Fadnes et al. BMC Cancer 2011, 11:116
http://www.biomedcentral.com/1471-2407/11/116

BMC
Cancer

RESEARCH ARTICLE Open Access

Small lytic peptides escape the inhibitory effect
of heparan sulfate on the surface of cancer cells

Bodil Fadnes”, Lars Uhlin-Hansen'?, Inger Lindin'? and @ystein Rekdal'~

Abstract

Background: Several naturally occurring cationic antimicrobial peptides (CAPs), including bovine lactoferricin
(LfcinB), display promising anticancer activities. These peptides are unaffected by multidrug resistance mechanisms
and have been shown to induce a protective immune response against solid tumors, thus making them
interesting candidates for developing novel lead structures for anticancer treatment. Recently, we showed that the
anticancer activity by LfcinB was inhibited by the presence of heparan sulfate (HS) on the surface of tumor cells.
Based on extensive structure-activity relationship studies performed on LfcinB, shorter and more potent peptides
have been constructed. In the present study, we have investigated the anticancer activity of three chemically
modified 9-mer peptides and the influence of HS and chondroitin sulfate (CS) on their cytotoxic activity.

Methods: Various cell lines and red blood cells were used to investigate the anticancer activity and selectivity of
the peptides. The cytotoxic effect of the peptides against the different cell lines was measured by use of a
colorimetric MTT viability assay. The influence of HS and CS on their cytotoxic activity was evaluated by using HS/
CS expressing and HS/CS deficient cell lines. The ability of soluble HS and CS to inhibit the cytotoxic activity of the
peptides and the peptides’ affinity for HS and CS were also investigated.

Results: The 9-mer peptides displayed selective anticancer activity. Cells expressing HS/CS were equally or more
susceptible to the peptides than cells not expressing HS/CS. The peptides displayed a higher affinity for HS
compared to CS, and exogenously added HS inhibited the cytotoxic effect of the peptides.

Conclusions: In contrast to the previously reported inhibitory effect of HS on LfcinB, the present study shows that
the cytotoxic activity of small Iytic peptides was increased or not affected by cell surface HS.

Background

A subgroup of cationic antimicrobial peptides (CAPs)
constitutes a promising group of novel anticancer agents
with a new and unique mode of action and a broad
spectrum of anticancer activity. CAPs induce cell death
by increasing the membrane permeability of the target
cells and are therefore unaffected by multidrug resis-
tance mechanisms seen with conventional chemothera-
peutic drugs [1-5]. Moreover, several CAPs display a
higher specificity for cancer cells versus normal cells in
comparison to conventional chemotherapy [6,7]. Their
potential as anticancer agents has been further estab-
lished by in vivo studies, as these peptides have been
shown to induce regression of primary tumors [8,9] and

* Correspondence: bodil.ifadnes@uit.no

'Institute of Medical Biology, Faculty of Health Sciences, University of
Tromsg, Norway

Full list of author information is available at the end of the article

( ) BiolVled Central

prevent metastases [10-13]. Recently we reported that
intratumoral injection of a short CAP, LTX-302, derived
from the naturally occurring CAP bovine lactoferricin
(LfcinB), leads to a local inflammation followed by a
complete regression of the tumor. Interestingly, local
treatment with LTX-302 also elicited immunization
against the tumor, resulting in protection against recur-
rence and metastasis [14]. LTX-302 displayed a selective
disruptive effect on the tumor plasma membrane, lead-
ing to necrosis of the tumor cells. However, it is not
known what kind of cell surface molecules determines
the specificity of this peptide.

LTX-302 consists of an idealized amphiphatic a.-helical
structure, which facilitates interactions with anionic
surfaces. The cell surface of many cancer cells has an
increased net negative charge due to an elevated expres-
sion of anionic molecules, such as phosphatidylserine in
the outer membrane leaflet [15-18], and terminal sialic
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acids on the cell surface, such as N-linked glycans and O-
linked glycans [19,20], compared to non-malignant cells.

Several types of cancer cells such as carcinoma cells
[21-23], melanoma cells [24], lymphoma and leukemia
cells (Uhlin-Hansen, L. Manuscript in preparation) have
different patterns of cell surface proteoglycan expression
compared to their normal counterparts. The negatively
charged glycosaminoglycans (GAGs) attached to the
core protein of cell surface proteoglycans consist of
repeating disaccharides and are highly sulfated [25,26].
Two major classes of GAGs are heparan sulfate (HS)
and chondriotin sulfate (CS). The GAGs are part of the
anionic glycoconjugate cell coat that surrounds the cells,
and are therefore potential interaction partners for
CAPs. The two main families of membrane bound pro-
teoglycans, syndecans and glypicans, have HS chains
attached to their core proteins, although CS can also be
present on the syndecans [27,28].

We have previously shown that the cytotoxic activity
of the two peptides, LfcinB and KW5, was inhibited by
the presence of HS on the cell surface [29]. An interac-
tion with different GAG molecules has also been
reported for the naturally occurring CAPs o-defensin,
LL-37, magainin and melittin [30-32]. The structural
diversity in these CAPs and their different net positive
charge, ranging from +3 in human o-defensin to +9 for
the KW5 peptide, indicate that various structural prop-
erties can be involved in binding to GAGs.

The LTX-302 peptide is part of a new generation of
small lytic peptides consisting of only 9 amino acids.
This new generation of CAPs is based on structure-
activity studies performed on LfcinB, in which we have
identified structural parameters important for its antitu-
mor activity. By optimizing these critical structural para-
meters we have designed peptides with a higher
antitumor activity than the naturally occurring CAPs
[33-36]. The observation that the use of large, bulky,
non-coded amino acids enhanced antitumor activity,
and could also compensate for a decreased number of
aromatic acids [34,36], enabled us to design much
shorter CAPs than previously reported. The size of the
peptides may be an important factor in developing them
peptides into potential anticancer drugs, since smaller
chemically modified peptides are expected to have
increased bioavailability and stability, as well as a
reduced immunogenicity. Another hypothesis is that
smaller CAPs might slip more easily through the cell
coat to the phospholipid bilayer, resulting in an
increased cytotoxic effect for the peptide.

In this study the role of GAGs in the cytotoxic activity
of LTX-302 and two other 9-mer peptides, LTX-315
and LTX-318, was studied. The three peptides with a
net positive charge of +6 were amidated in their carboxy
terminal, and included a non-coded aromatic acid, but
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differed in their primary structure and cytotoxic activity
against cancer cells and normal cells. In contrast to our
previous study [29], this study revealed that the cyto-
toxic activity of these smaller CAPs is either enhanced
or not affected by GAGs expressed on the cell surface.

Methods

Reagents

All Fmoc-amino acids, Fmoc-resins and chemicals used
during peptide synthesis, cleavage and precipitation
were purchased from PerSeptive (Hertford, UK), Fluka
(Buchs, Switzerland) and Sigma-Aldrich (St. Louis, MO).
Fetal bovine serum (FBS) was obtained from Biochrom
KG (Berlin, Germany), and L-glutamine from Gibco
(Paisley, Scotland). MTT (3-(4, 5-dimethylthiazol-2-yl)-
2.5-diphenyl tetrazolium bromide) was obtained from
Sigma-Aldrich (Oslo, Norway). Chondroitinase ABC (EC
4.2.2.4) was purchased from Seikagaku Corporation
(Chuo-ku, Tokyo, Japan). Chondroitin sulfate (C-4384,)
and heparan sulfate (H-7640) were obtained from
Sigma-Aldrich (Oslo, Norway). [3°S]Sulfate (code SJS-1)
was purchased from Amersham Biosciences (Buckin-
ghamshire, UK).

The lymphoma cell lines KMS-5, KMM-1 and Sudhl-4
were a kind gift from Mark Raffeld, Hematophathology
Section, Laboratory of Pathology, National Cancer Insti-
tute, National Institutes of Health, Bethesda, MD. Jeffery
D. Esko, Department of Cellular and Molecular Medi-
cine, University of California, San Diego, USA, kindly
provided us with the mutant Chinese hamster ovary cell
line pgsA-745, which does not express GAGs at the cell
surface, as well as the wild-type CHO-K1 that expresses
normal amounts of GAGs [37,38]. The lymphoma
cell lines U-266, Ramos, the colon carcinoma cell line
HT-29, the breast carcinoma cell line MT-1 and the
neuroblastoma cell line Kelly were obtained from the
American Type Culture Collection. Human umbilical
vein endothelial cells (HUVEC) were obtained from
MedProbe, Lonza.

Peptide synthesis, purification and analysis

The peptides LTX-302, LTX-315 and LTX-318 were
synthesized by solid-phase methods using standard
Fmoc chemistry on a Pioneer Peptide synthesizer
(Applied Biosystems, Foster City, CA). Crude peptides
were purified by preparative RP-HPLC (Waters, Milford,
MA) using a C;g column (Delta-Pak™ C18, 1004,
15 um, 25-100 mm), and analysed on an analytical Cg
HPLC column (Delta-Pak™ C18, 100A, 5 um, 3.9 x
150 mm) (Waters, Milford, MA). The purity of the pep-
tides was found to be >95%. Peptide characterization
was done by positive ion electrospray ionization mass
spectrometry on a VG quattro quadrupole mass spectro-
meter (VG Instruments Inc., Altringham, UK).
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Cell cultures

The HT-29, MT-1, Kelly, HUVEC and MRC-5 cells
were maintained as monolayer cultures. The HT-29,
MT-1 and Kelly cells were maintained in RPMI-1640
(R8758, Sigma-Aldrich, Oslo, Norway) supplemented
with 10% (v/v) FBS. MRC-5 cells were maintained in
MEM (M4655, Sigma-Aldrich, Oslo, Norway) supple-
mented with 10% (v/v) FBS. The HUVEC cells were
maintained in Endothelial Cell Growth Medium-2 Bul-
letKit obtained from MedProbe, Lonza. The CHO-K1
and pgsA-745 cell lines were maintained as monolayer
cultures in HAM's-F12 (E15-817, PAA Laboratories,
Oslo, Norway) supplemented with 10% (v/v) FBS. All
the lymphoma cell lines were grown in suspension in
RPMI-1640 medium supplemented with 10% (v/v) FBS.
All cells were grown in tissue culture flasks in a humidi-
fied atmosphere of 95% air and 5% CO, at 37°C.

Cytotoxicity assay

The colorimetric MTT viability assay was used to inves-
tigate the cytotoxic effect of the peptides. The HT-29,
MT-1, Kelly, HUVEC and MRC-5 cells were seeded at a
concentration of 2 x 10° cells/ml, 1.5 x 10° cells/ml, 2 x
10° cells/ml, 1 x 10° cells/ml and 1 x 10° cells/ml in a
volume of 0.1 ml in 96-well plates, respectively. CHO-
K1 and pgsA-745 cells were seeded at a concentration
of 1 x 10° cells/ml. The cells were allowed to adhere
overnight in complete medium. Before adding different
concentrations of the peptides (10-500 pg/ml) to the
cells, the culture medium was removed and the cells
were washed twice in serum-free culture medium. The
non-adherent lymphoma cell lines were seeded at a den-
sity of 4 x 10° cells/ml using serum-free medium. After
incubating the cells with peptides for 30 minutes at 37°
C, 0.5 mg MTT-solution was added to each well and
the incubation was continued for 2 hours. A volume of
70 pl or 130 pl per well was removed from the non-
adherent and adherent cells, respectively. In order to
dissolve the formazan crystals, 100 pl of 0.04 M HCI in
isopropanol was added and the plates were shaken for
1 hour on a Thermolyne Roto Mix (Dubuque, IA) at
room temperature. The optical density was measured on
a microplate reader (VERSAmax™ Molecular Devices,
CA). Cells treated with 1% Triton X-100 in serum-free
medium was used as positive control for 100% cell
death, whereas cells in serum free medium were used as
negative control. Cell survival was determined from the
AAs9o nm relative to the negative control (100% living
cells) and expressed as 50% inhibitory concentration
(ICs0).

Hemolytic assay
The hemolytic activity of the peptides was determined
using freshly isolated human red blood cells (RBC) as
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previously described [39]. Briefly, venous blood was col-
lected, transferred to a tube containing heparin (10 U/
ml) and centrifuged at 1500 rpm for 10 minutes in
order to isolate the red blood cells. The red blood cells
were washed three times with PBS (35 mM phosphate
buffer with 150 mM NaCl, pH 7.4) by centrifugation at
1500 rpm for 10 minutes, and adjusted to 10% hemato-
crit with PBS. Peptide solutions were added to yield a
final concentration range of the peptide from 1000 pg/
ml to 1 pg/ml and a red blood cell concentration of 1%.
The resulting suspension was incubated with agitation
for 1 hour at 37°C. After incubation the suspension was
centrifuged at 4000 rpm for 5 minutes, and the released
hemoglobin were monitored by measuring the absor-
bance of the supernatant at 405 nm on a microplate
reader (VERSAmax™ Molecular Devices, CA). PBS and
1% Triton X-100 were used as negative and positive
controls, respectively. Peptide concentrations corre-
sponding to 50% hemolysis (EC5o) were determined
from dose-response curves.

Radiolabeling and isolation of **S-labeled
macromolecules

CHO-K1 cells and the lymphoma cells were radiolabeled
for 20 hours by adding [**S]sulfate to a final concentra-
tion of 50 pCi/ml at the time of cell plating. After this
incubation time, the lymphoma cells were harvested by
centrifugation and washed twice with serum-free med-
ium before a 4 M guanidinium chloride solution con-
taining 2% triton X-100 was added to the cells. The
plasma membrane-associated °S-labeled macromole-
cules on the CHO-K1 cells were harvested by washing
the cells twice with serum free-medium and then incu-
bating them for 15 minutes at 37°C in the presence of
10 pg/ml of trypsin [40]. Free [**S]sulfate was removed
by gel filtration on Sephadex G50 Fine columns (bed
volume 4 ml, equilibrated with 0.5 M Tris/HCI, pH 8.0
and 0.15 M NaCl and eluted with distilled H,O). Ali-
quots from the membrane fractions were analysed for
radioactivity in a scintillation counter after the addition
of Ultima Gold XR scintillation fluid. The rest of the
material was immediately frozen and stored until further
analysis.

Alkali treatment and gel chromatography

The *S-labeled macromolecules were subjected to alkali
treatment (0.5 M NaOH overnight at 45°C, followed by
neutralization with 0.5 M HCI), resulting in liberation of
free **S-labeled GAG chains. The **S-labeled macromo-
lecules were subjected to Superose 6 gel chromatogra-
phy both before and after alkali treatment. Markers for
void (V,) and total volume (V) were blue dextran and
[*°S]sulfate, respectively. The columns were run in 4 M
guanidine-HCI with 0.05 M sodium acetate, pH 5.8.
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Fractions were collected and the radioactivity counted in
a scintillation counter.

Selective PG degradation

The **S-labeled macromolecules were subjected to enzy-
matic treatment with chondroitinase ABC (cABC),
which depolymerizes CS. Incubations with cABC were
performed at 37°C overnight with 0.01 U enzyme per
sample in 0.05 M Tris/HCl, 0.05 M sodium acetate, pH
8.0. The samples were analyzed on Sephadex G-50 Fine
columns (bed volume 4 ml, equilibrated and eluted with
the Tris/HCI buffer). Parallel samples were subjected to
HNO, treatment at pH 1.5 in order to degrade the HS
chains [41]. The samples were analyzed by Sephadex G-
50 Fine columns (bed volume 4 ml, equilibrated and
eluted with dH,0O). Aliquots from the collected fractions
were analyzed for radioactivity in a scintillation counter
after the addition of Ultima Gold XR scintillation fluid.

Affinity assay

Two different Sepharose affinity columns were prepared,
using HS and CS as ligands. The ligands were mixed
with swollen CNBr-activated Sepharose 4B. Non-reactive
groups were blocked with 0.1 M Tris-HCI, pH 8.0 and
the gel was washed before packing. The peptides were
dissolved in 5 mM phosphate-buffer, pH 7.4 at a con-
centration of 0.5 mg/ml, and 50 upl samples were
applied. A gradient of NaCl was used to elute the differ-
ent peptides from the columns using a GradiFrac from
Amersham Pharmacia Biotech (Uppsala, Sweden) at a
flow rate of 1.0 ml/min. The peptides were detected
using a monitor UV-1 from Amershan Pharmacia Bio-
tech (Uppsala, Sweden).

Results

Cytotoxic effect of peptides

The synthetic peptides LTX-302, LTX-315 and LTX-318
used in the present study consist of 9 amino acids,
include a non-coded aromatic amino acid and have a
net positive charge of +6. Their amino acid sequences
are presented in Table 1.

The cytotoxic activity of the peptides was measured by
MTT assays after a 30 minute incubation time. The
dose response curves obtained by the 9-mers are shown
in Figure 1. The LTX-315 peptide displayed the highest
antitumor activity with a ~ 2 fold higher activity against

Table 1 Synthesized peptide sequences

Peptide Amino acid sequence® Charge
LTX-302 WKKWDipKKWK-NH, +6
LTX-315 KKWWKKWDipK-NH, +6
LTX-318 OOWDiIpOOWWO-NH, +6

%) W = tryptophan, K = lysine, O = ornithine, Dip = diphenylalanine.
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Figure 1 Cytotoxic activity of LTX-302, LTX-315 and LTX-318
against cancer and normal cell lines. The dose response curves
for LTX-302 (A), LTX-315 (B) and LTX-318 (C) are plotted as percent
survival of the cells against the different peptide concentrations
(Lg/ml). The dotted line shows the peptide concentration killing
50% of the cells. The curves correspond to three experiments
performed in triplicate + SEM.

the carcinoma cell lines HT-29 and MT-1 (IC5, values
of 38 uM and 31 pM, respectively), compared to LTX-
302 (ICsq values of 75 pM and 73 pM, respectively).
Furthermore, LTX-315 displayed a 6 to 8 fold higher
activity against HT-29 and MT-1 compared to LTX-
318 (ICsq values of 248 uM and 216 pM, respectively)
(Table 2). The LTX-315 peptide also showed 2- fold
and ~ 5- fold higher activity against the neuroblastoma
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Table 2 Cytotoxic effect of LTX-302, LTX-315 and LTX-318 against HT-29, MT-1, Kelly, HUVEC, MRC-5 and RBC

Peptide HT-29 “ICso (UM) MT-1 ICso (uM) Kelly I1Cso (uM) HUVEC ICso (uM) MRC-5 IC5o (UM) RBC ICso (uM)
LTX-302 75+5 73+ 2 28+ 0 123£9 126 £ 11 > 695¢
LTX-315 38+£3 313 14£1 28 £1 41 +3 > 695
LTX-318 248 £5 216 £ 36 787 > 347¢ > 347¢ > 695
LfcinB > 160° > 160 141 £3 > 160 > 160 > 500°

“The peptide concentration killing 50% of the cells.

Data are means of three independent experiments performed in triplicate.
PThe maximum concentration of LfcinB tested was 500 pg/ml (160 uM).
“The maximum concentration of LTX-318 tested was 500 pug/ml (347 uM).

%The maximum concentration of the LTX peptides tested was 1000 pg/ml (695 uM).

€Published by Eliassen et al. [69].

cell line Kelly (ICsq value of 14 uM) compared to LTX-
302 (ICso value of 28 uM) and LTX-318 (ICs, value of
78 uM), respectively. The 25-mer LfcinB peptide was
also included in the cytotoxicity studies in order to
compare its cytotoxic activity with the 9-mers. The
LfcinB peptide displayed no ICs, value against the HT-
29 cell and the MT-1 cells at the highest concentration
tested (500 pug/ml), and only a low cytotoxic activity
against the Kelly cells (IC5, value of 141 pM) compared
to the 9-mers.

Experiments with the non-tumor endothelial cell line
HUVEC and the fibroblast-like cell line MRC-5 revealed
that these cells were less sensitive to the peptides com-
pared to the tumor cells. The LTX-302 peptide dis-
played a ~ 2 fold higher activity against the carcinoma
cell lines and a ~ 4.5 fold higher activity against the
neuroblastoma cell line in comparison to the endothelial
and fibroblast cells (Table 2). The LTX-318 peptide dis-
played no ICs, value against the endothelial and fibro-
blast cells at the highest concentration tested (500 pg/
ml). LTX-315 displayed a 2-3 fold higher activity against
the neuroblastoma cells compared to the endothelial
and fibroblast cells, but did not show increased activity
against the carcinoma cell lines in relation to the
endothelial and fibroblast cells. The LfcinB peptide dis-
played no ICs, value against the endothelial and fibro-
blast cells at the highest concentration tested (500 pg/
ml). The hemolytic activity of the peptides was deter-
mined using freshly isolated human red blood cells
(RBC) as previously described [39]. LTX-302 and LTX-
318 did not induce hemolysis of human erythrocytes up
to the maximum concentration tested (1000 pg/ml),
while LTX-315 had an EC50 > 1000 pg/ml. These
results show that cancer cell lines in general were more
sensitive to the peptides than the normal cells.

Cytotoxic effects on HS expressing and HS deficient
lymphoma cells

We have previously demonstrated that HS on the sur-
face of target cells inhibited the cytotoxic effect of CAPs
[29]. To investigate whether HS also modulates the

cytotoxic activity of the 9-mer peptides, the effect of the
peptides against a panel of five different lymphoma cell
lines was studied. The amount of GAGs produced by
the lymphoma cells and the distribution between HS
and CS was examined by labeling the cells with [**S]sul-
fate. The amount of >*S-labeled macromolecules in the
cell fraction was quantified after Sephadex G-50 chro-
matography, as previously described [42]. In order to
determine the distribution between HS and CS chains
the *°S-labeled macromolecules were subjected to
HNO, and cABC treatment. The U-266 cells displayed
the highest incorporation of [3°S]sulfate into HS mole-
cules and expressed ~10 fold and ~13 fold more HS
compared to the Sudhl-4 and Ramos cells, respectively
(Figure 2). The amount of cell-associated CS also dif-
fered among the different cell types, in which the Ramos
cells showed ~ 7 times higher incorporation of [3°S]sul-
fate into CS molecules compared to Sudhl-4 cells.
Three of the lymphoma cell lines (KMS-5, U-266,
KMM-1) express HS on the cell surface, whereas the
other two cell lines (Sudhl-4 and Ramos) do not, as
determined by flow cytometry using an anti-HS anti-
body (Uhlin-Hansen, L. Manuscript in preparation).
LTX-315 was the most active peptide against the
lymphoma cells with ICs, values ranging from 10 to

—. 2000 | HS
) oCS
[0}
(]
@, 1600 -
x
T 1200
o
o
> 800
=
g
& 400
e]
: =
T 0 : : ;
KMS-5 U-266 KMM-1 Sudhl-4 Ramos
Figure 2 Determination of the amount of [3°S]sulfate
incorporated into macromolecules at the cell surface of CHO-
K1 cells. The experiment was performed twice in duplicate with
almost identical results.
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23 uM compared to LTX-302 (IC5, values ranging
from 31 to 46 pM) and LTX-318 (ICs, values ranging
from 73 to 106 puM) (Table 3). However, there was no
correlation between the cytotoxic activity of the pep-
tides and expression of cell surface HS on the target
cells (Table 3).

Cytotoxic effect on GAG expressing and GAG deficient
CHO cell lines

To further investigate whether cell surface GAG affects
the cytotoxic activity of the peptides, the effect of LTX-
302, LTX-315 and LTX-318 on wild-type CHO cells,
expressing normal amounts of GAGs on the cell surface
and the complete null mutant pgsA-745 that do not
express GAGs on the cell surface [37], were studied. In
contrast to our previously published data on longer
CAPs [29], LTX-302 and LTX-318 displayed somewhat
higher cytotoxic activity against the CHO-K1 cells com-
pared to the GAG-deficient pgsA-745 cells (Figure 3a, b
and Table 4), indicating that cell surface GAGs facili-
tated cytotoxic activity of these two peptides. LTX-315
displayed higher cytotoxic activity than both LTX-302
and LTX-318, but did not discriminate between CHO-
K1 and pgsA-745, suggesting that the cytotoxic effect of
+this peptide was unaffected by cell surface GAGs
(Figure 3c and Table 4).

CHO-K1 cells express mainly HS chains on the cell surface
In order to determine the amount of HS and CS on the
surface of CHO-K1 cells, the cells were metabolically
labeled with [*°S]sulfate. After removal of the culture
medium, GAGs associated with the plasma membrane
were harvested as described in “Methods”. By subjecting
the 3°S-labeled macromolecules in the membrane frac-
tion to cABC and HNO, treatment, it was found that
approximately 70% of the >*S-labeled macromolecules in
the membrane fraction of the CHO-KI1 cells were sensi-
tive to HNO, treatment, while approximately 20% were
sensitive to cABC treatment. Hence, it can be concluded
that approximately 70% and 20% of the *°S-labeled
macromolecules on the surface of these cells were HS
and CS, respectively (Figure 4), which is similar to
results previously reported by Esko et al. [43].
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Effect of soluble GAGs on cytotoxic activity

In order to investigate whether soluble CS or HS would
interfere with the cytotoxic activity, the peptides were
added to cultures of CHO-K1 cells together with exogen-
ous CS and HS. At a concentration of 10 pg/ml, both CS
and HS displayed only a negligible inhibitory effect on
the cytotoxic activity of LTX-302 and LTX-315. At a
concentration of 100 ug/ml, HS revealed a much higher
inhibitory effect on the cytotoxic activity of LTX-302 and
LTX-315 when compared to CS (Figure 5a, b). This indi-
cates that LTX-302 and LTX-315 bind more strongly to
HS compared to CS and that HS thereby hinders the
cytotoxic effect of the peptides more efficiently. The
cytotoxic activity of LTX-318 was not inhibited in the
presence of soluble CS or HS (Figure 5c).

Affinity for HS and CS

To investigate whether the cytotoxic activity of the pep-
tides could be correlated to the GAG binding capacity,
the affinity of the peptides for CS and HS was studied
by affinity chromatography. All the peptides showed a
significantly higher affinity for HS than for CS (Table 5).
The LTX-315 and LTX-318 peptides exhibited a signifi-
cantly higher affinity for HS compared to LTX-302.
Although LTX-315 displayed a much higher cytotoxic
activity against the GAG expressing cell line CHO-K1
compared to LTX-318, there was no significant differ-
ence in their affinity for HS. The peptides showed no
significant differences in their affinity for CS. The 25-
mer peptide LfcinB, which has been shown to bind
heparin-like molecules [44,45], was included in this
experiment in order to compare its affinity for CS and
HS with the 9-mers. The LfcinB peptide had a signifi-
cantly lower affinity for CS and a significantly higher
affinity for HS compared to the 9-mers. These experi-
ments confirm that the peptides interact more strongly
with HS compared to CS.

Discussion

Several carcinoma, melanoma, lymphoma and leukemia
cell lines are more sensitive to CAPs compared to nor-
mal cells [46-49]. It is believed that this selectivity is
due to a more negatively charged cell surface of the

Table 3 Cytotoxic activity of the LTX-302, LTX-315 and LTX-318 peptides against lymphoma cell lines expressing

different levels of HS

Cell line “Cell surface HS LTX-302 ®ICso(uM) LTX-315 ICso(uM) LTX-318 ICs5o(uM)
KMS-5 + 310 10£15 73+£5
U-266 + 36 £6 13£15 106 = 17
KMM-1 + 40+ 6 17 €2 1M1 £1
Sudhl-4 46 £ 6 23+2 110+ 5
Ramos 302 10+ 1.7 82+ 11

Cell surface HS was measured using an anti-HS antibody and flow cytometry. Cell lines marked by + express HS, while cell lines marked by - lack HS.

The peptide concentration killing 50% of the cells. Data are means of three independent experiments performed in triplicate.
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Figure 3 Cytotoxic activity of LTX-302, LTX-315 and LTX-318
against CHO-K1 and pgsA-745. The dose response curves for LTX-
302, LTX-315 and LTX-318 are plotted as percent survival of the cells
against the different peptide concentrations (ug/ml). The curves
correspond to three experiments performed in triplicate + SEM.

cancer cells. However, we have previously shown that
negatively charged GAGs on the cell surface inhibit the
cytotoxic activity of CAPs, probably by sequestering the
peptides away from the phospholipid bilayer. In the pre-
sent study three peptides consisting of only 9 amino
acids, and with a net positive charge of +6, were tested
for their antitumor activity and selectivity. Compared to
LfcinB, the 9-mers were more active and killed cancer
cells more effectively, showing that the 9-mers are more
optimized for antitumor activity than LfcinB. By exam-
ining the role of cell surface GAGs on the cytotoxic
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Table 4 Cytotoxic effect of LTX-302, LTX-315 and LTX-318
against CHO-K1 and pgsA-745 cells

Peptide ~ CHO-K1 °ICsy pgsA-745 °ICso  Ratio (ICse) pgsA-745/
(uM) (uM) CHO-K1

LTX-302 42+7 54+ 2 1.28

LTX-315 22 %5 22 %3 1.00

LTX-318 145 £ 6 176 £ 3 1.21

“The peptide concentration killing 50% of the cells. Data are means of three
independent experiments performed in triplicate.

effect of the 9-mers, we found that cell surface GAGs
had a different effect on the cytotoxic activity of this
new generation of shorter peptides compared to what
we previously reported for the longer naturally occur-
ring LfcinB (25-mer) peptide and the KW5 (21-mer)
peptide.

All the three 9-mer peptides displayed a higher activ-
ity towards the lymphoma, carcinoma and neuroblas-
toma cell lines compared to normal endothelial cells,
fibroblasts and red blood cells. One exception was the
lower activity of LTX-315 against the carcinoma cell
lines compared to the endothelial cells.

LTX-315 killed the various tumor cells more effi-
ciently than LTX-302 and LTX-318. However, the LTX-
318 and LTX-302 peptides displayed a higher specificity
for the tumor cells versus the non-tumor endothelial
and fibroblast cells than did LTX-315. These findings
are in agreement with our earlier findings that enhanced
antitumor activity may result in reduced tumor cell
specificity [50,51].

The relatively higher cytotoxic activity against the
lymphoma and neuroblastoma cells compared to the
endothelial cells, the fibroblast cells and the red blood
cells suggest that differences at the cellular membrane
level decide their vulnerability to the peptides. Differ-
ences in cell membrane composition, fluidity [52] and
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Figure 4 Amount of HS and CS on the cell surface of CHO-K1
cells. The experiment was performed twice in duplicate with almost
identical results.
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Figure 5 Cytotoxic effect of LTX-302, LTX-315 and LTX-318
against CHO-K1 cells, in the presence of soluble heparin and
chondroitin sulfate. The results are shown as mean ICsq value of
three independent experiments performed in triplicate. Comparison
of the ICsq values obtained from the control cells with the cell
cultures added soluble CS and HS were performed by a t-test
(GraphPad). P value is shown as follows: *** P < 0.0001.
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Table 5 Affinity of peptides for CS-, HS-Sepharose

Peptide  Elution concentration Elution concentration Net
from CS (mM NaCl)® from HS (mM NaCl)®  positive
charge
LTX-302 187 + 13 330+ 9 +6
LTX-315 200 + 9 393 + 13 +6
LTX-318 195 + 13 380 + 10 +6
LfcinB 130+ 9 417 + 4 +8

2Concentration of NaCl required to elute the peptide from the affinity column,
mean value of four experiments.

surface area [53,54] between cancer cells and normal
cells may be factors that make the former cells more
susceptible to the peptides.

The lack of correlation between the cytotoxic activity
of the peptides and the expression of HS on the cell sur-
face of the lymphoma cells indicates that membrane
components other than HS affect the susceptibility of
the lymphoma cells against the 9-mers. The cell lines
that displayed the highest sensitivity against the peptides
also had the highest amount of cell-associated CS. It can
therefore be speculated if CS is involved in the cytotoxic
effect of the peptides. However, the correlation between
cell-associated CS and cytotoxicity was not significant.

Both the expression of sialic acids, which is another
component of the anionic glycoconjugate cell coat that
surrounds cells, and the expression of PS in the outer
membrane leaflet have been shown to affect the CAPs
interactions with the lipid bilayer [11,55]. Moreover, the
membrane fluidity has been demonstrated to be an
important determinant for the selective permeabilization
of membranes [56-58].

In order to study the possible contribution of HS to
the cytotoxic activity of the 9-mers more directly, the
peptides cytotoxic activity was tested against CHO wild-
type cells expressing HS on the cell surface and its
mutant lacking HS on the cell surface. CHO cells have
been widely used to study the role of cell surface GAGs
in various processes such as viral infection, growth fac-
tor signaling and cell adhesion [59]. The pgsA-745 cells
have defective xylosyltransferase, an enzyme necessary
for biosynthesis of HS and CS [37]. Although CHO cells
are derived from normal tissue, both CHO-K1 and
pgsA-745 induce solid tumors when injected into immu-
nodeficient mice [60,61]. By examining the expression
pattern of GAGs on the cell surface of the CHO-K1
cells, we found that the cell surface PGs primarily con-
tained HS chains. This expression profile, in which HS
is the dominant type of cell surface GAGs, is common
among most cell types [27]. Our experiments with CHO
cells clearly indicate that cell surface GAGs increase the
cytotoxic effect of LTX-302 and LTX-318. However, the
cytotoxic effect of LTX-315, which lysed the cells more
efficiently, was not influenced by cell surface GAGs.
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We found that soluble CS and HS inhibited the cyto-
toxic activity of LTX-302 and LTX-315 against the
CHO cells. The stronger inhibition of the cytotoxic
activity obtained by HS compared to CS indicates that
the peptides bound more strongly to HS than to CS.
This was confirmed by affinity chromatography, which
exhibited a higher affinity of the peptides to HS com-
pared to CS. The difference in the affinity could be
explained by the higher conformational flexibility in HS
compared to the more rigid CS [62], as the peptides
may require a high flexibility in the molecules they bind
to. The cytotoxic activity of LTX-318 was not affected
by the presence of soluble CS or HS. Considering the
low activity that LTX-318 displayed against the CHO-
K1 cells, the cytotoxic concentration of the peptide
might be too high in order for the amount of exogenous
CS and HS to affect the activity. The finding that the
peptides interact more strongly with HS, together with
the higher amount of HS chains attached to syndecans
and glypicans compared to CS [27,28], strongly indicates
that HS and not CS is the major interaction site for the
9-mers.

Despite having the same net positive charge, LTX-315
and LTX-318 showed a higher affinity for HS in com-
parison to LTX-302. The difference in affinity to HS
may be due to the position of the basic residues in the
peptides. In addition to cationic residues, the CAPs
include lipophilic residues, which are important for
interactions with the lipid layer of the cell membrane
leading to an irreversible membrane destabilizing effect.
The relative positions of the lipophilic and cationic resi-
dues affect the flexibility of CAPs, which permit the
transition from its solution conformation to its mem-
brane-interacting conformation [63,64]. Both the posi-
tion of the cationic residues and the relative flexibility of
the three 9-mers can therefore affect their interaction
with cell surface GAGs.

The ability of the 9-mer peptides and LfcinB to inter-
act with GAG chains will increase the cell surface con-
centration of the peptides. However, the finding that cell
surface HS can act as a facilitator for small CAPs is in
contrast to our recent report which shows that the
longer lytic peptides LfcinB and KW5 displayed a higher
cytotoxic activity against the GAG-deficient cell line
[29]. The inhibitory effect of GAGs on the cytotoxic
activity of LfcinB could be due to the higher affinity for
HS compared to the 9-mer peptides. The LfcinB peptide
has a higher net positive charge (+8) than the 9-mers,
which may explain its higher affinity for HS. However, it
has been documented that the affinity for HS is only
partly correlated with the net charge of the peptides
[45,65]. Several studies have demonstrated that peptide
analogues with arginine residues bind more tightly to
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heparin-like molecules than comparable analogues sub-
stituted with lysine [65-68]. The 9-mers have no argi-
nine residues in their sequences, while the LfcinB
peptide contains five arginine residues. It is believed
that the tighter interaction observed for arginine is due
to a strong hydrogen bond formation between the gua-
nidine group of arginine and sulfate. The presence of
arginine residues in LfcinB might therefore also contri-
bute to the higher affinity for HS compared to the
9-mers. The difference in the size of the 9-mers and
LfcinB peptides could also affect the affinity for HS due
to differences in the flexibility of the secondary struc-
ture. Whereas the LfcinB peptide forms a stabilized
amphiphatic B-sheet, the smaller peptides might have a
higher plasticity of their secondary structure, thus lead-
ing to a less defined binding domain for GAGs.

Hence, the difference in HS affinity between LfcinB
and the 9-mers seems to affect the mechanism of action
of LfcinB and the 9-mers differently. We therefore pro-
pose a mode of action model in which both the LfcinB
peptide and the 9-mers are attracted to the anionic gly-
coconjugate cell coat that surrounds cells. This anionic
cell coat consists of both GAGs and sialic acids. The
repeating disaccharide structures of HS containing mul-
tiple sulfate groups are larger and more negatively
charged than sialic acids, which is a monosaccharide
with a carboxylic acid group. A stronger electrostatic
interaction is therefore expected to occur between CAPs
and HS in comparison to sialic acids. In order for the
CAPs to exert their permeabilization effect leading to
cell death, they have to navigate through this anionic
cell coat to reach the phospholipid bilayer. The inhibi-
tory effect of HS on the cytotoxic activity of LfcinB
shows that the anionic cell coat may play a limiting role
in the cytotoxic activity of LfcinB, in which HS at the
cell surface of target cells hinders LfcinB from reaching
the phospholipid bilayer. Furthermore, LfcinB that com-
plex with cell surface HS may not be in close enough
proximity to the cell surface to destabilize the mem-
brane. The cytotoxic activity of the 9-mers is not inhib-
ited by cell surface HS, thus suggesting that the 9-mers
are attracted to HS without being captured. A higher
amount of the 9-mer peptides will therefore reach the
phospholipid bilayer compared to LfcinB.

Conclusions

Several naturally occurring CAPs and their chemically
modified derivatives display promising anticancer activ-
ity. We have previously shown that the cytotoxic effect
of larger CAPs such as LfcinB is inhibited by HS at the
surface of tumor cells, probably by sequestering the
CAPs away from the lipid bilayer. The present study
shows that the cytotoxic effect of the smaller 9-mer



Fadnes et al. BMC Cancer 2011, 11:116
http://www.biomedcentral.com/1471-2407/11/116

peptides is not inhibited by cell surface HS. These small
peptides may therefore be used against a variety of dif-
ferent cancers independent of HS expression on the cell
surface.
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