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MAL2 and tumor protein D52 (TPD52) are
frequently overexpressed in ovarian carcinoma,
but differentially associated with histological
subtype and patient outcome
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Abstract

Background: The four-transmembrane MAL2 protein is frequently overexpressed in breast carcinoma, and MAL2
overexpression is associated with gain of the corresponding locus at chromosome 8q24.12. Independent
expression microarray studies predict MAL2 overexpression in ovarian carcinoma, but these had remained
unconfirmed. MAL2 binds tumor protein D52 (TPD52), which is frequently overexpressed in ovarian carcinoma, but
the clinical significance of MAL2 and TPD52 overexpression was unknown.

Methods: Immunohistochemical analyses of MAL2 and TPD52 expression were performed using tissue microarray
sections including benign, borderline and malignant epithelial ovarian tumours. Inmmunohistochemical staining
intensity and distribution was assessed both visually and digitally.

Results: MAL2 and TPD52 were significantly overexpressed in high-grade serous carcinomas compared with serous
borderline tumours. MAL2 expression was highest in serous carcinomas relative to other histological subtypes,
whereas TPD52 expression was highest in clear cell carcinomas. MAL2 expression was not related to patient
survival, however high-level TPD52 staining was significantly associated with improved overall survival in patients
with stage III serous ovarian carcinoma (log-rank test, p < 0.001; n = 124) and was an independent predictor of
survival in the overall carcinoma cohort (hazard ratio (HR), 0.498; 95% confidence interval (CI), 0.34-0.728; p < 0.001;
n = 221), and in serous carcinomas (HR, 0.440; 95% CI, 0.294-0.658; p < 0.001; n = 182).

Conclusions: MAL2 is frequently overexpressed in ovarian carcinoma, and TPD52 overexpression is a favourable
independent prognostic marker of potential value in the management of ovarian carcinoma patients.

Background
Epithelial ovarian carcinoma is a disease often charac-
terised by poor outcome, despite intensive efforts to
improve early disease detection, and to understand the
causes of frequent treatment failure [1,2]. To improve
our understanding of the underlying molecular basis of
this histologically heterogeneous group of tumours, large
numbers of cytogenetic and comparative expression

studies have been undertaken. Cytogenetic analyses have
consistently identified chromosome 8q gain as a common
event in ovarian carcinoma [summarised in 3], and in
other cancer types [4,5], and recent studies continue to
highlight the fact that several distinct regions along chro-
mosome 8q are increased in copy number [6-8]. One
such region occurs at chromosome 8q24.12, and includes
the gene encoding the four-transmembrane protein
MAL2 [9], which is increased in copy number and/or
overexpressed in breast and other cancers [10-18]. MAL2
is a 176 amino acid protein that contains a MARVEL
(MAL and related proteins for vesicle trafficking and
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membrane link) domain commonly identified in proteins
associated with membrane apposition events [19], and is
an essential component of the basolateral-to-apical trans-
cytotic machinery [20]. Increased MAL2 expression in
ovarian cancer has been repeatedly identified by indepen-
dent expression microarray studies [21-24], with two
meta-analyses highlighting the same finding [22,25].
Increased MAL2 expression has been validated in other
cancer types using RT-PCR [26,27], and demonstrated at
the protein level in renal cell [18,28] and breast carcino-
mas [12]. However, no study to date has examined
whether MAL2 expression is increased in ovarian carci-
noma, or its potential clinical significance.
MAL2 is known to bind the product of another gene on

chromosome 8q, tumor protein D52 (TPD52) [9,29],
which is a member of the similarly-named gene and pro-
tein family [30]. The TPD52 gene maps to chromosome
8q21.13, and demonstrates copy number increases and
overexpression in a variety of cancers [reviewed in 31]. The
TPD52 protein is 184 amino acids in length and contains a
coiled-coil domain, but does not show significant levels of
sequence identity to proteins beyond the TPD52-like
family [30]. Its expression in normal secretory epithelia has
been implicated in regulating exocytotic secretion [32],
whereas exogenous TPD52 expression in cultured cell lines
results in increased proliferation and anchorage-indepen-
dent growth [12,33,34], and in vivo metastasis in immuno-
competent hosts [34]. In ovarian cancer, TPD52
overexpression has been identified in all histological sub-
types of ovarian carcinoma relative to normal ovarian
epithelium, with a significant positive correlation between
TPD52 expression and gene copy number being found in
an independent serous carcinoma cohort [3]. Other studies
have similarly reported increased TPD52 expression in
ovarian cancer using expression microarray [23,24,35,36]
and proteomic approaches [37]. While high TPD52 expres-
sion in breast cancer has been reported to be an adverse
prognostic factor [12], the clinical significance of increased
TPD52 expression in ovarian cancer has not been directly
investigated.
The aim of the present study was therefore to define

MAL2 and TPD52 expression in a large cohort of ovar-
ian carcinomas, relative to other clinical parameters.
Immunohistochemical staining using previously
described polyclonal antisera [3,12,29] was assessed both
visually and digitally, as previously described in breast
carcinoma [12].

Methods
Tissue and clinicopathological data
The patient cohort (n = 289) were women undergoing
primary laparatomy at the Gynaecological Cancer Cen-
tre, Royal Hospital for Women, Sydney, between 1989
and 2002. Formalin-fixed, paraffin-embedded tissue

specimens were collected retrospectively and surgical,
clinical and histopathological data (histopathological
diagnosis, FIGO stage, surgical debulking, tumour grade,
survival) were extracted from medical records. All
experimental procedures were approved by the Human
Research Ethics Committee of the Sydney South East
Area Hospital Service, Northern Section (00/115).

Immunohistochemical analysis of paraffin-embedded
ovarian tissue microarrays
Construction of the tissue microarrays used in this study
has been previously described [22]. Immunohistochem-
ical staining was performed using a DAKO autostainer
(DAKO, Glostrup, Denmark). Tissue sections were
dewaxed and rehydrated according to standard proto-
cols, followed by antigen retrieval in a 100°C water bath
(MAL2: 0.5 × Target Retrieval Solution pH 6 (DAKO)
for 20 min; TPD52: 1 × Target Retrieval Solution pH 9
(DAKO) for 1 h). The TPD52 and MAL2 antisera
employed for immunohistochemistry have both been
previously described [3,12,29]. Slides were incubated for
1 h with affinity-purified TPD52 (1/50) or MAL2
(1/100) antibodies. Primary antibody was omitted in
control incubations. Bound antibody was detected by
LINK/EnVision using 3,3’-diaminobenzidine Plus
(DAKO) as substrate. Counterstaining was performed
with hematoxylin and 1% acid alcohol.
Scoring was assessed by two gynaecological patholo-

gists (R.M. and J.P.S) blinded to patient outcome, and
discrepancies resolved by discussions around a multi-
head microscope. Immunohistochemical staining inten-
sity was scored as 0 (absent), 1 (low), 2 (moderate) and
3 (high), and immunohistochemical staining extent was
scored as a percentage of the relevant tissue core com-
partment. Staining intensity and extent values were sub-
sequently multiplied to produce histoscores (possible
range 0 (0 × 0%) to 300 (3 × 100%)). Slides were also
independently digitally scanned using a Virtual Micro-
scope ScanScope Unit and ScanScope Console program
at 200 × magnification, and visualised using Image
Scope (Aperio Technologies, Vista, CA). Staining inten-
sity and extent were quantified within tissue cores of
fixed and uniform diameter using the Positive Pixel
Count algorithm (Aperio Technologies), with partial tis-
sue cores, those with staining artefacts or without
epithelial elements (normal or cancerous) being
excluded. The strong pixel count (SPC), defined as the
number of pixels of 175-220 intensity, was measured
per tissue core, and SPC values for replicate cores were
averaged.

Statistical analyses
The SPSS for Windows package (Version 17, SPSS Inc.,
Chicago, IL) was used in all analyses. Distributions of
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continuous variables were often skewed, and sum-
marised using medians and interquartile ranges. Catego-
rical variables were summarised using percentages
within each group, with differences in proportions
between groups being compared using Fisher’s Exact
Test. The Mann-Whitney U test was used to test for
differences in MAL2 and TPD52 SPCs or histoscores
between sample groups. Spearman’s rank correlation
was used to compare protein expression and other para-
meters. Survival distributions were estimated by the
Kaplan-Meier method, and the significance of differ-
ences between overall survival rates was ascertained
using the log-rank test. Multiple Cox proportional
hazards models with backward step-wise selection were
used to identify independent predictors of survival from
potential risk factors. Length of survival was defined
from the date of initial diagnosis to the date of patient
death or in the case of surviving patients, their most
recent follow-up date. Patients who were alive at their
most recent follow-up or lost to further follow-up were
censored.

Results
MAL2 and TPD52 expression were assessed in ovarian
tissue samples (Table 1) using both visual scoring by
experienced pathologists, and digital scoring to provide
independent quantitation of immunohistochemical
staining. In order to identify robust findings, we paid
particular attention to statistically different staining
levels obtained from comparisons of both visually-scored

staining, and independently derived SPCs (Tables 2, 3).
We considered visually-scored staining intensity values
both alone, and in combination with staining extent as
calculated histoscores, but found that the latter combi-
nation did not produce additional insights beyond those
obtained through comparing visual staining intensities
alone (Tables 2, 3).
As predicted from previous analyses of MAL2 intra-

cellular localisation [12,18,28], MAL2 immunohisto-
chemical staining displayed cytoplasmic and/or
membrane sub-cellular localisations in the samples
examined (Fig. 1). MAL2 cytoplasmic and membrane
staining intensities were significantly positively corre-
lated in the tumour cohort (Spearman’s rank correlation
coefficient, rs = 0.736, p < 0.001, n = 207), and both
were significantly positively correlated with measured
SPCs in tumour cores (rs = 0.599, p < 0.001, n = 211 for
cytoplasmic staining; rs = 0.592, p < 0.001, n = 197 for
membrane staining). As cytoplasmic staining was indi-
cated to contribute more significantly to SPCs than
membrane staining (see below), analyses of visually-
scored MAL2 staining intensity focussed upon cytoplas-
mic staining, unless otherwise indicated.
Different tumourigenic pathways have been proposed

in the development of borderline and low-grade serous
carcinomas (Type I) versus high-grade serous carcino-
mas (Type II) [2]. MAL2 and TPD52 staining was there-
fore compared in these groups. In the case of both
proteins, more low-grade serous carcinoma (grade 1)
showed high-level cytoplasmic staining compared with

Table 1 Patient cohort

Clinical Variable All High-Grade
Serousa

Clear
Cell

Endometrioid Mucinous Low-Grade
Serousb

No. cases (% of total) 289 (100%) 176 (61%) 8 (3%) 22 (8%) 49 (17%) 34 (12%)

Median Age (years) 58.8 60.4 56.1 54.3 57.5 46.4

Benign 7 0 0 0 7 0

Borderline 61 0 0 22 32 27

Stage Ic 79 11 6 14 35 13

Stage II 16 7 0 4 1 4

Stage III 155 131 2 1 5 16

Stage IV 30 27 0 2 0 1

Grade 1d 22 0 N/A 8 7 7

Grade 2 85 78 N/A 5 2 0

Grade 3 106 98 N/A 7 1 0

Residual Disease ≤ 1 cme 151 84 1 9 34 23

Residual Disease >1 cm 137 91 7 13 15 11

Deceased 146 126 2 5 9 4
aIncludes one tumour of mixed histology of which serous was the predominant type.
bBorderline serous tumours are included in the low-grade serous column.
cStaging information missing for 2 patients (no staging for benign tumours).
dClear cell carcinomas were not graded.
eResidual disease information missing for 1 patient.
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serous borderline tumours (Fig. 2a, b), however this only
reached statistical significance for visual scoring of
MAL2 staining (Tables 2, 3). Significantly greater pro-
portions of high-grade serous carcinomas (grades 2 and
3) showed high-level cytoplasmic staining of both MAL2
and TPD52 compared with serous borderline tumours,
and this was supported by SPCs which were significantly
increased in high-grade serous carcinomas compared
with serous borderline tumours (Tables 2, 3). High-level
MAL2 staining at the membrane was frequent in serous
borderline lesions (17/27, 63%), but this did not appear
to significantly contribute to measured SPCs (data not
shown). Neither MAL2 nor TPD52 was differentially
expressed in serous carcinomas according to FIGO stage
or histological grade, and no significant correlations
were measured between either FIGO stage or grade and
SPCs or staining intensity (data not shown). Compari-
sons of MAL2 and TPD52 expression were also made in
a smaller cohort of mucinous carcinomas, borderline
tumours and cystadenomas (Fig. 2c, d, Tables 2, 3).
While high-level MAL2 and TPD52 staining were both
frequent in mucinous carcinoma (Fig. 2c, d), and appar-
ently increased stepwise from benign to borderline to
carcinoma, this was not confirmed by comparisons of

both visually and digitally-scored staining values
(Tables 2, 3).
MAL2 and TPD52 staining were also compared in

carcinomas according to histological subtype, and here
differences between MAL2 and TPD52 expression
emerged (Fig. 3). High-level MAL2 staining was most
frequent in serous carcinomas (102/182, 56%), followed
by mucinous (5/10, 50%), clear cell (3/8, 38%) and endo-
metrioid subtypes (6/20, 30%) (Fig. 3a), and serous car-
cinomas also displayed the highest median MAL2 SPC
(Table 2). High-level MAL2 staining was significantly
more frequent and MAL2 SPCs were significantly higher
in serous than endometrioid carcinomas (Fig. 3a,
Table 2). In contrast, high-level TPD52 staining was
most frequent in clear cell carcinomas (8/8, 100%), fol-
lowed by mucinous (8/10, 80%) serous (115/167, 69%),
and endometrioid carcinomas (9/19, 47%) (Fig. 3b), with
clear cell carcinomas also displaying the highest median
TPD52 SPC (Table 3). High-level TPD52 staining was
more frequent and TPD52 SPCs were significantly ele-
vated in clear cell carcinomas relative to endometrioid
carcinomas (Fig. 3b, Table 3). As MAL2 was most fre-
quently overexpressed in serous carcinomas, we com-
pared MAL2 and TPD52 staining in high-grade serous

Table 2 Statistical comparisons of MAL2 immunohistochemical staining in ovarian tissue samples

Visual scoring Automated scoringb

Tissue samples compared Intensitya Histoscoresb

Serous histology Low-grade 2/7 (29%) v. 0/27 (0%) 100 (10-240) v. 86 (65-146) 422 (38-1,177) v. 235 (137-416)

carcinoma v. p = 0.037, n = 34 NSc, n = 34 NS, n = 34

borderline

High-grade 100/175 (57%) v. 0/27 (0%) 255 (173-291) v. 86 (65-146) 480 (187-846) v. 235 (137-416)

carcinoma v. p < 0.001, n = 202d p < 0.001, n = 202 p = 0.003, n = 192

borderline

Mucinous histology Carcinoma v. 5/10 (50%) v. 3/32 (9%) 127 (0-296) v. 30 (0-79) 57 (18-768) v. 47 (27-132)

borderline p = 0.012, n = 42 NS, n = 42 NS, n = 42

Carcinoma v. 5/10 (50%) v. 0/7 (0%) 127 (0-296) v. 0 (0-80) 57 (18-768) v. 224 (71-301)

benign p = 0.044, n = 17 NS, n = 17 NS, n = 17

Carcinomas Serous v. 102/182 (56%) v. 6/20 (30%) 198 (82-285) v. 93 (0-237) 528 (166-1,060) v. 72 (16-267)

endometrioid p = 0.033, n = 202 p = 0.019, n = 202 p < 0.001, n = 192

Serous v. 102/182 (56%) v. 5/10 (50%) 198 (82-285) v. 127 (0-296) 528 (166-1,060) v. 57 (18-768)

mucinous NS, n = 192 NS, n = 192 p = 0.030, n = 182

Clear cell v. 3/8 (38%) v. 6/20 (30%) 113 (40-249) v. 93 (0-237) 231 (133-661) v. 72 (16-267)

endometrioid NS, n = 28 NS, n = 28 NS, n = 28

Clear cell v. 3/8 (38%) v. 102/182 (56%) 113 (40-249) v.198 (82-285) 231 (133-661) v. 528 (166-1,060)

serous NS, n = 190 NS, n = 190 NS, n = 180

High-grade 100/175 (57%) v. 16/46 (35%) 200 (96-285) v. 110 (8-244) 531 (166-1,059) v. 124 (20-415)

serous v. others p = 0.008, n = 221 p = 0.002, n = 221 p < 0.001, n = 211
aComparisons of proportions (percentages) of samples with high level immunohistochemical staining, Fisher’s Exact Test.
bComparisons of median histoscores or strong pixel counts (SPCs, shown in thousands), Mann-Whitney Test. Median values (interquartile ranges) are shown.
cNot statistically significant at p < 0.05.
dValues in bold indicate associations that were significant when visual scores and digitally-determined SPCs were compared.

Byrne et al. BMC Cancer 2010, 10:497
http://www.biomedcentral.com/1471-2407/10/497

Page 4 of 11



carcinomas versus all others (Fig. 3c, d, Tables 2, 3).
Statistical comparisons reproducibly highlighted that
MAL2 staining was higher in high-grade serous carcino-
mas, whereas TPD52 was indicated to be more equiva-
lently expressed (Fig. 3c, d, Tables 2, 3).
To examine the clinical significance of MAL2 and

TPD52 overexpression, survival analyses were carried
out considering MAL2 and TPD52 staining as both
visually and digitally scored data (Fig. 4). Given that
significant differences in survival between histological
subtypes and stages of ovarian cancer, initial analyses
were confined to stage III serous carcinoma. The inclu-
sion or exclusion of grade 1 cancers within this cohort
did not significantly affect the statistical results obtained
(data not shown). Dividing the stage III serous carci-
noma cohort according to median MAL2 or TPD52
SPC tumour values indicated similar overall survival
according to MAL2 staining (Fig. 4a), but a trend
towards improved overall survival with increased TPD52
staining (Fig. 4b). Similarly, comparable overall survival
was noted for tumours with high visually-scored MAL2
levels relative to all others (Fig. 4c), whereas significantly
improved overall survival was noted in patients with
tumours with high TPD52 staining (log-rank test,

p < 0.001, n = 124) (Fig. 4d). Multivariate analyses iden-
tified high TPD52 staining as an independent predictor
of survival, both in the overall carcinoma cohort (hazard
ratio (HR), 0.498; 95% confidence interval (CI), 0.340-
0.728; p < 0.001; n = 221), and in serous carcinomas
only (HR, 0.440; 95% CI, 0.294-0.658; p < 0.001; n =
182), after adjustment for age at diagnosis, FIGO stage,
histological grade, and presence of residual disease (nil
or < 1 cm versus >1 cm). Similar results were also
obtained when cohorts were divided around median
TPD52 SPC values (overall cohort: HR, 0.657; 95% CI,
0.461-0.937; p = 0.020; n = 221; serous cohort: HR,
0.637; 95% CI, 0.442-0.918; p = 0.015; n = 182). These
analyses indicate that high TPD52 expression is a
favourable independent prognostic factor in ovarian car-
cinoma, whereas no significant associations between
MAL2 expression and overall patient survival were
detected.

Discussion
The present study has confirmed MAL2 overexpression
in ovarian cancer, as predicted by previous expression
microarray analyses [21-25], and has shown this to be a
frequent event. MAL2 was significantly overexpressed in

Table 3 Statistical comparisons of TPD52 immunohistochemical staining in ovarian tissue samples

Tissue samples compared Visual scoring Automated scoring

Intensitya Histoscoresb SPCsb

Serous histology Low-grade 4/5 (80%) v. 11/24 (46%) 182 (155-248) v. 181 (163-272) 260 (223-871) v. 237 (90-359)

carcinoma v. NS, n = 29 NS, n = 29 NS, n = 34

borderline

High-grade 111/162 (69%) v. 11/24 (46%) 200 (96-285) v. 181 (163-272) 530 (166-1,059) v. 237 (90-359)

carcinoma v. p = 0.038, n = 186 p = 0.038, n = 186 p < 0.001, n = 192

borderline

Mucinous histology Carcinoma v. 8/10 (80%) v. 18/31 (58%) 236 (140-296) v. 216 (100-285) 384 (68-729) v. 125 (33-235)

borderline NS, n = 41 NS, n = 41 NS, n = 29

Carcinoma v. 8/10 (80%) v. 2/6 (33%) 236 (140-296) v. 195 (140-225) 384 (68-729) v. 63 (8-131)

benign NS, n = 16 NS, n = 16 p = 0.032, n = 17

Carcinomas Serous v. 115/167 (69%) v. 9/19 (47%) 255 (171-291) v. 180 (90-285) 479 (190-848) v. 116 (22-337)

endometrioid NS, n = 186 NS, n = 186 p = 0.003, n = 192

Serous v. 115/167 (69%) v. 8/10 (80%) 255 (171-291) v. 236 (140-296) 479 (190-848) v. 383 (69-729)

mucinous NS, n = 177 NS, n = 177 NS, n = 182

Clear cell v. 8/8 (100%) v. 9/19 (47%) 288 (283-294) v. 180 (90-285) 534 (287-1,061) v. 116 (22-337)

endometrioid p = 0.012, n = 27 p = 0.019, n = 27 p = 0.019, n = 28

Clear cell v. 8/8 (100%) v. 115/167 (69%) 288 (283-294) v. 255 (171-291) 534 (287-1,061) v. 479 (190-848)

serous NS, n = 175 p = 0.028, n = 175 NS, n = 180

High-grade serous 111/162 (69%) v. 30/43 (70%) 255 (173-291) v. 264 (165-291) 480 (187-846) v. 274 (84-715)

v. others NS, n = 205 NS, n = 205 p = 0.048, n = 211
aComparisons of proportions (percentages) of samples with high level immunohistochemical staining, Fisher’s Exact Test.
bComparisons of median histoscores or strong pixel counts (SPCs, shown in thousands), Mann-Whitney Test. Compared median values (interquartile ranges) are
shown.
cNot statistically significant at p < 0.05.
dValues in bold indicate associations that were significant when visual scores and digitally-determined SPCs were compared.
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Figure 1 Immunohistochemical detection of MAL2 or TPD52 (brown staining) within paraffin-embedded ovarian tissue sections
counterstained with hematoxylin. MAL2 staining within a (a) benign serous lesion; (b) serous borderline lesion; (c) mucinous borderline lesion;
(d) serous carcinoma; (e) clear cell carcinoma; and (f) TPD52 staining in the same clear cell carcinoma shown in (e) for comparison. Scale bar = 50 μm.
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high-grade serous carcinomas compared with borderline
tumours, and in high-grade serous carcinomas relative
to the remaining histological subtypes combined. High-
level MAL2 expression was also noted in mucinous,
clear cell and endometrioid ovarian carcinomas, albeit
less frequently than in serous carcinomas. The frequent
overexpression of MAL2 in ovarian carcinoma, coupled
with its low expression in benign and borderline lesions,
may indicate a potential role for MAL2 in disease detec-
tion and/or monitoring, particularly in high-grade serous
carcinoma. This is consistent with the previous inclusion
of MAL2 in marker panels to discriminate pancreatic
cancer from pancreatitis [26] and metastatic from non-
affected lymph nodes in colorectal cancer patients [27].
Frequent reports of MAL2 overexpression in numer-

ous cancer types, in association with increases in gene

copy number, argue against MAL2 overexpression being
an epiphenomenon. MAL2 has been recently shown to
bind the MUC1 oncoprotein [29], and MAL2 transcripts
are predicted to be co-expressed with EpCAM [38].
However, it is not yet clear how MAL2 overexpression
promotes tumourigenesis or progression. Increased
Myc-tagged MAL2 expression in MCF-10A breast
epithelial cells produced reduced proliferation rates and
an elongated cell phenotype [29]. Furthermore, other
studies examining gene expression consequences of
oncogene overexpression have reported reduced MAL2
expression in these models [39,40]. MAL2 overexpres-
sion may therefore contribute to tumourigenesis
through mechanisms that do not emerge from the study
of homogenous in vitro systems. These could include
modulating cell-cell interactions or signalling between

Figure 2 Graphical representations of visual scores of MAL2 (a, c) or TPD52 (b, d) staining intensity in serous borderline tumours and
low-grade (grade 1) or high-grade (grade 2 or 3) serous carcinomas (a, b) and in mucinous cystadenomas, borderline tumours and
carcinomas (c, d). Information concerning the FIGO stages and histological grades of tumours analysed is shown in Table 1. Sample numbers in
each category are indicated below X-axes. Significant differences between the proportions of cases with high-level immunohistochemical
staining (p values, Fisher’s Exact Test) are indicated.
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cancer and/or other cell types. It was interesting to note
that cytoplasmic expression of MAL2 was rare in benign
and borderline tumours, but common in ovarian carci-
nomas. MAL2 also showed a broad cytoplasmic distri-
bution in renal cell carcinomas [18,28] and in breast
carcinomas and cell lines [12,29]. This might indicate
that MAL2 plays an oncogenic function in some cell
types when distributed throughout the cytoplasm.
Like MAL2, TPD52 was overexpressed in high-grade

serous carcinomas relative to borderline tumours, but
was more equivalently expressed in high-grade serous
tumours relative to the combined cohort of other histo-
logical subtypes. This agrees with our previous finding
that TPD52 was broadly overexpressed in an indepen-
dent ovarian carcinoma cohort [3]. The present study
identified high TPD52 staining as particularly character-
istic of clear cell carcinomas, as this was detected in all
cases examined. Frequent high-level TPD52 expression

in clear cell carcinoma is consistent with the results of
array-based comparative genomic hybridisation analyses
of ovarian clear cell carcinoma cell lines, where
increased TPD52 copy number was noted in 6/12 cell
lines examined [8].
Despite MAL2 overexpression being more frequent in

high-grade serous carcinoma, MAL2 expression was not
significantly associated with overall patient survival in
this study. In contrast, increased TPD52 staining was
noted to be a favourable prognostic marker in ovarian
carcinoma. While this finding derives from the analysis
of immunohistochemical staining as a single technique,
a recent expression microarray study also identified
TPD52 overexpression as being associated with
improved progression-free and overall survival in
patients with serous and endometrioid tumours [24]. It
may also be relevant that chromosome 8q21 gain has
been previously associated with improved survival in

Figure 3 Graphical representations comparing visual scores of MAL2 (a, c) and TPD52 (b, d) staining intensity in ovarian carcinomas
according to histological subtype. Information concerning the FIGO stages and histological grades of tumours analysed is shown in Table 1.
Sample numbers in each category are indicated below the X-axes. Significant differences between either the proportions of cases with high-level
immunohistochemical staining (p values, Fisher’s Exact Test) are indicated.
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clear cell carcinoma patients [41]. However, the finding
that TPD52 is a favourable prognostic indicator in ovar-
ian carcinoma patients contrasts with findings obtained
in breast cancer [12]. Here, high TPD52 expression was
an unfavourable indicator, both within the cohort over-
all, and patient subgroups already characterised by
poorer survival [12]. This is also consistent with reports
of TPD52 being included in gene signatures associated
with unfavourable prognosis [42,43], and with the clini-
cal significance of chromosome 8q21 gain in breast can-
cer [44-47]. Thus, whereas increased TPD52 expression
appears to be a common event in both breast and ovar-
ian carcinoma, the contrasting clinical significance of
both TPD52 overexpression and chromosome 8q21 gain
suggests different roles for TPD52 in these cancer types.

There is evidence that TPD52 may promote invasion
through solid tissues, as suggested by the finding that
Tpd52-expressing 3T3 cells injected into the mammary
fat pad subsequently formed lung metastases in immu-
nocompetent hosts [34]. In contrast, the pattern of
metastatic spread is very different in ovarian carcinoma,
as there is no anatomical barrier to widespread tumour
dissemination and spread within the peritoneal cavity
[1]. Such differences in tumour dissemination patterns
could partially explain the opposing prognostic signifi-
cance of increased TPD52 expression or copy number
reported in breast [12,42-44] and ovarian cancer [24].
Alternatively, a comparative lack of TPD52 expression
could segregate with adverse prognostic markers in
ovarian carcinoma, and thus the association between

Figure 4 Kaplan-Meier plots comparing overall patient survival (X axis, in months) according to MAL2 (a, c) or TPD52 (b, d) expression
status in stage III serous ovarian carcinomas. In panels a and b, patient cohorts are dichotomised at median MAL2 (a) or TPD52 (b) SPC
values measured in the carcinoma cohort. In panels c and d, tumours with high-level cytoplasmic staining for MAL2 (c) or TPD52 (d), as
determined by visual scoring, are compared with all others. In all panels, high-expressing cases are shown in black, whereas low-expressing cases
are shown in grey. Numbers of patients compared in each arm, and associated p values (log rank tests) are indicated.
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increased TPD52 expression and improved overall survi-
val may be indirect.

Conclusion
The present study has highlighted frequent MAL2 over-
expression in ovarian carcinoma, particularly in serous
tumours. The frequent overexpression of MAL2 in ovar-
ian carcinomas, coupled with its low expression in
benign and borderline lesions, suggest that MAL2 may
be a useful marker component to assist in disease detec-
tion and/or monitoring. High TPD52 staining was asso-
ciated with significantly improved overall patient
survival in ovarian carcinoma. The differential associa-
tion of high TPD52 staining and overall patient survival
in breast versus ovarian carcinoma may indicate differ-
ent roles for TPD52 overexpression in ovarian versus
breast tumour progression.

Abbreviations
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