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Abstract
Background: MicroRNAs (miRNAs) can function as either oncogenes or tumor suppressor genes via regulation of cell 
proliferation and/or apoptosis. MiR-221 and miR-222 were discovered to induce cell growth and cell cycle progression 
via direct targeting of p27 and p57 in various human malignancies. However, the roles of miR-221 and miR-222 have 
not been reported in human gastric cancer. In this study, we examined the impact of miR-221 and miR-222 on human 
gastric cancer cells, and identified target genes for miR-221 and miR-222 that might mediate their biology.

Methods: The human gastric cancer cell line SGC7901 was transfected with AS-miR-221/222 or transduced with 
pMSCV-miR-221/222 to knockdown or restore expression of miR-221 and miR-222, respectively. The effects of miR-221 
and miR-222 were then assessed by cell viability, cell cycle analysis, apoptosis, transwell, and clonogenic assay. Potential 
target genes were identified by Western blot and luciferase reporter assay.

Results: Upregulation of miR-221 and miR-222 induced the malignant phenotype of SGC7901 cells, whereas 
knockdown of miR-221 and miR-222 reversed this phenotype via induction of PTEN expression. In addition, 
knockdonwn of miR-221 and miR-222 inhibited cell growth and invasion and increased the radiosensitivity of SGC7901 
cells. Notably, the seed sequence of miR-221 and miR-222 matched the 3'UTR of PTEN, and introducing a PTEN cDNA 
without the 3'UTR into SGC7901 cells abrogated the miR-221 and miR-222-induced malignant phenotype. PTEN-3'UTR 
luciferase reporter assay confirmed PTEN as a direct target of miR-221 and miR-222.

Conclusion: These results demonstrate that miR-221 and miR-222 regulate radiosensitivity, and cell growth and 
invasion of SGC7901 cells, possibly via direct modulation of PTEN expression. Our study suggests that inhibition of miR-
221 and miR-222 might form a novel therapeutic strategy for human gastric cancer.

Background
Gastric cancer, a highly invasive and aggressive malig-
nancy that is characterized by resistance to apoptosis and
radioresistance, is among the most common cancers and
is the leading cause of cancer-related death in China [1-
6]. Gastric cancer in China is often diagnosed at an
advanced clinical stage, with evident lymphatic tumor
dissemination [4]. The 5-year survival rate is approxi-

mately 60% for patients with localized disease, but only
2% for those with metastatic disease[7]. Although much
has been learned about the genetic and biochemical bases
of gastric cancer, few novel therapeutic targets have been
identified, due to difficulties in target identification and
validation.

MicroRNAs (miRNAs) are noncoding RNAs of approx-
imate 22 nt in length that function as post-transcriptional
regulators. By base-pairing with the complementary sites
in the 3'untranslated region (3'UTR) of the mRNA, miR-
NAs control mRNA stability and translation efficiency [8-
12]. Growing evidence indicates the important role of
miRNA in the development of various cancers. Deregula-
tion of some miRNAs, including miR-221 and miR-222,
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have been observed in lymphoma, colorectal, lung, and
breast cancers, papillary thyroid and hepatocellular carci-
noma, glioblastoma [13-21], and gastric cancer [22,23].

The PTEN gene, located at 10q23.3, encodes a central
domain with homology to the catalytic region of protein
tyrosine phosphatases. This gene is an important regula-
tor of protein phosphatases and 3'-phosphoinositol phos-
phatases. PTEN dephosphorylates phosphatidylinositol-
3,4,5-triphosphate (PIP3), the second messenger pro-
duced by phosphoinositide 3-kinase (PI3K), to negatively
regulate the activity of the serine/threonine protein
kinase, Akt [24,25]. PTEN is inactivated in some malig-
nant tumors, resulting in Akt hyper-activation, thereby
promoting cell proliferation, inhibition of apoptosis, and
enhanced cell invasion and radioresistance [26-28].
miRNA, specifically miR-21 and miR-214, have been
established as regulators of PTEN expression [29-33].

In the current study, we predicted that PTEN would be
a target gene of the miR-221 and miR-222 cluster by com-
puter-aided algorithm. Moreover, we found binding sites
for human miR-221 and miR-222 in the PTEN 3'-UTR.
Based upon these findings, we confirmed PTEN as a tar-
get of miR-221 and miR-222, and demonstrated that co-
suppression of the miR-221/222 cluster inhibits cell pro-
liferation, induces cell apoptosis, inhibits cell invasion
and enhances cell radiosensitivity by upregulating PTEN
expression in SGC7901 gastric cancer cells.

Methods
Cells and cell culture
The human gastric cancer cell line SGC7901 was kindly
provided by Dr. Daiming Fan (the Fourth Military Medi-
cal University, China). The human embryonic kidney cell
line HEK293 was obtained from the Institute of Biochem-
istry and Cell Biology, Chinese Academy of Sciences.
Cells were grown in Dulbecco's Modified Eagle's medium
(DMEM; Gibco, USA) supplemented with 10% fetal
bovine serum at 37°C in 5% CO2 atmosphere.

Identification of microRNA targets
The PicTar algorithm http://pictar.mdc-berlin.de. was
used to identify human microRNA binding sites in PTEN
(GeneID 5728). Briefly, PicTar provides 3' UTR align-
ments with predicted sites and links to various public
databases for prediction of microRNA binding sites.

Plasmids, oligonucleotides and cell transfection
Human full-length miR-221 and miR-222 in pMSCV vec-
tor were kindly provided by Reuven Agami (Division of
Tumor Biology, The Netherlands Cancer Institute,
Amsterdam, Netherlands). The recombinant retroviruses
pMSCV-miR-221 and pMSCV-miR-222 were produced
as previously described [34], and transfected into PT67,

the packaging cells, using Lipofectamine 2000. The titers
of homogenous virus were calculated after infection of
NIH3T3 cells. Wild-type PTEN lacking the 3'UTR region
was constructed in the pcDNA vector (pcDNA-PTEN) by
Genesil Biotechnology Co. Ltd. (Wuhan, China). 2'-OMe-
oligonucleotides were chemically synthesized by GeneP-
harma Co. Ltd. (Shanghai, China). All the bases were 2'-
OMe modified and had the following sequences: 2'-OMe-
anti-miR-221 (AS-miR-221), 5'-AGCUACAUUGU-
CUGCUGGGUUUC-3'; 2'-OMe-anti-miR-222 (AS-miR-
222), 5'-AGCUACAUCUGGCUACUGGGU-3'; scram-
bled oligonucleotide (Scr), 5'-UCUA CUCUUUCUAG-
GAGGUUGUGA-3'.

SGC7901 cells were grown to 70-80% confluence and
transfected with pcDNA- PTEN and 2'-OMe-oligonucle-
otides using Lipofectamine 2000 or infected with
pMSCV-miR-221 and/or pMSCV-miR-222 at a multi-
plicity of infection (MOI) of 50 at 37°C. At 4 h after infec-
tion, the medium was replaced with fresh DMEM
containing 10% fetal bovine serum, and the cells were
incubated for an additional 72 h for further study.

Northern blot analysis
Total RNA was extracted using TRIzol reagent (Invitro-
gen). The protocol for Northern blotting of miRNA was
adopted from Ramkissoon [35]. Total RNA were sepa-
rated on a 12% denaturing polyacrylamide gel and trans-
ferred to Hybond N+ nylon membrane (Ambion, USA).
The membrane was dried, UV cross-linked, hybridized
with digoxigenin (DIG)-labeled probes overnight at 37°C
in a buffer containing 5× SSC, 20 mmol/L Na2HPO4 (pH
= 7.2), 7% SDS, 1× Denhardt's solution and 0.2 mg/mL
salmon sperm DNA. The specific probes, end-labeled
with DIG, were miRNA-221, 5'-GAAACCCAGCAGA-
CAATGTAGCT-3'; miRNA-222, 5'-GAGACC CAG-
TAGCCAGATGTAGCT-3'; and U6, 5'-ATTTGCGTG
TCATCCTTGCG-3'. The probes were purchased from
Proligo Primers & Probes (Sigma, USA). Membranes
were washed with 1× SSC/1% SDS at 50°C. After equili-
bration in detection buffer, blots were detected with a
DIG Luminescent Detection Kit (Roche, USA) and ana-
lyzed using GeneGenius.

Cell viability assay
Cells were seeded into 96 well plates at 4000 cells/well.
After transfection, 20 μl MTT (5 mg/mL) was added into
a corresponding test well, and incubated for 4 h. The
supernatant was then discarded, and 200 μL of DMSO
was added to each well to dissolve the precipitate. Optical
density (OD) was measured at the wavelength of 570 nm.
Each test was performed daily for six consecutive days
and repeated in eight wells.

http://pictar.mdc-berlin.de.
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Cell cycle assay
For cell cycle analysis, parental and transfected cells in
the log phase of growth were stained with propidium
iodide and examined with a fluorescence-activated cell-
sorting (FACS) flow cytometer (BD Biosciences, San Jose,
CA), and DNA histograms were analyzed with modified
software. Each test was repeated in triplicate.

Measurement of early apoptosis by Annexin V staining
Parental and transfected cells in the log phase of growth
were harvested and collected by centrifugation and resus-
pended at a density of 1 × 106 cells/mL. For the apoptosis
assay, an annexin V-FITC labeled Apoptosis Detection
Kit (Abcam, USA) was used. The pre-labeled cells were
detected and apoptosis was quantified using a FACSCali-
bur flow cytometer (Becton-Dickinson, USA). The data
obtained were analyzed using CellQuest software. Each
test was repeated in triplicate.

Invasion Assay
Using parental and transfected cells, the invasion poten-
tial of the cells were evaluated by measuring the number
of cells invading Matrigel-coated Transwell chambers
(Becton Dickinson). Transwell inserts with 8 μm pores
were coated with Matrigel and reconstituted with fresh
medium for 2 h before the experiment. Cells (2 × 104/mL)
were seeded into the upper chambers in 250 μL serum
free DMEM, while DMEM supplemented with 10% fetal
bovine serum (750 μL) was placed in the lower chamber.
Cells were incubated for 72 h. Cells that degraded the
Matrigel and invaded the lower surface of the Matrigel-
coated membrane were fixed with 70% ethanol, stained
with hematoxylin and counted in five random fields at
×200 magnification under a light microscope. The results
were expressed as the average number of invasive cells
per field.

Radiation Exposure and Clonogenic assay
Irradiation was performed at room temperature in a lin-
ear accelerator (Varian600, Varian, USA) at a dose rate of
3.2 Gy/min. Cells were plated into six-well plates and
exposed to the specified dose (0, 2, 4 and 6 Gy) of X-rays.
At 24 h after irradiation, all cells were trypsinized and
counted. Corresponding numbers of cells were seeded
into 10 cm dishes containing DMEM supplemented with
10% fetal bovine serum in triplicate, incubated for 10-14
days to allow colony growth, and colonies were stained
with crystal violet. Colonies containing 50 or more cells
were counted. The plating efficiency was calculated by
dividing the average number of colonies per dish by the
number of cells plated. Survival fractions were calculated
by normalization to the plating efficiency of appropriate
control groups.

Luciferase reporter assay
The human 3'-UTR of the PTEN gene was amplified by
PCR using the following primers: PTEN-3'UTR-Forward:
5'-CGATTCTAGAAATCATGTTCTGGTGG-3' and
PTEN-3'UTR-Reverse: 5'-GCATTCTAGAATTCTGCA-
CAGTAAGCATA-3'. The cDNA was cloned into the
XbaI/XbaI site of the pGL3-control vector (Promega,
USA), downstream of the luciferase gene, to generate the
vector pGL3-PTEN. For the luciferase reporter assay,
SGC7901 cells were cultured in 96-well plates, trans-
fected with 0.2 μg of the pGL3-PTEN or pGL3-control
plasmids and 5 pmol of AS-miRNAs (AS-miR-221 and/or
AS-miR-222) using Lipofectamine 2000. At 48 h after
transfection, luciferase activity was measured using the
Luciferase Assay System (Promega).

Western blot analysis
Parental and transfected cells were washed with pre-
chilled PBS and solubilized in 1% Nonidet P-40 lysis buf-
fer. Homogenates were clarified by centrifugation at
20,000 ×g for 15 min at 4°C and the protein concentration
was measured by bicinchoninic acid protein assay kit
(Pierce Biotechnology). 40 μg of protein from each sam-
ple was subjected to SDS-PAGE on SDS-acrylamide gel.
Separated proteins were transferred to PVDF membranes
(Millipore) and incubated with primary antibody (1:1000
dilution; Santa Cruz) followed by incubation with an
HRP-conjugated secondary antibody (1:1000 dilution;
Zymed, San Diego, CA). The specific protein was
detected using a SuperSignal protein detection kit
(Pierce, USA). The membrane was stripped and reprobed
with a primary antibody against β-actin (Santa Cruz;
1:1000 dilution) as a control.

Statistical Analysis
Data are expressed as the mean ± standard error (S.E.). P
< 0.01 was considered statistically significant using
ANOVA and the STD t test or SNK Q test t test.

Results
Modulation of miR-221 and miR-222 expression in 
SGC7901 cell lines
Sequence analysis predicted that miR-221 and miR-222
would regulate PTEN expression. To determine the bio-
logic impact of miR-221 and miR-222 in the SGC7901
gastric cancer line, cells were transfected with AS-miR-
221/222 or infected with pMSCV-miR-221/222 to reduce
or increase miRNA levels, respectively. Northern blot
analysis revealed that the expression of miR-221 and
miR-222 was greater in SGC7901 cells than in normal
kidney epithelial HEK293 cells (Figure 1A). HEK293 cells
were used as negative control in these studies since both
HEK293 and SGC7901 cells belong to the epithelial cells
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[36]. Infection of SGC7901 cells with pMSCV-miR-221/
222 increased miR-221 and miR-222 expression, while
transfection with AS-miR-221/222 efficiently silenced
miR-221 and miR-222 expression in this cells (Figure 1B).
These strategies were then used as the basis of the
remaining experiments.

miR-221 and miR-222 co-modulate SGC7901 cell 
proliferation
The proliferation rates of SGC7901 cells with enhanced
or silenced expression of miR-221 and miR-222 was
determined via MTT assay. Compared to control and
scramble-transfected cells, cells transfected with AS-
miR-221/222 proliferated at a significantly lower rate. In
contrast, overexpression of miR-221 and miR-222 by
infection with pMSCV-miR-221/222 resulted in signifi-
cantly enhanced proliferation (Figure 2A). Cell cycle dis-
tribution by flow cytometry yielded similar results
(Figure 2B). The percentage of control and scramble
treated cells in the G0/G1 phase was 38.8 ± 2.2% and 45.4
± 1.2%, respectively, while AS-miR-221/222 transfection
and pMSCV-miR-221/222 infection resulted in 61.1 ±
3.4% and 25.1 ± 0.9% of cells in G0/G1, respectively. The
S phase fraction in control, scramble, AS-miR-221/222
and pMSCV-miR-221/222 groups were 42.2 ± 2.3%, 36.6
± 1.7%, 23.1 ± 0.8% and 58.1 ± 3.1%, respectively. In sum,
transfection with AS-miR-221/222 resulted in the highest
percentage of cells in G0/G1 phase (p = 0.0036), and low-
est fraction in S phase (p = 0.0031). No statistical signifi-
cance was observed in the percentage of cells in the G2/
M phase among the four groups.

Apoptosis is a genetically encoded cascade of cellular
reaction that results in the disposal of unwanted cells.
Disruption to this pathway has been implicated as a cause
of cancer [37]. Some miRNAs regulate proteins that are

involved in apoptosis [38]. Using Annexin V analysis, the
number of apoptotic cells in early phase was found to be
significantly increased in cells transfected with AS-miR-
221/222 compared with that in other groups (p = 0.0012).
In comparison with parental cells, the apoptotic rate was
very low in pMSCV-miR-221/222 infected cells (Figure
2C). These data demonstrated that the proliferation and
survival rates of SGC7901 cells might be co-modulated
by miR-221 and miR-222.

miR-221 and miR-222 co-modulate SGC7901 cell invasion
We also assessed the role of miR-221 and miR-222 on cell
invasion by Transwell assay. As shown in Figure 2D, as
compared with blank and negative control cells, the inva-
sion potential of SGC7901 cells transfected with AS-miR-

Figure 2 miR-221 and miR-222 affect phenotype of SGC7901 
cells. MTT assay showing that cells transfected with AS-miR-221/222 
proliferated at a significantly lower rate than controls (p = 0.0023). 
However, the cells infected with pMSCV-miR-221/222 proliferated at a 
significantly higher rate than controls (p = 0.0311) (Figure 2A). Flow cy-
tometry analysis showing that the proportion of cells in the G1 phase 
in the AS-miR-221/222 group was significantly higher than that in the 
control group (p = 0.0036) and that the proportion of cells in the G1 
phase in the pMSCV-miR-221/222 group was significantly lower than 
in the control group (p = 0.0266) (Figure 2B). Annexin V analysis show-
ing that the cells transfected with AS-miR-221/222 underwent apopto-
sis at a significantly higher rate than controls(p = 0.0012), while cells 
infected with pMSCV-miR-221/222 underwent apoptosis at a signifi-
cantly lower rate than controls (p = 0.0198) (Figure 2C). Transwell assay 
showing a decrease in invasive ability in the AS-miR-221/222 group 
and an increase in the pMSCV-miR-221/222 group compared to con-
trols (Figure 2D). Clonogenic assay indicating that the radiosensitivity 
of SGC7901 cells increased in the AS-miR-221/222 group (p = 0.0032) 
and decreased in the pMSCV-miR-221/222 group compared with con-
trols (p = 0.043) (Figure 2E).

Figure 1 miR-221 and miR-222 expression in SGC7901 and 
HEK293 cells. Northern blot showing that expression of miR-221 and 
miR-222 in SGC7901 cells was greater than that in HEK293 cells (Figure 
1A). pMSCV-miR-221/222 infection increased the expression of miR-
221 and miR-222, while AS-miR-221/222 transfection efficiently si-
lenced the expression of miR-221 and miR-222 in SGC7901 cells (Figure 
1B).
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221/222 was significantly decreased (0.3813-fold, p =
0.0067), while cells transduced with pMSCV-miR-221/
222 displayed markedly increased invasive ability
(1.3577-fold, P = 0.0099). These results suggested that
miR-221 and miR-222 could co-modulate SGC7901 cell
invasion.

miR-221 and miR-222 co-modulate SGC7901 cell 
radiosensitivity
The national comprehensive cancer network guidelines
on gastric cancer treatment include radiotherapy as a
standard treatment for patients with a high risk of recur-
rence http://www.nccn.org/index.asp. To determine
whether miR-221 and miR-222 affected SGC7901 cell
radiosensitivity, cells were transfected with AS-miR-221/
222 or infected with pMSCV-miR-221/222 and colony
formation was assessed following 0-6 Gy radiation (Fig-
ure 2E), Transfection of SGC7901 cells with AS-miRNA-
221/222 significantly decreased survival following radia-
tion exposure. Conversely, infection of SGC7901 cells
with pMSCV-miR-221/222 significantly increased sur-
vival following 0-6 Gy compared to blank and negative
control. The D0 value, the radiation dose required to
reduce the level of cell survival from 100% to 37%, which
is considered a measure of the intrinsic radiosensitivity of
the cell, was calculated following genetic manipulation of
miR-221/222. Control cells, cells transfected with scram-
bled oligonucleotides or AS-miRNA-221/222 or cells
infected with pMSCV-miR-221/222 exhibited D0 values
of 1.3897 Gy, 1.3326 Gy, 1.0358 Gy and 1.6770 Gy, respec-
tively. The sensitization enhancement ratio (SER), calcu-
lated by determining the ratio of the D0 of the control
group vs. treated cells, was 1.0428, 1.3417 and 0.8287 for
scramble-, AS-miRNA-221/222-, or pMSCV-miR-221/
222-treated cells, respectively (Table 1). Collectively,
these results provide strong evidence that miRNA-221/
222 co-regulates the radiosensitivity of SGC7901 cells.

miR-221 and miR-222 targeting of the PTEN gene
Using bioinformatics analysis, we found that miR-221
and miR-222 contained specific binding sequences for

the 3'UTR region of the PTEN gene. To confirm that
PTEN is a target of miR-221 and miR-222, we cloned the
PTEN 3'UTR fragment containing the putative miR-221/
222 target site into pGL3-control vector with a luciferase
reporter gene (pGL3-PTEN). As shown in Figure 3A, co-
transfection of AS-miR-221/222 with pGL3-PTEN signif-
icantly enhanced luciferase activity compared to scram-
ble or control treated cells (p = 0.0011). Furthermore,
Western blot analysis showed that PTEN was signifi-
cantly upregulated in AS-miR-221/222 transfected cells.
In contrast, PTEN expression was downregulated in
pMSCV-miR-221/222 infected cells (Figure 3B).
Together, these data demonstrated that PTEN is a target
gene of the miR-221/222 cluster.

miR-221 and miR-222 affect the phenotype of SGC7901 cell 
in a PTEN-dependent pattern
To determine the role of PTEN in miR-221 and miR-222
co-regulation of the SGC7901 phenotype, cells were
transfected with pcDNA-PTEN. We observed a similar
phenotype in pcDNA-PTEN transfected cells as observed
in cells transfected with AS-miR-221/222, including
decreased viability, enhanced apoptosis, prolonged G0/
G1 phase transition, and reduced cell invasive capacity
(Figure 4A-E). As the pcDNA-PTEN construct does not
include the 3'UTR region of PTEN, transduction
SGC7901 cells with both pcDNA-PTEN and pMSCV-
miR-221/222 had no impact on viability, apoptosis, cell
cycle progression, and invasive ability compared to trans-
fection with pcDNA-PTEN alone (Figure 4A-E and Table
2). These results define an important role for PTEN as a
mediator of the biological effects of miR-221/222 in
SGC7901 gastric cancer cells.

PTEN is a tumor-suppressor gene and its role in tumor
biology is well-characterized [39]. Inactivation of PTEN
activates the serine/threonine protein kinase, Akt. More-
over, pAkt is a crucial protein involved in the regulation
of cell-cycle progression, cell survival, apoptosis, invasion
and radiosensitivity. Using Western blot analysis, we
observed that the expression of PTEN was increased and
the expression of pAkt was decreased in AS-miR-221/222

Table 1: Impact of miRNA221/222 expression on SGC7901 cell radiosensitivity.

Group D0 Dq SF2 SER

control + irradiation 1.3897 2.6293 0.3865

Scrambled + irradiation 1.3326 2.5213 0.3639 1.0428

AS-miRNA221/222 + irradiation 1.0358 1.9597 0.25 1.3417

pMSCV-miR-221/222 + irradiation 1.677 3.1729 0.4536 0.8287

SGC7901 cells were transfected with scrambled or AS-miRNA221/222 or infected with pMSCV-miR-221/222. D0 and Dq were determined by 
standardized software, and the sensitization enhancement ratio (SER) was calculated by determining the ratio of the D0 of the control group 
vs. treated cells.

http://www.nccn.org/index.asp


Chun-zhi et al. BMC Cancer 2010, 10:367
http://www.biomedcentral.com/1471-2407/10/367

Page 6 of 10
transfected SGC7901 cells compared to controls. Fur-
thermore, infection of SGC7901 cells with pMSCV-miR-
221/222 resulted in decreased PTEN and increased pAkt
expressions (Figure 5). In addition, the expression of
cyclin D, Bcl-2, MMP2 and MMP9, all of which are regu-
lated by pAkt, were downregulated in the AS-miR-221/
222 group and slightly upregulated in the pMSCV-miR-
221/222 group. These data suggest that miR-221 and
miR-222 impact the phenotype of SGC7901 cell by mod-
ulating the expression of PTEN and Akt phosphorylation.

Discussion
In this study, we demonstrated that miR-221 and miR-
222 regulate gastric cancer cell viability, apoptosis, cell
cycle progression and invasive ability. Our data suggests
that downregulation of PTEN expression and enhanced
Akt phosphorylation (p-Akt) are important mediators of
these cellular processes. As pAkt impacts cell prolifera-
tion, cell transit from the G0/G1 to the S phase, apopto-
sis, cell invasive ability, and cell radiosensitivity,
downregulation of miR-221 and miR-222 expression have
important biologic effects on the malignant phenotype of
SGC7901 cells. These results identify AS-miR-221/222 as

a potential therapeutic approach for gastric cancer via
upregulation of PTEN.

PTEN functions as a tumor suppressor gene, specifi-
cally by negatively regulating the Akt/PKB signaling path-
way. Genetic inactivation of PTEN is a hallmark of many
cancers, including glioblastoma, endometrial and pros-
tate cancers, and reduced expression occurs in many
other tumor types. Deficiency of PTEN in the intestine
has been reported to induce precancerous polyps, via the
induction of formation and fission of crypts, structures
located at the base of the intestine containing a rapidly
dividing pool of intestinal stem cells [40]. Guo JM et al
studied the microRNAs expression in primary gastric
cancer tissues via microRNA microarray assay and were
the first to demonstrate that PTEN was the target of miR-
21 [41]; however, little is known regarding the impact of
miR-221 and miR-222 on PTEN expression in gastric
cancer.

miR-221 and miR-222 expression is abnormally
increased in gastric cancer [42], however the mechanism
by which miR-221 and miR-222 modulates tumor pro-
gression within the gut remains unknown. Here, we
observed miR-221 and miR-222 upregulation in the
human gastric cancer cell line SGC7901 compared with
HEK293 epithelial cells, corroborating the findings of
Young-kook et al [23]. miR-221 and miR-222 modulate a
variety of biological functions in the SGC7901 cell,
including cell proliferation, apoptosis, invasion, and
radioresistance. We identified binding sites for miR-221
and miR-222 in the PTEN 3'-UTR by bioinformatics anal-
ysis, suggesting that increased expression of the miR-221/
222 cluster might impact on PTEN expression. Indeed,
we demonstrated that PTEN is a target gene of miR-221
and miR-222 by luciferase reporter assay. As PTEN can
antagonize PI3K activity by dephosphorylating PIP3 and
thereby negatively regulates the activity of Akt pathway
[24,25]. Several studies suggest that the loss of the PTEN
function might be the underlying factor in Akt pathway
activation [43-45]; thus, our findings are consistent with
an emerging body of literature.

Akt represents a subfamily of the serine/threonine
kinase family [46]. It modulates the function of numerous
substrates related to the cell proliferation, apoptosis and

Figure 3 PTEN is a target gene of miR-221 and miR-222. pGL3-
PTEN construct containing PTEN 3'UTR was transfected into SGC7901 
cells previously transfected with AS-miR-221 and/or AS-miR-222. Lu-
ciferase activity was determined 48 h after transfection. The ratio of 
normalized sensor to control luciferase activity is shown. Error bars rep-
resent the standard deviation and were obtained from three indepen-
dent experiments (Figure 3A). Western blot analysis demonstrating 
that PTEN expression was significantly enhanced in AS-miR-221/222 
treated cells, and significantly downregulated in the pMSCV-miR-221/
222 infected group compared to controls (Figure 3B).

Table 2: Impact of PTEN on miRNA221/222-mediated SGC7901 cell radiosensitivity.

Group D0 Dq SF2 SER

control +irradiation 1.6031 3.0331 0.4566

pcDNA-PTEN +irradiation 1.0719 1.6422 0.2230 1.4956

AS-miR-221/222 +irradiation 1.0723 1.6428 0.2436 1.4950

pMSCV-miR-221/222 and pcDNA-PTEN + irradiation 1.1303 1.7316 0.2630 1.4183

SGC7901 cells were transfected with pcDNA-PTEN or AS-miRNA221/222 or infected with pMSCV-miR-221/222 and transfected with pcDNA-
PTEN. D0, Dq and SER were determined as described in Table 1.
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invasion and is putatively involved in the development of
some cancers, such as in colon [47], prostate [48], lung
[49] and thyroid cancer [50]. It has been shown that Akt
activation in cancer cells can increase their invasive abil-
ity and resistance to radiotherapy [51-53]. In our study,
we found that knockdown of miR-221 and miR-222 in
SGC7901 cells resulted in downregulation of pAkt
expression, affecting the expression of several Akt-regu-
lated proteins including cyclin D1, Bcl-2, and MMP2/9.

The malignant phenotype of the SGC7901 cells was
reversed by knockdown miR-221 and miR-222, and cells
were sensitized to radiation, corroborating the results of
Garofalo et al [54]. As PTEN is a target of miR-221 and
miR-222, and has been described previously as an impor-
tant regulator of radiation sensitivity [24,55], these results
suggest that increasing PTEN expression by silencing
miR-221/222 could enhance the radiosensitivity of
SGC7901 cells. Whether PTEN/Akt signaling is the sole
target for miRNA-221/222 regulation of radiosensitivity
remains unknown.

While our work identifies a role for PTEN in miRNA-
221/222-induced biology, it remains possible other fac-
tors might be at least partially involved. Negative regula-
tion of p27 and p57 by miRNA221/222 might also
contribute to radioresistance [56], however they are more
likely to contribute to cell proliferation and viability
[57,58]. Moreover, TIMP3, as a target of miR-221 and
miR-222, might also affect cell invasion[54]. In sum, our
results suggest that inhibition of the miR221/222 cluster

Figure 4 PTEN regulates the impact of miR-221/222. SGC7901 cells 
were cultured and treated with pcDNA-PTEN, AS-miR-221/222, or pM-
SCV-miR-221/222, and subjected to MTT assay. Transfection with pcD-
NA-PTEN increased cell proliferation to a similar rate as cells 
transfected with AS-miR-221/222. Infection of pcDNA-PTEN-treated 
cells with pMSCV-miR-221/222 had no effect on proliferation (Figure 
4A). Flow cytometry analysis showing that the fraction of cells in G1 
phase following AS-miR-221/222 transfection was significantly higher 
than in the control. Transfection with pcDNA-PTEN resulted in statisti-
cally similar results as with AS-miR-221/222, and infection of pcDNA-
PTEN transduced cells with pMSCV-miR-221/222 did not impact on cell 
cycle progression (Figure 4B). Annexin V staining and flow cytometry 
analysis showing that AS-miR-221/222 transfection induced signifi-
cantly higher levels of apoptosis in SGC7901 cells than controls, and 
transfection with pcDNA-PTEN yielded similar results. Infection of pcD-
NA-PTEN-transfected cells with pMSCV-miR-221/222 did not impact 
on apoptosis (Figure 4C). Transwell assay showing that AS-miR-221/
222 transfection decreased invasive ability compared to controls. 
Transfection with pcDNA-PTEN yielded similar results, and infection of 
pcDNA-PTEN-transfected cells with pMSCV-miR-221/222 did not im-
pact on invasive ability. Data represents the number of migrated cells 
per field (Figure 4D). AS-miR-221/222 and pcDNA-PTEN transfection in-
creased radiosensitivity, as determined by clonogenic assay following 
radiation exposure. Infection of pcDNA-PTEN-transfected cells with 
pMSCV-miR-221/222 did not impact clonogenic survival. Experiments 
were performed in triplicate. When applicable, data is represented as 
mean ± SE (Figure 4E).

Figure 5 Impact of miR-221/222 on protein expression in the Akt 
pathway. Western blot analysis of SGC7901 cell lysates following ge-
netic modulation of miR-221/222 expression with AS-miR-221/222 or 
pMSCV-miR-221/222. miR-221/222 inversely correlates with PTEN ex-
pression and positively correlates with pAkt, cyclinD, Bcl-2, and MMP2/
9. β-actin was used as negative control.
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represents a molecular therapeutic approach that impacts
on multiple genes involved in anti-tumor growth and
radiosensitization, as summarized in Figure 6.

Conclusions
The PTEN gene is an important functional target of the
miR-221/222 cluster in gastric cancer cells. Modulation
of miR-221/222 expression by antisense or overexpres-
sion strategies directly affected PTEN expression. At
present, anti-miRNA oligonucleotides have been shown
to specifically inactivate endogenous target miRNAs,
although rather inefficiently [59,60]. We provide evidence
that co-suppression of both miR-221 and miR-222 affects
gastric cancer cell biology in vitro, and might represent a
novel therapeutic strategy for gastric cancer through
upregulation of PTEN expression.
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