether RKIP and/or pRKIP levels
were predictive of clinical outcome in terms of disease-
specific survival in patients with NSCLC. We used the
univariate Cox model analysis and found that neither
RKIP nor pRKIP expression as a continuous variable
was a significant prognostic indicator of survival (P =

’ Ay |

A

RKIP

Figure 2 RKIP and pRKIP protein expression in morphologically normal lung and lung cancer on tissue microarray. Representative
immunohistochemical staining for RKIP protein on (A) normal bronchial epithelium; (B) and (C) NSCLC. Representative immunohistochemical
staining for pRKIP protein on (D) normal bronchial epithelium and (E) and (F) NSCLC. Magnification 100 x (A, B, D, E) and with 200 x (C, F).
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Cytoplasmic RKIP Expression
Cytoplasmic pRKIP Expression

Normal

(n= 2020,

1" NSCLC

n=133%

LN Mets

(n=213)

Distunt Mets
n= 117}

19 NSCLC
(n=1429)

LN Mets

{n=215)

Distant Mets
n=113)

Normal
in=2,114)

Figure 3 RKIP and pRKIP expression levels as a function of tumor progression. Columns, means, bars, SE. (A) Expression levels are
represented by the integrated intensity of RKIP expression in the cytoplasm of relevant cells as described in Materials and Methods. Note, there
is no statistically significant difference between any of the expression levels shown. (B) Expression levels are represented by the integrated
intensity of pRKIP expression in the cytoplasm of relevant cells as described in Materials and Methods. Note, there was a statistically significant
group difference of pRKIP expression (P < 0.0001) with a slight decrease in expression in metastatic cells compared to morphologically normal

bronchial epithelium and primary NSCLC lesion.

0.903 and P = 0.453, respectively). We then dichoto-
mized RKIP and pRKIP expression in an unbiased fash-
ion at the median value of 1.0 mean integrated intensity
levels; values higher than 1.0 were categorized as “rela-
tively higher expression” whereas values at or below 1.0
were categorized as “relatively lower expression”. We
repeated the univariate analysis using the dichotomized
values of expression and found that pRKIP was a signifi-
cant predictor of survival (P = 0.0125; hazard ratio =
1.53; 95% confidence interval = 1.10 - 2.15). Further-
more, using a multivariate Cox model analysis, we
found that pRKIP expression remained a significant pre-
dictor of survival after correcting for the effects of stage
and grade (P = 0.032, see Table 2). The individual pre-
dictive values of known clinico-pathologic variables as
determined by univariate Cox model analysis are listed
in Table 3. Surprisingly, and in sharp contrast, total
RKIP expression levels showed no predictive value at
any point of dichotomization nor in any subgroup tested
(see Figure S2 in Additional file 1). Therefore, we
focused on pRKIP expression for further analyses.
Overall, patients with relatively higher levels of pRKIP
had a distinct survival advantage compared with those
with relatively lower pRKIP expression (Figure 4A, log-
rank P = 0.0118). Yet in the populations dichotomized
based on pRKIP expression levels, total RKIP remained
constant (Figure S3 in Additional file 1). We investi-
gated whether pRKIP expression was correlated with
any known clinico-pathologic variables, and found that
patients in the higher pRKIP category tended to be
older than 65 years of age (P = 0.0491; data not shown)

and had a higher frequency of lymph node metastases
(P = 0.0484; data not shown). This was consistent with
the observation that pRKIP was strongly predictive in
patients older than 65 (P = 0.0033, Figure 4C), but not
predictive of survival in patients younger than 65 (P =
0.8579, Figure 4D). We further assessed whether pRKIP
expression levels might be an early predictive indicator
in NSCLC. Indeed, pRKIP was very strongly predictive
of survival in patients with early stage (I) disease (P =
0.0025, Figure 4B), but was not in patients with later
stage disease (stage III and IV) (P = 0.1174, data not
shown).

Discussion

Here we present evidence that the expression levels of
total RKIP was not significantly different between nor-
mal epithelium, primary non-small cell lung cancer, or
metastatic lesions. Moreover, total level of RKIP had no
predictive value for lung cancer patient outcome. In
contrast, analyses of the expression levels of pRKIP
revealed, for the first time, prognostic significance in
patients with NSCLC. Specifically, individuals whose

Table 2 Multivariate Cox Proportional Hazards Analysis

Variable Hazard Ratio P Value
(95% Confidence Interval)

PRKIP Dichotomized 0.63 (043 - 0.93) 0.0190

Tumor Size 1.12 (1.04 - 1.19) 0.0014

Tumor Grade 1.07 (0.85 - 1.35) 0.5500

Clinical Stage 171 (145 - 2.02) < 0.0001
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Table 3 Univariate Cox Model Analysis of Clinico- tumors had relatively higher pRKIP expression survive
Pathologic Variables longer as compared to patients with relatively lower
Variable Hazard Ratio (95% Confidence P levels. It is also interesting to note that the prognostic
Interval) Value  power of pRKIP is somewhat stronger in early stage

PRKIP Continuous 1.24 (0454 - 142) 045 cancer (stage 1) and in patients 65 years of age or over.
PRKIP 153 (1.10 - 2.15) 0013 Although we do not yet know the mechanistic basis for

Dichotomized this subgroup bias, we do acknowledge that such stratifi-

Gender 125 (0921 - 1.69) 015 cation might be relevant for future targeted therapy and/
Tumor Grade 117 (0947 - 1.44) 015 or early predictions of lung cancer survival. Notably, this
Clinical Stage 1.88 (163 - 2.17) < 0.001

is the first time that pRKIP has been examined in any
cancer and the first indication of clinical correlate. The
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Figure 4 pRKIP expression levels predict the probability of survival in individuals with NSCLC. Shown are Kaplan-Meier survival plots for
patients with NSCLC. Solid lines are higher pRKIP expression levels (mean integrated intensity > 1) and dashed lines are lower pRKIP expression
levels (mean integrated intensity <1). n is the number of individuals in each category. (A) For all individuals represented on the TMA with
NSCLC, a lower pRKIP expression level predicted a greater probability of survival compared to those with higher pRKIP levels (P = 0.0118). (B) For
individuals represented on the TMA with NSCLC stage |, a lower pRKIP expression level predicted a greater probability of survival compared to
those with higher pRKIP levels (P = 0.0025). (C) For individuals represented on the TMA with NSCLC who were 65 years of age or older, a lower
PRKIP expression level predicted a greater probability of survival compared to those with higher pRKIP levels (P = 0.0038). (D) pRKIP expression
levels yielded no predictive power for individuals with NSCLC who were younger than 65 years of age (P = 0.857).
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present findings in NSCLC are distinguished from pre-
vious findings in other cancers whereby low levels of
RKIP expression suggested a poor outcome or a greater
likelihood of metastasis. These findings emphasize the
importance of examining the expression of both the
non-phosphorylated active RKIP and phosphorylated
inactive RKIP in different cancers.

The physiological significance of RKIP and pRKIP is
suggested by the findings that RKIP is involved in the
inhibition of the Raf-1/MEK/ERK and NF-xB cell survi-
val signaling pathways. The interplay between these
pathways and RKIP expression levels has been impli-
cated at many steps in tumor formation and/or progres-
sion. For example, several lines of evidence demonstrate
that overexpression of RKIP results in inhibition of the
constitutive activation of the Raf-1/MEK/ERK and NEF-
kB pathways [30,31]. Further, overexpression of RKIP
results in the inhibition of metastasis and invasiveness
in various tumor models [6,16,32]. RKIP has also been
shown to regulate drug resistance in certain systems.
One clear indication of this was shown by the reversal
of resistance to several chemotherapeutic drugs follow-
ing overexpression of RKIP [8,31]. Consistent with this,
drug-sensitive tumors were rendered resistant by knock-
down of RKIP [7]. RKIP was also shown to regulate
immune resistance. Overexpression of RKIP sensitized
TRAIL-resistant tumor cells to apoptosis by TRAIL [8].

However, the findings with regard to NSCLC pre-
sented here, contrast with the findings in other cancers.
Here we show that RKIP expression remains relatively
constant in non-malignant bronchial epithelium, pri-
mary NSCLC, and corresponding metastatic lesions.
Moreover, RKIP expression levels predicted neither
metastasis nor survival either as a continuous or dichot-
omized variable. In contrast to these other studies, here,
we examine for the first time, the expression levels of
both total RKIP and pRKIP. Our rationale for consider-
ing pRKIP was that this level of protein regulation
might yield added clinical implications especially in light
of our observation that total RKIP was seemingly
unchanged. It is important to note that the currently
available reagents to detect total RKIP do not differenti-
ate between phosphorylated plus non-phosphorylated
forms of the protein. However, the measurement of
both pRKIP and total RKIP does allow an indirect esti-
mate of active (non-phosphorylated) RKIP levels. This
was especially relevant given that the level of total RKIP
was constant in all groups of patients dichotomized by
pRKIP levels.

The underlying mechanism of the differential expres-
sion of pRKIP and RKIP is not known. Accordingly,
we had expected that relatively lower levels of pRKIP
might correlate with a residual higher RKIP levels that
would inhibit the Raf-1 and NF-kB pathways and
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presumably result in a better prognosis. However, the
opposite was found. Likewise, we expected relatively
higher levels of pRKIP to correlate with the residual
lower level of active RKIP resulting in minimal inhibi-
tion of survival pathways thus resulting in poorer prog-
nosis. However, the opposite was found. Thus,
interestingly, our present data are not concordant with
these expectations.

Our findings are in apparent contradiction with other
proposed functional activities of RKIP. For example,
Corbit et al., have reported that RKIP phosphorylation
at serine 153 dissociates RKIP from Raf-1, reversing its
inhibitory function [17]. Moreover, Lorenz et al. have
reported that pRKIP binds to GRK-2 thus inhibiting
GRK-2-mediated phosphorylation of G-protein coupled
receptors (GPCRs) [18]. The resultant inhibition of
receptor internalization has been predicted to promote
cell growth and survival by maintaining appropriate
extracellular signaling stimulation [18]. That relatively
lower levels of pRKIP apparently correlates with a more
aggressive tumor outcome in our patient population
raises the intriguing question of whether a relaxation of
receptor internalization - predicted with lower pRKIP -
might in fact promote cell growth and survival. This
interesting possibility is currently being examined.
Finally, RKIP has been reported by Eves et al. with
regard to its role in the regulation of spindle check-
points [33]. In this study, pRKIP was found associated
with the mitotic centrosomes and kinetochomes in a
variety of cell types, thus implicating RKIP/pRKIP in the
process of mitosis [33]. RKIP modulates the mitotic
spindle assembly checkpoint by controlling Aurora B
kinase activity through the Raf/MEK/ERK signaling
pathway. Depletion of RKIP results in the inhibition of
Aurora B kinase due to the elevated MAP kinase activ-
ity. Interestingly, several studies have shown that the
excessive activation of Raf-1 MAP kinase inhibits the
cell cycle leading to upregulation of cyclin-dependent
kinase inhibitors and resulting in cell cycle arrest or
senescence [34,35]. Nevertheless, our results and those
of others [36] strongly suggest that, at least in the case
of human NSCLC and melanoma, the functional inter-
play and balance of RKIP and pRKIP and various signal-
ing pathways, may be more complex than seen in in
vitro systems or other malignancies. Such tissue-specific
mechanisms remain to be elucidated, and certainly
should be further clarified prior to considering RKIP as
a therapeutic target.

Conclusions

In summary, this study examines for the first time, the
expression profile of RKIP and phospho-RKIP in lung
cancer. Significantly, we found that phospho-RKIP was a
predictive indicator of disease-specific death.
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Additional material

Additional file 1: Additional figures and controls. There are 3 figures
included: 1) controls for IHC staining; 2) Kaplan-Meier curve showing no
predictive power for RKIP expression for patients with NSCLC; and 3) bar
graph showing that total RKIP expression levels remain similar in
individuals with either low or high pRKIP expression.

Abbreviations
ABC: avidin-biotin complex; GPCR: G-protein coupled receptors; H & E:
Hematoxylin and Eosin; NSCLC: non-small cell lung cancer; PEBP:

phosphatidylethanolamine-binding protein; pRKIP: phosphorylated RKIP; RKIP:

Raf Kinase Inhibitor Protein; TMA: tissue microarray.
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