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Abstract

Background: Treatment standard for patients with primary glioblastoma (GBM) is combined radiochemotherapy
with temozolomide (TMZ). Radiation is delivered up to a total dose of 60 Gy using photons. Using this treatment
regimen, overall survival could be extended significantly however, median overall survival is still only about
15 months.
Carbon ions offer physical and biological advantages. Due to their inverted dose profile and the high local dose

deposition within the Bragg peak precise dose application and sparing of normal tissue is possible. Moreover, in
comparison to photons, carbon ions offer an increase relative biological effectiveness (RBE), which can be calcu-
lated between 2 and 5 depending on the GBM cell line as well as the endpoint analyzed. Protons, however, offer
an RBE which is comparable to photons.
First Japanese Data on the evaluation of carbon ion radiation therapy showed promising results in a small and

heterogeneous patient collective.

Methods/Design: In the current Phase II-CLEOPATRA-Study a carbon ion boost will be compared to a proton
boost applied to the macroscopic tumor after surgery at primary diagnosis in patients with GBM applied after
standard radiochemotherapy with TMZ up to 50 Gy. In the experimental arm, a carbon ion boost will be applied to
the macroscopic tumor up to a total dose of 18 Gy E in 6 fractions at a single dose of 3 Gy E. In the standard arm,
a proton boost will be applied up to a total dose 10 Gy E in 5 single fractions of 2 Gy E.
Primary endpoint is overall survival, secondary objectives are progression-free survival, toxicity and safety.

Discussion: The Cleopatra Trial is the first study to evaluate the effect of carbon ion radiotherapy within
multimodality treatment of primary glioblastoma in a randomized trial comparing this innovative treatment of the
treatment standard, consisitng of photon radiotherapy in combination with temozolomide.

Trial Registration: ISRCTN37428883 and NCT01165671.
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Background
Glioblastomas (GBM) are the most common primary
brain tumors in adults; they are characterized by a rapid
and infiltrative growth pattern. In spite of extensive
research over the past years, outcome of patients with
GBM still remains unsatisfactory.
With surgery and supportive care alone, overall sur-

vival is about 3-5 months. Postoperative radiotherapy
(RT) can increase overall survival to 9-12 months [1].
A number of studies have shown that an additional
treatment with chemotherapy can increase overall sur-
vival. This benefit, however, is commonly associated
with a high risk of treatment-related side effects, espe-
cially with combination treatments, such as PCV, and
with carmustine (BCNU). Only recently, significant
increase in overall survival could be achieved by add-
ing temozolomide (TMZ), an orally applicable alkylat-
ing substance, to postoperative radiotherapy. In a
prospective randomized Phase III study performed by
the EORTC radiochemotherapy with TMZ was com-
pared to postoperative radiation alone. Overall survival
could be increased from 12.1 months to 14.6 months,
with acceptable toxicity. TMZ was applied in a dose of
75mg/m2/die during radiotherapy, followed by 6 cycles
of adjuvant TMZ [2]. Therefore, standard treatment of
patients with GBM is currently considered to be post-
operative radiochemotherapy with TMZ, followed by 6
cycles of adjuvant TMZ.
However, with an overall survival of about 15 months,

treatment outcome still remains unsatisfactory. There-
fore, a number of treatment concepts are currently
under investigation.
Novel radiotherapeutic modalities such as carbon ion

radiotherapy offer a promising treatment alternative.
Radiation therapy using charged particles is character-
ized by distinct physical and biological characteristics.
Charged particles provide the physical advantage of an
inverted dose profile which enables steep dose gradients.
Neighbouring organs at risk can be spared much better.
Heavy charged particles, such as carbon ions, addition-
ally offer an increased relative biological effectiveness
(RBE).
Carbon ion radiotherapy was available by the Depart-

ment of Radiation Oncology at the Gesellschaft für
Schwerionenforschung (GSI) in Darmstadt since 1997.
Superior treatment results for a number of tumor enti-
ties, such as chordomas and chondrosarcomas of the
skull base, as well as adenoid cystic carcinomas (ACC)
have been shown, and carbon ion radiotherapy is cur-
rently performed in the clinical routine for these
patients [3-6]. Safety of carbon ion radiotherapy with
respect to critical organs at risk, such as the brain,
brainstem or spinal chord, have been shown in these

studies. At the Heidelberg Ion Therapy Center (HIT),
treatment of over 1300 patients per year with Proton
and Carbon ion RT is possible.
In general, GBM are treatment-resistant tumors. Early

studies using a high-dose proton boost could show that
total doses up to 90 Gy E were effective in preventing
local tumor recurrences, however, such high doses were
associated with high rates of side effects [7].
In vitro data for the treatment of GBM with carbon

ions have shown superior effectivity compared to
photons [8]. Our own data have shown a high RBE for
carbon ion RT for GBM; additionally combination of
carbon ion radiotherapy and TMZ have been evaluated
and show an additive effect in GBM-cell lines [9]. A
first clinical study evaluating a carbon ion boost in
patients with GBM was recently published by Mizoe
et al. [10]. Median overall survival in patients with glio-
blastoma was 17 months; however, only small patient
numbers were evaluated and standard chemotherapy
with TMZ was not applied. In that study, the carbon
ion boost was applied with stepwise increasing total
doses up to 24.8 Gy E. While toxity was low even in the
high dose arm, the data showed that patients seem to
benefit from the high dosed carbon ion boost. There-
fore, the concept of a carbon ion boost to patients with
GBM with a macroscopic tumor lesion after neurosurgi-
cal resection is a promising treatment alternative and
requires evaluation in a larger patient group with GBM.
Additionally, the carbon ion boost should be evaluated
in combination with standard radiochemotherapy with
TMZ.
In the present CLEOPATRA trial, the impact of a car-

bon ion boost will be compared to a proton boost using
intensity-modulated rasterscanning in patients with
incompletely resected GBM in combination with stan-
dard radiochemotherapy with TMZ. TMZ will be con-
tinued during the standard and experimental arm as
prescribed in standard photon radiochemotherapy.
Protons offer a comparable RBE to photons. A num-

ber of pre-clinical and clinical studies have shown that
the effect of proton radiotherapy on normal tissue as
well as on tumors is comparable to photon radiotherapy.
The RBE values for clinical proton beams have been
determined for a wide spectrum of in vitro as well as
in vivo systems, as well as in clinical trials [11,12].
Therefore, it has been concluded that proton therapy
can replace photon therapy without any further clinical
trials when the same dose is applied [13]. In the current
study, the proton dose applied is equivalent to the stan-
dard dose applied in conventional radiochemotherapy
with photons. Moreover, protons and carbon ions are
both characterized by the same physical characteristics,
i.e. Bragg Peak with a high local dose deposition. This
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results in a reduction on dose to normal tissue in
proton and carbon ion radiotherapy compared to con-
ventional photon radiotherapy. These physical character-
istics can be considered comparable for the proton and
the carbon ion beam, and both are able to convey to
improved dose distributions as compared to photons.
Thus, reduction of side effects on normal tissue can be
achieved by particle therapy (proton or carbon ion)
compared to conventional photon radiotherapy. The
aim of the present study however is not to evaluate the
distinct physical characteristics, therefore it is essential
that treatment techniques and physical characteristics
are identical in both treatment arms. The aim of this
study is solely to compare the effect of the increased
RBE in the carbon ion arm on outcome. Therefore, the
proton treatment arm is considered to be the standard
treatment arm, and carbon ion radiotherapy is the
experimental treatment arm.

Methods and Design
Study design
The purpose of the trial is to compare a carbon ion
boost to a proton boost delivered to the macroscopic
tumor in combination with combined radiochemother-
apy with TMZ in patients with primary GBM.
The aim of the study is to compare overall survival as

a primary endpoint, and progression free survival, toxi-
city and safety as secondary endpoints.
Focus of the analysis is to evaluate the change in over-

all survival and local control by carbon ion radiotherapy.
Therefore, the aim of the trial is to evaluate the
improvement in outcome due to effect of the altered
biology of carbon ions on GBM. Chemotherapy with
TMZ is considered standard treatment and is adminis-
tered continuously as it would be applied in standard
patient care outside any trial.

Trial Design
The trial will be performed as a single-center two-armed
randomized Phase II study. The trial workflow and
treatment arms are depicted in Fig. 1.
Patients fulfilling the inclusion criteria will be rando-

mized into two arms:
Arm A - Experimental Arm
Carbon Ion Radiation Therapy as a Boost to the

macroscopic tumor
Total Dose 18 Gy E, 6 fractions, 3 Gy E single dose
Arm B - Standard Arm
Proton Radiation Therapy as a Boost to the macro-

scopic tumor
Total Dose 10 Gy E, 5 fractions, 2 Gy E single dose
Standard chemotherapy with TMZ will be continued

during the experimental and standard arm in conven-
tional dosing of 75 mg/m2 per day.

Study objectives
The primary objective is overall survival during the
follow-up phase of at least 12 months (starting with
initial diagnosis).
The secondary objectives of the study are progression-

free survival, toxicity and safety.

Patient selection: Inclusion criteria
Patients meeting all of the following criteria will be con-
sidered for admission to the trial:

- histologically confirmed unifocal, supratentorial
primary glioblastoma
- macroscopic tumor after biopsy or subtotal
resection
- indication for combined radiochemotherapy with
temozolomide
- prior photon irradiation of 48-52 Gy to the T2-
hyperintense area, resection cavity, areas of contrast
enhancement adding 2-3 cm safety margin in combi-
nation with standard temozolomide
- registration prior to photon RT or within photon
RT allowing the beginning of particle therapy ≤4
days after completion of photon irradiation
- beginning of study treatment (proton or carbon ion
RT) no later than 12 weeks after primary diagnosis
- age ≥18 years
- Karnofsky Performance Score ≥60
- adequate contraception.
- Ability of subject to understand character and indi-
vidual consequences of the clinical trial
- Written informed consent (must be available
before enrolment in the trial)

Patient selection: Exclusion criteria
Patients presenting with any of the following criteria will
not be included in the trial:

- refusal of the patients to take part in the study
- previous radiotherapy of the brain or chemother-
apy with DTIC or TMZ other than during the radio-
chemotherapy stated in the inclusion criteria
- more than 52 Gy applied via photon-RT prior to
particle therapy
- time interval of >12 weeks after primary diagnosis
(neurosurgical intervention) and beginning of study
treatment (proton or carbon ion RT)
- Patients who have not yet recovered from acute
toxicities of prior therapies
- Clinically active kidney, liver or cardiac disease
- Known carcinoma <5 years ago (excluding Carci-
noma in situ of the cervix, basal cell carcinoma,
squamous cell carcinoma of the skin) requiring
immediate treatment interfering with study therapy
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- Pregnant or lactating women
- Participation in another clinical study or observa-
tion period of competing trials, respectively.

Treatment Assignment
Radiation therapy according to the protocol will be per-
formed in patients included into the study and after
assignment of the patients to the treatment arms after
randomization. Patients withdrawn from the trial retain

their identification codes (e.g. randomization number, if
already given). New patients must always be allotted a
new identification code.

Treatment Planning
For particle therapy, patients will be immobilized using
an individually manufactured head mask. For treatment
planning, contrast-enhanced CT as well as MR-imaging
will be performed for optimal target definition.

Figure 1 Workflow diagram of the Cleopatra Study evaluation the role of carbon ion radiotherapy for the treatment of patients with
primary glioblastoma.
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Patients included to the study will have received 48-52
Gy of photon RT applied to the resection cavity, area of
contrast enhancement on T1-weighted MR-Imaging,
T2-weighted hyperintensities including a safety margin
of 2-3 cm.
Treatment planning for carbon ion and proton radio-

therapy should be performed during photon radiother-
apy about 1-2 weeks prior to the start of the carbon ion
or proton boost.
Organs at risk such as the brain stem, optic nerves,

chiasm and spinal chord will be contoured. Dose con-
straints of normal tissue will be respected according to
Emami et al. [14]. The Gross Tumor Volume (GTV)
will be defined for the proton or carbon ion boost as
the area of contrast enhancement on T1-weighted MR-
imaging; for the Clinical target Volume (CTV), a safety
margin of 5 mm is added.
Amino-Acid-PET or SPECT-Examinations may be

used in addition to contrast-enhanced MRI for target
volume definition but are not mandatory.
Carbon ion RT planning is performed using the treat-

ment planning software PT-Planning (Siemens, Erlan-
gen, Germany) including biologic plan optimization.
Biologically effective dose distributions will be calculated
using the a/b ratio for GBM as well as for the endpoint
late toxicity to the brain.
No interruptions >4 days between the end of photon

radiotherapy and study treatment (carbon ion or proton
boost) are allowed.
Patient positioning prior to particle therapy will

be evaluated by comparison of x-rays to the DRRs. Set up
deviations >3 mm will be corrected prior to radiotherapy.

Dose Prescription Experimental (Carbon) Arm
The intensity-controlled rasterscan system will be used
for beam application. Six fractions of a single dose of 3
Gy E up to a total dose of 18 Gy E will be prescribed
to the maximum of the calculated dose distribution for
the target volume (Boost). Treatment planning aims in
the coverage of the target volume by the 90%-isodose
line.
Dose specification is based on biologic equivalent dose

because of the high relative biologic effectiveness (RBE)
of carbon ions, which differs throughout the target
volume due to its dependence on various factors. RBE
will be calculated at each voxel throughout the target
volumes and biological optimization will be performed.
The dose prescription used is related to the isoeffective
dose Gy E (Cobalt Gray equivalent) using daily fractions
of 2 Gy and a weekly fractionation of 5 × 2 Gy.

Dose Prescription Standard (Proton) Arm
The intensity-controlled rasterscan system will be used
for proton beam application. Five fractions of a single

dose of 2 Gy E up to a total dose of 10 Gy E will be
prescribed to the maximum of the calculated dose dis-
tribution for the target volume (Boost). Treatment plan-
ning aims in the coverage of the target volume by the
90%-isodose line.
For proton beams, an RBE of about 1.1 can be consid-

ered. Therefore, the 10 Gy E applied with proton radio-
therapy after treatment of 50 Gy with photons prior to
study inclusion add up to the standard dose of 60 Gy
used in conventional chemo-radiation with TMZ.

Follow-up
The primary endpoint is overall survival at 12 months,
therefore patients are followed within the trial protocol
for a minimum 12 months after completion of study
treatment. For the LPI, the final study visit will be
12 months after study treatment to assess the primary
endpoint. All other patients will be followed on a regu-
lar basis as stated below until death or until 12 months
after LPI.
After RT, patients are scheduled for follow-up visits

every 2 months or as needed clinically including contrast-
enhanced MRI as well as thorough clinical-neurological
assessment.
The last patient included into the study will be fol-

lowed 12 months after treatment. This is considered the
final study visit. All other patients will be followed regu-
larly as described in detail until death or until 12 months
after LPI.
If death occurs <12 months or patients leave the study

prior to12 months, they will be still included into the
ITT population.
The overall duration of the trial is expected to be

approximately 48 months. Recruitment of the patients is
planned over a time period of 36 months, minimum
duration of the follow-up phase will be 12 months. An
interim analysis is planned after 50% of the expected
events have occurred.

Statistical calculations for trial sample size
The calculation of sample size for the CLEOPATRA
trial is based on the analysis of the primary endpoint
‘time to death for any reason during the follow-up
phase of at least 12 months (starting with initial diagno-
sis)’ using the logrank test to compare the survival
curves of the experimental and the standard treatment.
The specific assumptions and methods underlying this
calculation are explained below.
1. Recruitment period, follow-up duration and allocation
ratio
The recruitment period will last 36 months with con-
stant accrual. The minimum follow-up time (for the last
patient included in the trial if no event occurs before)
will be 12 months, the maximum follow-up time (for
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the first patient included in the trial if no event occurs
before) will be 48 months. Patients will be randomized
to the treatment groups with an equal allocation ratio
of 1:1.
2. Overall survival rate
Stupp et al. [2] investigated a study population very simi-
lar to the one expected in the CLEOPATRA trial. Hence,
according to their results the one-year survival rate for
the standard treatment is expected to be about 60%.
3. Treatment effect size
The CLEOPATRA trial will be designed to detect an
improvement of 20% (absolute) in survival rate after
12 months. The rationale behind this assumption is as
follows: Carbon ion radiotherapy is characterized by a
higher relative biological effectiveness (RBE) as com-
pared to conventional photons or protons. Preclinical
experiments on glioblastoma cell lines have shown that
this RBE lies between 3 and 5, depending on the respec-
tive endpoint or cell line [9]. Therefore, the effect of
carbon ion radiotherapy for the treatment of patients
with primary glioblastoma is expected to be substantially
higher than with conventional proton radiotherapy.
4. Type I error rate and power
Time to death for any reason will be compared between
the two treatment groups using a two-tailed logrank test
stratified for RPA class at an overall type I error rate of
5%. The desired power is 90%. Sample size calculation is
based on the unstratified logrank test. It can be expected
that including the RPA class (which has a major prog-
nostic impact on survival [2]) as a covariate will actually
increase the power as compared to the unstratified test.
For this reason, the sample size resulting from our cal-
culations should assure the desired power of 90% under
the assumptions made.
5. Interim analysis
An interim analysis will be performed according to the
stopping rule of O’Brien-Fleming published in 1979
after 50% of the expected events have been occurred
[15].
6. Methods used for sample size calculation
For sample size calculation, exponentially distributed
survival times are assumed to calculate the hazard ratio
under the alternative. The formulae proposed by
Schoenfeld (which hold true under the less restrictive
assumption of proportional hazards) were used [16,17].
Calculations were done using the software ADDPLAN
4.0 [18].
Using the assumptions enumerated above, the result-

ing total sample size yielding the necessary number of
events is 150 patients (75 per treatment group). The
expected total number of events under the null-hypoth-
esis is then about 136, under the alternative-hypothesis
it amounts to about 115. The total sample size of 150
patients will provide a power of 90,7% to detect a 20%

(absolute) improvement in 12 months overall survival
rate of the experimental treatment compared to the
standard treatment. With this target sample size, CLEO-
PATRA will also have an adequate power to detect a
smaller than anticipated treatment effect (more than
78% power to detect an improvement of 17% (absolute)
in 12 months overall survival rate).

Statistical Methods
Confirmatory Analysis
A confirmatory analysis with characteristics common for
studies designed for the proof of efficacy (two-sided test
problem with significance level 5%) is implemented in
this Phase II study in order to be able to show superior-
ity of the experimental treatment as compared to the
standard treatment in case of a significant result. Confir-
matory analysis for the primary endpoint ‘time to death
for any reason during the follow-up phase of at least 12
months (starting with initial diagnosis)’ is based on the
full analysis set which is defined according to the inten-
tion-to-treat principle and includes all randomized
patients. The null-hypothesis of equal survival curves for
the two treatment groups is tested by applying the two-
sided logrank test stratified by RPA class. The overall
type I error rate is 5%. A group-sequential design is
applied with one interim analysis after half of the
expected number of events has occurred. The stopping
rule is according to [15]: The one-sided critical level in
the interim analysis is given by 0.26%, and in the final
analysis it is given by 2.4%; the null-hypothesis can be
rejected, if the smaller of the two one-sided p-values falls
below one of these boundaries. Withdrawals, lost of fol-
low-ups and patients who are still alive by the end of the
follow-up phase are treated as censored observations.
The censoring date is given by the last known date at
which the patient is still alive. The survival curves will be
estimated using the Kaplan-Meier product-limit method,
and the corresponding confidence intervals will be calcu-
lated using Greenwood’s formula [19].
Descriptive Analyses
To assess the impact of major protocol deviations, an
analogous analysis of the primary outcome variable will
be performed for the per protocol set of all patients with-
out major protocol violations. A descriptive analysis of
the primary outcome variable is performed applying a
Cox-regression model including the covariates RPA class,
age, Karnofsky index and extent of previous surgery.
Analysis of the secondary endpoint ‘progression-free

survival’ will be performed analogously to the primary
endpoint whereby the p-values of the logrank test and
the tests within the Cox-regression model will be inter-
preted descriptively. All further documented variables
will be analyzed descriptively by tabulation of the mea-
sures of the empirical distributions. Descriptive p-values
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of the corresponding statistical tests comparing the treat-
ment groups and associated 95% confidence intervals will
be given. The homogeneity of the treatment groups will
be described by comparison of the demographic data and
the baseline values of the measured variables.
Safety analysis and analysis of toxicity will be based on

the data set of all randomized patients who were treated
with the experimental or the standard treatment at least
once. The safety analysis includes calculation and com-
parison of frequencies and rates of adverse and serious
adverse events reported in the two treatment groups.
All analyses will be done using SAS version 9.1 or

higher (for the handling of survival analyses with SAS
see, [20]).
Interim Analysis
To allow for early stopping in case of an overwhelming
treatment effect, a group-sequential design is applied with
one interim analysis that is performed when 50% of the
number of events expected under the null-hypothesis have
occurred. Under the assumptions made in sample size cal-
culation, the interim analysis is performed after occur-
rence of 68 events which should happen approximately 26
months after start of recruitment [18]. The stopping rule
is specified according to O’Brien and Fleming (1979; [15]).
No formal boundary for stopping for futility is speci-

fied. However, if the results of the interim analysis sug-
gest that the objectives of the study cannot be reached
with a feasible number of patients or that the benefit/
risk ratio for the study has worsened markedly, the
study may be stopped by decision of the principle inves-
tigator. As in this case the null-hypothesis would not be
rejected, no type I error would be committed and there-
fore the type I error rate of the study would still be con-
trolled at 5%.

Data Handling, Storage and Archiving of Date
All findings including clinical and laboratory data will be
documented by the investigator or an authorized mem-
ber of the study team in the subject’s medical record
and in the CRF. The investigator is responsible for
ensuring that all sections of the CRF are completed cor-
rectly and that entries can be verified against source
data. In some cases, the CRF, or part of the CRF, may
also serve as source documents: Karnofsky Performance
Status, Documentation of Clinical-Neurological
Examination.
Data will be collected by the Study Center at the

Department of Radiation Oncology, University Hospital
of Heidelberg, Heidelberg, Germany.
After receipt of the CRF-pages by the principal inves-

tigator of the study, all data will be entered in a study
specific database as recorded in the CRF.
All missing data or inconsistencies will be reported

back to the investigators and clarified by the responsible

investigator. If no further corrections are to be made in
the database it will be declared closed and used for
statistical analysis.
The data will be stored and archived according to §13

of the German GCP-Regulation and §28c of the German
X-Ray Regulation (RöV) and §87 of the German Radia-
tion Protection Regulation (StrlSchV) for at least
30 years after the trial termination.

Ethics, informed consent and safety
A positive Ethics Vote was obtained by the Local Ethics
Committee of the medical Faculty at the University of
Heidelberg, Germany.
Additionally, a positive vote of the Bundesamt für

Strahlenschutz (BfS) has been obtained.

Treatment at tumor progression
After completion of study treatment (5 fractions of pro-
ton therapy or 6 fractions of carbon ion radiotherapy
according to the treatment arms of the CLEOPATRA
trial), adjuvant cycles of chemotherapy with TMZ are
recommended in conventional dosing according to
the Stupp regimen [2]. Any systemic treatment or
chemotherapy is not part of the clinical trial.
For tumor progression, treatment alternatives will be

evaluated and discussed interdisciplinary considering
options of neurosurgical resection, systemic treatment
such as chemotherapy, a second course of radiation
therapy, or other.

Discussion
Interdisciplinary treatment of patients with GBM still
remains a challenge in spite of major advances over
recent years. The addition of alkylating chemotherapy
with the advent of TMZ has significantly increased pro-
gression-free and overall survival, however, with a med-
ian survival of about 15 months, treatment optimization
remains a major challenge [2,21,22]. For more than two
decades clinical studies have shown that RT is the single
most effective treatment for GBM; however, even after
application of high local doses, the majority of recur-
rences develops within the high-dose irradiation field
[23,24]. Therefore, dose-escalation studies have been
performed, but increase in dose was mostly related with
a steep increase in severe treatment-related side effects.
In contrast to the typical photon dose deposition

curve, particle therapy is characterized by a low dose
deposition within the entry channel of the particle
beam, and the steep dose deposition called the Bragg
peak that can be directed by variation of beam energy
directly into the defined target volume. Thereafter, a
steep dose fall-off helps sparing of normal tissue behind
the treatment volume. These physical advantages contri-
bute significantly to the clinical advantage of particle
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therapy, enabling the radiation oncologist to increase
sparing of normal tissue, and subsequently to deliver
higher doses to the defined target volume. Carbon ion
radiotherapy is additionally characterized by an
increased relative biological effectiveness (RBE) due to
severe radiation damage produced by the carbon beam.
This higher RBE has been shown to translate into
improved tumor control rates, especially for treatment-
resistant indications.
In the past, particle therapy was only available in few

centers worldwide, Today, several institutions offer pro-
ton radiotherapy within clinical routine, however, carbon
ions are only available in few centers in Japan and Ger-
many. The Department of Radiation Oncology at the
University Hospital of Heidelberg is offering carbon ion
radiotherapy within clinical routine since 1997. Since
then, over 450 patients have been treated successfully
with the carbon beam at the Gesellschaft für Schwerio-
nenforschung (GSI) in Darmstadt, Germany. Within the
clinical studies performed, excellent clinical results were
reported for chordomas and chondrosarcomas of the
skull base, high-risk meningiomas as well as adenoid-cys-
tic carcinomas [5,6,25-27]. For several other indications
the superiority of particle beams have been demonstrated
as summarized by Schulz-Ertner and Tsujii [28].
In Japan, patients with malignant gliomas have been

treated with carbon ion beams with convincing results.
In a study published by Mizoe et al. patients with ana-
plastic astrocytomas as well as GBM were treated with
photon radiotherapy and a carbon ion boost to the
macroscopic tumor. Median overall survival for GBM
patients was 17 months, and even the highest doses of
carbon ions applied at 24.8 Gy E were tolerated without
any severe treatment-related side effects [10]. The
increased RBE of carbon ions have been proven by pre-
clinical studies showing an increase in effectivity
between 2 and 5, depending on the cell line analyzed
[8,9,29]. Today, the standard treatment approach for
GBM after neurosurgical resection is combined radio-
chemotherapy with TMZ as described above [2,22].
In vitro, an additive effect of carbon ion radiotherapy
and TMZ has been demonstrated [9].
Therefore, In the current Phase II-CLEOPATRA-

Study a carbon ion boost will be compared to a proton
boost applied to the macroscopic tumor after surgery at
primary diagnosis in patients with GBM in combination
with after standard radiochemotherapy with TMZ. The
study will offer the possibility to compare the carbon
ion boost in combination with standard chemotherapy
to standard treatment due to the randomized nature of
this trial. The aim of the trial is to target the region
most likely of tumor recurrence, i.e. the macroscopic
region of the tumor within the high-dose irradiation

field, and to combine this novel approach with estab-
lished treatment standards.
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