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Abstract
Background Numerous studies have indicated that cancer-associated fibroblasts (CAFs) play a crucial role in the 
progression of colorectal cancer (CRC). However, there are still many unknowns regarding the exact role of CAF 
subtypes in CRC.

Methods The data for this study were obtained from bulk, single-cell, and spatial transcriptomic sequencing data. 
Bioinformatics analysis, in vitro experiments, and machine learning methods were employed to investigate the 
functional characteristics of CAF subtypes and construct prognostic models.

Results Our study demonstrates that Biglycan (BGN) positive cancer-associated fibroblasts (BGN + Fib) serve as 
a driver in colorectal cancer (CRC). The proportion of BGN + Fib increases gradually with the progression of CRC, 
and high infiltration of BGN + Fib is associated with poor prognosis in terms of overall survival (OS) and recurrence-
free survival (RFS) in CRC. Downregulation of BGN expression in cancer-associated fibroblasts (CAFs) significantly 
reduces migration and proliferation of CRC cells. Among 101 combinations of 10 machine learning algorithms, the 
StepCox[both] + plsRcox combination was utilized to develop a BGN + Fib derived risk signature (BGNFRS). BGNFRS 
was identified as an independent adverse prognostic factor for CRC OS and RFS, outperforming 92 previously 
published risk signatures. A Nomogram model constructed based on BGNFRS and clinical-pathological features 
proved to be a valuable tool for predicting CRC prognosis.

Conclusion In summary, our study identified BGN + Fib as drivers of CRC, and the derived BGNFRS was effective in 
predicting the OS and RFS of CRC patients.

Identification of BGN positive fibroblasts 
as a driving factor for colorectal cancer 
and development of its related prognostic 
model combined with machine learning
Shangshang Hu1,2†, Qianni Xiao3†, Rui Gao3, Jian Qin1,2, Junjie Nie1,2, Yuhan Chen3, Jinwei Lou3, Muzi Ding3, 
Yuqin Pan2,4* and Shukui Wang1,2,3,4*

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-024-12251-4&domain=pdf&date_stamp=2024-4-23


Page 2 of 20Hu et al. BMC Cancer          (2024) 24:516 

Introduction
Colorectal cancer (CRC) is a prevalent malignancy on 
a global scale, with escalating incidence and mortal-
ity trends over recent decades [1]. Projections indicate 
that by 2030, the worldwide burden of CRC will exceed 
2.2 million new cases, resulting in over 1.1 million fatali-
ties, thus posing a substantial threat to public health [2]. 
Despite significant advancements in treatment methods 
and techniques, many patients still face the risk of recur-
rence and metastasis, severely affecting their prognosis 
and survival rates [3]. Consequently, the identification of 
promising therapeutic targets for CRC and the develop-
ment of robust prognostic models have emerged as criti-
cal avenues of research.

The tumor microenvironment is a complex struc-
ture composed of stromal cells and extracellular matrix 
(ECM) components [4]. Stromal cells predominantly 
consist of cancer-associated fibroblasts (CAFs), endothe-
lial cells, and various immune cells [5]. In recent years, 
CAFs have attracted widespread attention in the develop-
ment and progression of CRC. CAFs are a key cell type 
in the tumor microenvironment, exerting crucial roles in 
the growth, metastasis, and treatment resistance of CRC 
through mechanisms such as cytokine secretion, regula-
tion of the extracellular matrix, and promotion of tumor 
cell invasion [6]. Current research suggests that CAFs 
are a collection of multiple cellular subtypes, exhibiting 
diverse biological functions and significant heterogene-
ity [7]. However, there are still many unknowns regarding 
the exact role of CAF subtypes in CRC.

Prognostic evaluation involves predicting and cat-
egorizing patient survival period, RFS, and treatment 
response based on diverse clinical and pathological fea-
tures [8]. Currently, prognostic evaluation in clinical 
practice relies primarily on clinical and pathological fea-
tures such as tumor stage, histological type, and grade 
[9]. However, these conventional prognostic factors often 
lack precision in forecasting patient outcomes, prompt-
ing the need for the introduction of more predictive indi-
cators and models [10]. Machine learning, as an emerging 
technique for data analysis and pattern recognition, has 
shown great potential in various domains [11, 12]. Partic-
ularly in the medical field, machine learning can discover 
hidden patterns and associations within large-scale clini-
cal and genetic data, and construct predictive models for 
patient prognosis [13]. Thus, the advancement of prog-
nostic models integrating machine learning techniques 
holds promise for enhancing the accuracy and reliability 
of prognostic evaluation in CRC.

This study identified Biglycan positive fibroblast 
(BGN + Fib) as a driving factor in CRC using bulk, sin-
gle-cell, spatial transcriptomics, and in vitro experi-
ments. Subsequently, a machine learning approach was 
employed to develop a BGN + Fib derived risk signature 
(BGNFRS), with the objective of improving the prognos-
tic accuracy for OS and RFS in CRC patients.
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Methods and material
Data source and processing
The single-cell transcriptome sequencing data for this 
study were obtained from the ArrayExpress database 
(https://www.ebi.ac.uk/biostudies/arrayexpress) (acces-
sion number: E-MTAB-8107), including 7 adjacent 
normal tissues and 14 CRC tissues [14]. The single-cell 
sequencing data were integrated, batch-corrected, qual-
ity-filtered, and visualized using the “Seurat,” “dplyr,” 
“stringr,” and “harmony” R packages [15, 16]. The qual-
ity control filtering criteria included the exclusion of 
cells with low feature counts (< 200), high feature counts 
(> 5000), and high mitochondrial content (> 20%). The 
single-cell sequencing data normalization was performed 
using the “LogNormalize” function in the Seurat pack-
age. The “FindVariableFeatures” function in the Seurat 
package was used to identify the top 2000 highly variable 
genes. The “RunPCA” function in the Seurat package was 
utilized for dimensionality reduction. The “RunTSNE” 
function in the Seurat package was employed for cluster-
ing analysis. The “FindAllMarkers” function in the Seurat 
package was applied to identify marker genes for each cell 
subpopulation (thresholds: min.pct = 0.25, logfc.thresh-
old > 0.25). Cell type annotation was performed using the 
“SingleR” R package and the CellMarker 2.0 database [17, 
18]. Single-cell pseudo-time analysis and cell communi-
cation analysis were conducted using the “Monocle 2” 
and “CommPath” R packages, respectively [19, 20].

The bulk sequencing data for this study were obtained 
from The Cancer Genome Atlas (TCGA) (https://www.
cancer.gov/ccg/research/genome-sequencing/tcga) and 
Gene Expression Omnibus (GEO) (https://www.ncbi.
nlm.nih.gov/geo/) databases. The TCGA-CRC cohort 
included TCGA-COAD and TCGA-RED datasets. In the 
GEO cohort, datasets with OS and RFS information were 
included, including GSE17538 [21], GSE39582 [22], and 
GSE29621 [23].

The spatial transcriptome (ST) data were obtained 
from published literature [24] including two CRC sam-
ples. The ST data were processed using the “Seurat” R 
package. The “RunPCA” function in the Seurat package 
was used for dimensionality reduction of the spatial tran-
scriptomics (ST) data, followed by clustering of similar 
ST points using the “FindNeighbors” and “FindClusters” 
functions in the Seurat package.

Furthermore, leveraging the BGN + Fib surface mark-
ers identified in the single-cell data of this study, we 
applied the “ssGSEA” algorithm from the “GSVA” R pack-
age to score bulk sequencing data and spatial transcrip-
tome sequencing data [25].. The deconvolution method 
is currently widely used in multiple published literature 
[26–28].

Detailed information about these datasets is provided 
in Supplementary Table 1.

Gene Set Variation Analysis(GSVA)
The scoring of gene sets was estimated using the “ssG-
SEA” algorithm from the “GSVA” R package [25]. The 
“HALLMARK” and “KEGG” gene sets used in this study 
were obtained from the Molecular Signatures Database 
(https://www.gsea-msigdb.org/gsea/msigdb).

Gene Ontology (GO)/Kyoto Encyclopedia of genes and 
genomes (KEGG) and Gene Set Enrichment Analysis (GSEA)
For the analysis of GO/KEGG in single-cell sequenc-
ing data and bulk sequencing data, the “SCP” and 
“clusterProfiler/org.Hs.eg.db” R packages were used, 
respectively [29]. Gene Set Enrichment Analysis (GSEA) 
was performed using the “clusterProfiler/org.Hs.eg.db” 
and “enrichplot” R packages [29]. Enrichment terms with 
adjusted P < 0.05 were considered statistically significant.

Prognostic analysis
Kaplan-Meier curves and univariate/multivariate Cox 
analysis in this study were conducted using the “sur-
vival” and “survminer” R packages. Kaplan-Meier curves 
were constructed by stratifying the data into high and 
low expression groups according to the median expres-
sion values. The “ggplot2” R package was used for 
visualization.

Tumor Immune single-cell hub 2 (TISCH2)
Based on the CRC dataset in the TISCH2 database 
(http://tisch.comp-genomics.org/home/), the expres-
sion levels of BGN were evaluated in various cell types 
of CRC, including CRC_EMTAB8107, CRC_GSE108989, 
CRC_GSE146771, CRC_GSE166555, and CRC_
GSE179784 [30]..

Protein Interaction Network (PPI)
The protein-protein interaction (PPI) network was 
constructed based on the STRING database (https://
cn.string-db.org/) and visualized using Cytoscape [31]. 
Identification of hub genes was performed utilizing the 
Degree algorithm.

Weighted Gene Coexpression Network Analysis (WGCNA)
Based on the TCGA-CRC cohort, CRC samples were 
stratified into high BGN + Fib infiltration and low 
BGN + Fib infiltration groups based on the median val-
ues of BGN + Fib infiltration. The “WGCNA” R package 
was used to identify co-expression modules in the high 
BGN + Fib infiltration group [32]. Initially, we utilized 
soft-threshold (Set soft threshold to 5) and gene-gene 
correlation matrices to construct an adjacency matrix, 
depicting the degree of interconnection between nodes. 
Subsequently, we transformed the adjacency matrix into 
a Topological Overlap Matrix (TOM). Following this 
step, hierarchical clustering of genes was performed, and 

https://www.ebi.ac.uk/biostudies/arrayexpress
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://www.ncbi.nlm.nih.gov/geo/
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http://tisch.comp-genomics.org/home/
https://cn.string-db.org/
https://cn.string-db.org/
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a dendrogram was generated to identify co-expression 
modules. Finally, we computed Module Eigengenes (ME) 
and assessed the correlation between ME and BGN + Fib, 
thereby identifying modules associated with BGN + Fib.

Machine learning
This study employed ten machine learning algorithms, 
including Random Survival Forest (RSF), Elastic Net 
(Enet), Lasso, Ridge, Stepwise Cox, CoxBoost, Cox Par-
tial Least Squares Regression (plsRcox), Supervised 
Principal Component (SuperPC), Generalized Boosted 
Regression Modeling (GBM), and Survival Support Vec-
tor Machine (Survival SVM). Based on the integration 
of 101 algorithm combinations from these 10 machine 
algorithms [28], the signature constructed in this study 
follows the process outlined below: (a) Based on mod-
ules identified by WGCNA, genes related to CRC prog-
nosis were selected through single-factor Cox analysis 
within the module; (b) Batch correction and normaliza-
tion were performed on the TCGA-CRC expression pro-
file and the expression profiles from the GEO datasets 
(GSE17538, GSE39582, GSE29621). (c) Using the TCGA-
CRC cohort as the training set and the remaining three 
cohorts (GSE17538, GSE39582, GSE29621) as validation 
sets, 101 algorithm combinations were applied to the 
prognosis-related genes; (d) For each algorithm com-
bination, the C-index was calculated in both the valida-
tion and training sets, with the combination showing 
the highest average C-index considered the best. The 
C-index, a metric used to evaluate model performance, 
is commonly employed to assess the predictive accuracy 
of survival analysis models. The C-index ranges from 0 to 
1, with values closer to 1 indicating better predictive per-
formance [33].

Collection and comparison of published risk signature
As of October 2023, this study retrieved published risk 
features from the PubMed database system using the 
keyword “CRC risk signature.” A total of 550 articles 
were retrieved, among which 150 articles constructed 
signatures for predicting the prognosis of CRC patients. 
Therefore, this study included these 150 risk signatures. 
By matching the expression profiles and survival infor-
mation of the validation set (TCGA-CRC) and training 
sets (GSE17538, GSE39582, GSE29621), the C-index of 
these risk signatures was calculated, and the prognostic 
value of BGNFRS was ultimately compared with these 
risk signatures. Among these 150 risk signatures, only 
the expression profiles of 92 signature genes could be 
matched to our training and validation sets.

Nomogram prediction model
The Nomogram prediction model was constructed using 
the “survival,” “regplot,” and “rms” R packages [34]. The 

parameters of this prediction model included BGNFRS 
risk score, Gender, T, M, N, and stage. The predictive 
accuracy of the Nomogram prediction model and other 
parameters was evaluated using the time-dependent 
ROC curve constructed using the “timeROC” R package.

Tissue sample collection
In this study, paraffin-embedded tissue sections from 3 
pairs of tumors and adjacent non-cancer tissues were col-
lected and utilized for detecting the expression of BGN. 
The clinical characteristics of the 3 patients were as fol-
lows: Patient 1 (age: 70, male, TNM stage: T4aN1bM0), 
Patient 2 (age: 57, female, TNM stage: T3N0M0), and 
Patient 3 (age: 68, female, TNM stage: T1N0M0). All 
patients provided informed consent and had not received 
any prior anti-tumor treatment. Additionally, all patients 
were pathologically diagnosed with CRC. The Ethics 
Committee of Nanjing First Hospital, Nanjing Medical 
University approved the use of all human specimens.

Isolating fibroblasts
In this study, well-separated Normal fibroblasts (NFs) 
and CAFs isolated by our research group were used. The 
methods for fibroblast isolation and identification can 
be found in our previous study [35]. Fibroblasts were 
obtained from fresh tissues following established proto-
cols. In brief, the tissue samples were finely minced and 
subjected to digestion using a mixture of 1  mg/mL col-
lagenase (cat. #C4-BIOC, Sigma-Aldrich), Dulbecco’s 
modified Eagle’s medium (DMEM; cat. #KGM12800, 
KeyGen), and 10% fetal bovine serum (FBS; cat. 
#12,106  C, Sigma, Sigma-Aldrich) for 2  h at 37  °C with 
agitation. Following centrifugation, the cell pellets were 
resuspended and filtered through a 100 μm cell strainer. 
Subsequently, the cells were cultured in DMEM supple-
mented with 10% FBS. After 2 h, the culture medium was 
replaced. Notably, fibroblasts exhibit a higher affinity for 
adherence to culture dishes compared to other cell types. 
The fibroblasts were characterized by the presence of two 
positive markers (α-SMA and Vimentin) and the absence 
of two negative markers (KRT20 and Desmin).

Cell culture and transient transfection
CRC cells (HCT116 and DLD1) were cultured in DMEM 
complete medium (Procell, China) containing 10% fetal 
bovine serum. CAFs and NFs were extracted from can-
cer tissue and adjacent non-cancer tissue of CRC patients 
and cultured using fibroblast expansion basal medium 
(Thermo Fisher, China). All cell lines were maintained in 
a 37℃ and 5.0% CO2 incubator. The transfection reagent 
used in this study was riboFECTTMCP (Ribobio, China). 
Transfection experiments were performed according 
to the manufacturer’s instructions when the CAF den-
sity reached 60% during the cell transfection process. 
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Ribobio, China, constructed si-BGN. siBGN_1:  G G A G A 
A C A G T G G C T T T G A A. siBGN_2:  C C A T C C A G T T T G G 
C A A C T A.

Total RNA extraction and quantitative real-time 
polymerase chain reaction (qRT-PCR)
Total RNA was extracted in this study using the Trizol 
Kit (Vazyme, China). Reverse transcription and quan-
titative fluorescent PCR were performed using HiScript 
III RT SuperMix for qPCR and SYBR Green PCR Mas-
ter Mix Kit (Vazyme, China). The reagent manufacturer’s 
instructions performed the operation process. GAPDH 
served as the internal reference gene for this experiment. 
The relative expression of genes was calculated using a 
2-ΔΔCq method. Human BGN forward primer: 5’-  C A 
G T G G C T T T G A A C C T G G A G-3’. Human BGN reverse 
primer: 5’- G G G A G G T C T T T G G G G A T G C-3’.

Tissue immunofluorescence assay
Paraffin embedded tissue sections were deparaffinized, 
and antigen retrieval and Donkey serum blocking were 
performed. Subsequent primary antibody incubation 
was performed at 4 ° C overnight. Primary antibodies 
included a-SMA (1:400; 48,938; cell signaling technology, 
Ma, USA) and BGN (1:200; A5770, ABclonal, China). 
Secondary antibody incubation was performed the fol-
lowing day at a room temperature environment. Sec-
ondary antibodies included Goat anti-rabbit IgG H & L 
(Alexa fluor ® 647) (1:500, AB150079, Abcam, Cambridge, 
UK) and goat anti-mouse IgG (H + L) Alexa Fluor 488 
(1:500, AB150113. Abcam, Cambridge, UK). Moreover, 
finally mounted with an UltraCruz mounting medium 
(sc-24,941, Santa Cruz Biotechnology, TX, USA) con-
taining DAPI. Immunofluorescence signals were photo-
graphed by fluorescence microscopy (Zeiss).

Cellular immunofluorescence experiments
First, make cell climbing slices. Subsequently, cell climb-
ing slides were fixed, permeabilized, and blocked with 
Donkey Serum. Subsequent primary antibody incuba-
tion was performed at 4 ° C overnight. Secondary anti-
body incubation was performed the following day at a 
room temperature environment—final mounting with 
UltraCruz mounting medium containing DAPI. Immu-
nofluorescence signals were photographed by fluores-
cence microscopy. Primary and secondary antibodies and 
dilution ratios used for cell immunofluorescence experi-
ments were the same as for tissue immunofluorescence 
experiments.

Transwell
First, starvation treated cells using an incomplete 
medium (without serum) the night before. Then 100 UL 
containing 3 × 104 cells with the incomplete medium 

were seeded in the upper Transwell chamber (3422, 
costar, USA), and 600 UL of the lower chamber contain-
ing 2 × Complete medium of 104 CAFs cells. Fixed stain-
ing was performed after 48 h of culture, and six randomly 
selected fields were counted for the number of migrated 
or invaded cells.

Cell clone formation experiment
The experiment was divided into two groups (experimen-
tal group and NC group). The experimental group used 
culture medium with conditioned media from cancer-
associated fibroblasts (CAF) supplemented with siBGN, 
while the NC group used culture medium with condi-
tioned media from CAF without siBGN. The process of 
cell clone formation involved digesting cells in logarith-
mic growth phase with trypsin, resuspending them in 
cell culture medium, and counting them. The cells were 
then seeded in a 6-well plate with 500 cells per well and 
cultured for two weeks. After two weeks, staining and 
counting were performed.

Statistical analysis
All statistical analyses in this study were conducted using 
R software version 4.3.0. Student’s t-test or Wilcoxon 
rank-sum test is utilized to compare continuous variables 
between two groups, while one-way analysis of vari-
ance or Kruskal-Wallis test is employed for differential 
comparisons among three groups. The log-rank test was 
used for comparing survival differences between the two 
groups. Spearman’s test was used for correlation analysis. 
All in vitro experiments were repeated three times. In 
the calculation of cell numbers in the Transwell and cell 
clone formation experiments, we utilized the image anal-
ysis software ImageJ. In essence, experimental images 
were imported into the ImageJ software, where cells were 
identified and counted by setting a threshold. Addition-
ally, manual inspection and correction were carried out 
to ensure the accuracy and reliability of the cell count. A 
p-value less than 0.05 was considered statistically signifi-
cant (*p < 0.05, **p < 0.01, ***p < 0.001).

Result
CAFs is the cell population with the highest 
communication weight, and CAFs is a poor prognostic 
factor for CRC
This study integrated 21 single-cell transcriptome 
sequencing data, including 7 normal samples and 14 
tumor samples (Supplementary Table 1). Following batch 
correction and quality control filtering, a total of 37,779 
high-quality cells were acquired. Subsequent cluster-
ing analysis of these cells showed no batch effect in the 
t-SNE plots for each sample, different stages, and dif-
ferent groups (Fig.  1A). Based on specific markers, we 
identified 8 cell types (Fig. 1B-D). Our results indicate a 
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significant role of CAFs in CRC progression [36]. There-
fore, CAFs were the main focus of this study. Addition-
ally, we computed the communication weights and 
strengths among the 8 cell types and found that CAFs 
had the highest communication weight and the strongest 
crosstalk with epithelial cells (Fig. 1E). Due to the limited 
number of single-cell transcriptomic data samples in this 
study, we conducted deconvolution of bulk sequencing 
data based on surface markers of CAFs to estimate the 

infiltration level of CAFs in the samples. CAFs markers 
(LUM, DCN, COL1A1, COL1A2, FAP, PDPN, PDGFRA, 
PDGFRB, S100A4, ACTA2, VIM, TGFB1) were obtained 
from previous studies [37]. Using the TCGA-CRC 
cohort, CRC samples were stratified into high and low 
CAFs infiltration groups using the median cutoff value of 
CAFs infiltration. We found that high infiltration of CAFs 
was associated with adverse prognosis in CRC patients. 
(Fig. 1F).

Fig. 1 CAFs have the highest communication weight and are associated with poor prognosis in CRC
A. T-SNE plots for each sample, different stages, and different groups. B. Heatmap of the top three markers for each of the 8 cell types. C. T-SNE plots 
showing the expression of specific markers for each of the 8 cell types. D. T-SNE plots showing the distribution of the 8 cell types. E. Circular plot illustrat-
ing the communication weights and strengths among the 8 cell types. F. Overall survival (OS) difference between high and low CAF infiltration groups
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Identification of Biglycan (BGN) positive fibroblasts 
(BGN + fib) as a subgroup associated with CRC progression
In this study, we conducted re-clustering and subtyping 
of fibroblasts based on gene expression similarity, result-
ing in the identification of nine fibroblast subgroups 
(Fib_1–9) (Fig.  2A). Each fibroblast subgroup demon-
strated high expression of fibroblast markers (DCN, 
COLA2, and LUM) (Fig.  2B). Currently, fibroblasts are 
commonly classified into three types, including myofi-
broblasts CAF (myCAF), immune regulatory/inflamma-
tory CAF (iCAF), and antigen presenting CAF (apCAF) 
[7]. Through the analysis of surface markers and bio-
logical functional characteristics of these nine fibroblast 
subgroups (Fig.  2C-D), Fib_1/2/3/6/8 were classified as 
myCAF, and Fib_4/5/7/9 were classified as iCAF. Nota-
bly, within different groups (normal and tumor), the 
Fib_3 subgroup exhibited the most substantial increase 
in the tumor group compared to the normal group and 
represented the highest proportion in the tumor group 
(Fig.  2E). Moreover, as the disease progressed, the pro-
portion of Fib_3 increased gradually and reached the 
highest proportion in TNM stage IV (Fig.  2F). Subse-
quently pseudo-time analysis revealed that Fib_3 was in a 
terminal differentiation state (Fig. 2G), indicating a likely 
association with CRC progression. By identifying highly 
expressed genes (log2FC > 1, P < 0.05) in Fib_3, we con-
structed a protein-protein interaction (PPI) network to 
identify hub genes. Notably, BGN emerged as the most 
central node in this PPI network (Fig.  2H), suggesting 
that BGN may play an important regulatory role in Fib_3. 
Analysis of the expression distribution of BGN revealed 
predominant expression in fibroblasts (Supplementary 
Fig. 1A). Compared to the normal group, BGN was highly 
expressed in the tumor group (Supplementary Fig.  1B). 
Subsequent investigation into the biological attributes of 
BGN unveiled substantial positive associations between 
BGN and various signaling pathways, including epithe-
lial-mesenchymal transition (EMT), TGF-BETA pathway, 
hypoxia, APICAL_JUNCTION, and IL6_JAK_STAT3 
pathway, based on GSVA correlation analysis with a 
threshold of R > 6 (Supplementary Fig. 1C). Additionally, 
compared to the low expression group, the high expres-
sion group of BGN was associated with worse prognosis 
in CRC patients (Supplementary Fig. 1D). Notably, within 
the nine fibroblast subgroups, BGN was mainly highly 
expressed in Fib_3 and showed significant differences 
compared to other subgroups (Fig.  2I). The GSVA clus-
tering heatmap depicted that the modules clustered by 
Fib_3 were highly similar to the biological characteristics 
of BGN (Fig. 2J). Consequently, based on these findings, 
Fib_3 was designated as BGN + Fibroblasts (BGN + Fib).

BGN + fib is the driving factor of CRC progress
We isolated CAFs and NFs from fresh CRC tissues and 
paired normal tissues. Cell immunofluorescence results 
showed that BGN expression was significantly higher 
in CAFs compared to NFs (Fig.  3A). Tissue multiplex 
immunofluorescence revealed widespread presence of 
BGN + Fib in tumor tissues, while it was almost absent in 
adjacent normal tissues (Fig. 3B). Subsequently, leverag-
ing the surface high markers of BGN + Fib (Fig. 2H) and 
utilizing a deconvolution algorithm, we estimated the 
infiltration level of BGN + Fib in bulk sequencing data 
from the TCGA-CRC cohort, revealing a notable increase 
in BGN + Fib infiltration in tumor tissues (Fig. 3C). More-
over, BGN + Fib infiltration exhibited significant differ-
ences in CRC pathological features (T, N, M, and stage), 
with higher grades correlating with increased BGN + Fib 
infiltration (Fig.  3D). Analyzing data from four cohorts 
with OS and RFS information (TCGA, GSE17538, 
GSE39582, and GSE29621), we observed a detrimen-
tal association between high BGN + Fib infiltration and 
poor prognosis as well as recurrence in CRC patients 
(Fig. 3E-F). Based on our previous analysis, we identified 
BGN + Fib as myCAF, which has pro-metastatic and pro-
liferative characteristics [7]. Subsequently, we established 
a co-culture system of CAFs and CRC cells (Fig. 4A). By 
downregulating BGN expression in CAFs, and the effi-
ciency of downregulation is shown in Supplementary 
Fig.  2. we observed a significant reduction in the num-
ber of metastatic CRC cells (HCT116) alongside a simi-
lar trend in another CRC cell line (DLD1) (Fig.  4B-C). 
In addition, downregulation of BGN expression in CAFs 
significantly reduced the number of colony formation in 
CRC cells (HCT116 and DLD1) (Fig.  4D-E). Therefore, 
downregulation of BGN expression also significantly 
decreased the proliferative effect of CRC cells. In conclu-
sion, BGN + Fib is a driving factor in CRC progression.

Development of BGN + fib derived risk signature (BGNFRS) 
combined with machine science
In the previous analysis, we observed that high infiltra-
tion of BGN + Fib is an unfavorable factor for CRC prog-
nosis and recurrence. Consequently, we hypothesize 
that genes related to BGN + Fib may have the potential 
to serve as a signature for assessing CRC risk. Utilizing 
the TCGA-CRC cohort, we segregated the samples into 
high BGN + Fib infiltration and low BGN + Fib infiltration 
group. Subsequently, we performed WGCNA and deter-
mined 9 co-expression modules when the soft threshold 
was set to 5 (Supplementary Fig. 3A-B). The module heat-
map demonstrated that the MEturquoise module exhib-
ited the strongest correlation with the high BGN + Fib 
infiltration group (Fig.  5A), displaying a correlation 
coefficient of 0.96 (Fig.  5B), therefore indicating supe-
rior module construction quality in the high BGN + Fib 
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Fig. 2 Identification of BGN + Fibroblasts (BGN + Fib) as a relevant subgroup in CRC progression
A. Tsne plot of the nine fibroblast subgroups. B. Expression levels of the three fibroblast markers in the nine fibroblast subgroups. C. Heatmap of the top 
three markers for the nine fibroblast subgroups. D. GO/KEGG analysis of the nine fibroblast subgroups. E. tsne plot and proportion analysis of the normal 
and tumor groups. F. tsne plot and proportion analysis of different stages. G. Pseudo-time analysis. H. PPI network and hub gene identification of highly 
expressed genes (log2FC > 1, P < 0.05) in Fib_3. I. tsne plot and differential analysis of BGN expression. J. GSVA clustering heatmap
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Fig. 3 Increased expression of BGN + Fib in CRC and its association with poor prognosis and recurrence
A. The immunofluorescence results revealed the localization of BGN and the fibroblast-specific marker (α-SMA) in both normal fibroblasts (NF) and 
cancer-associated fibroblasts (CAFs). B. The immunofluorescence results of the tissue demonstrated the localization of BGN and α-SMA in both normal 
colon tissue and CRC tissue. C. Infiltration difference of BGN + Fib in normal and tumor tissues based on the TCGA-CRC cohort. D. Analysis of differences 
in BGN + Fib infiltration and CRC pathological features (T, N, M, and stage). E-F. Differences in OS/RFS between high and low BGN + Fib infiltration groups
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infiltration group. KEGG/GO analysis of genes in the 
MEturquoise module revealed their association with cell 
migration and extracellular matrix remodeling (Fig. 5C-
D). Subsequent univariate Cox analysis of gene expres-
sion profiles within the MEturquoise module led to the 
identification of 167 prognostic genes (Supplementary 
Table 2). Leveraging the TCGA-CRC cohort as the train-
ing set, developed 101 prediction models, and assessed 
their performance using the C-index on validation sets 
(GSE17538, GSE39582, and GSE29621). Our results 

indicated that the combination of StepCox[both] + plsR-
cox had the highest average C-index (0.666) (Fig.  5E). 
Eventually, we obtained 17 risk gene combinations 
(Supplementary Table 3). Based on the expression pro-
files of risk genes and their corresponding risk coef-
ficients, we calculated the risk score for each sample. 
In bulk sequencing data, this risk signature exhibited a 
strong positive correlation with BGN + Fib, demonstrat-
ing correlation coefficients exceeding 0.8 (Supplementary 
Fig. 3C). In single-cell sequencing data, this risk signature 

Fig. 4 Downregulation of BGN in CAFs reduces the metastasis and proliferation of CRC cells
A. Co-culture system of CAFs and CRC cells. B-C. Transwell experiment. D-E. Cell plate clone experiment

 



Page 11 of 20Hu et al. BMC Cancer          (2024) 24:516 

Fig. 5 Development of BGN + Fib-related risk signature (BGNFRS) using machine learning
A. Module correlation heatmap. B. Scatter plot showing the correlation between MEturquoise module and high BGN + Fib infiltration group. C-D. KEGG/
GO analysis. E. Construction of 101 prediction models using various combinations of algorithms and calculation of C-index for each dataset; The C-index 
ranges from 0 to 1, with values closer to 1 indicating better predictive performance. F. Distribution and differences of BGN + Fib-related risk signature 
(BGNFRS) in single-cell data. G. Spatial localization of BGN + Fib and BGNFRS in spatial transcriptomics
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predominantly resided within BGN + Fib (Fig.  5F). 
Among the 17 signature genes, except for WNT5A and 
CPXM2, the other 15 signature genes mainly come from 
BGN + Fib (Supplementary Fig.  3D). To further confirm 
the spatial localization of BGN + Fib, spatial transcrip-
tomics data were employed, revealing a substantial over-
lap with the distribution of the risk signature (Fig.  5G). 
The same pattern was observed in another spatial tran-
scriptomics section (Supplementary Fig.  3E). Therefore, 
we defined this risk signature as BGN + Fib derived risk 
signature (BGNFRS).

BGNFRS is an independent prognostic factor for CRC 
patients
CRC patients were divided into high-risk groups and 
low-risk groups based on the median cutoff BGNFRS. 
In the training set TCGA-CRC and three validation sets 
(GSE17538, GSE39582, and GSE29621), we observed a 
significant difference in OS between patients classified 
into high-risk and low-risk groups (P < 0.05) (Fig.  6A). 
Combining all samples from these datasets, we estab-
lished the Meta1 cohort, which exhibited a consistent 
survival trend (P < 0.05) (Fig.  6B). Furthermore, our 
analysis of RFS across these datasets revealed a similar 
pattern, with patients in the high-risk group experienc-
ing lower RFS compared to those in the low-risk group 
(P < 0.05) (Fig.  6C). Integration of all samples led to the 
formation of the Meta2 cohort, which also demonstrated 
a significant difference in RFS (P < 0.05) (Fig.  6D). By 
combining the clinical and pathological features of each 
dataset, we found that higher BGNFRS risk score was 
associated with higher clinical and pathological grade 
(Supplementary Fig. 4A). Multivariate Cox analysis con-
firmed that the BGNFRS risk score independently pre-
dicted adverse prognosis for CRC patients in terms of 
both OS and RFS across all datasets (Supplementary 
Fig. 4B-C). Notably, leveraging the comprehensive clini-
cal and pathological features available in the TCGA-
CRC, GSE39582, and GSE29621 datasets, we combined 
survival and clinical pathological data to establish two 
distinct cohorts, Meta3 and Meta4, focusing on OS and 
RFS, respectively. Consistently, in both the Meta3 cohort 
for OS and the Meta4 cohort for RFS, BGNFRS emerged 
as a significant independent adverse prognostic factor for 
CRC patients (Fig. 6E).

Construction of nomogram prediction model to predict OS 
and RFS of CRC patients
This study categorized BGNFRS to develop a clinical pre-
diction model for OS and RFS in CRC patients by inte-
grating clinical and pathological features (T, N, M, stage, 
and gender). The OS nomogram was established using 
the Meta3 cohort (Fig.  7A), and the calibration curve 
demonstrated its robustness in predicting 1, 3, and 5-year 

OS (Fig. 7B). The receiver operating characteristic (ROC) 
curve results for 1, 3, and 5-year OS indicated that the 
nomogram prediction model outperformed other signa-
ture (Fig.  7C). Similarly, the RFS nomogram prediction 
model constructed based on the Meta4 cohort exhibited 
excellent predictive ability (Fig. 7D-F). Consequently, the 
nomogram prediction models based on BGNFRS hold 
significant promise for clinical utility.

BGNFRS outperforms 92 published risk signatures
Numerous risk signatures for CRC have been published 
in the literature. In this study, a systematic search was 
conducted to identify 150 published risk signatures 
(Supplementary Table 4). Due to the lack of expression 
profiles for certain genes in the four datasets used in this 
study, only the gene expression profiles of 92 risk signa-
tures were available. These 92 risk signatures were linked 
to diverse biological characteristics of CRC, including 
metabolism, immunity, autophagy, ferroptosis, and cell 
death. The C-index was calculated for these 92 risk signa-
tures and compared to the BGNFRS. Notably, the BGN-
FRS ranked first in the TCGA cohort and second in the 
remaining three cohorts, but interestingly, it ranked first 
in the Meta1 cohort (Fig.  8). These findings underscore 
the robustness and high generalizability of the BGNFRS.

BGNFRS is closely related to epithelial mesenchymal 
transition (EMT)
To explore the biological characteristics of BGNFRS, this 
study conducted GSEA and GSVA based on the TCGA-
CRC cohort. The analysis of GSEA using the KEGG 
gene set revealed that the high-risk group associated 
with BGNFRS exhibited significant enrichment in path-
ways related to cell adhesion and the extracellular matrix 
(Fig. 9A). The GSVA results, based on the HALLMARK 
gene set, demonstrated a positive correlation between 
BGNFRS and various hallmark pathways, with the stron-
gest correlation observed in epithelial-mesenchymal 
transition (EMT) (R > 0.6, P < 0.05) (Fig.  9B-C). Further 
validation using spatial transcriptomics revealed that the 
spatial localization of EMT scores was largely overlapped 
with BGNFRS and BGN + Fib (Figs. 5G and 9D, and Sup-
plementary Fig. 3D). Previous analyses have highlighted 
EMT as a key biological feature of BGN + Fib, with BGN-
FRS showing a positive association with EMT. Notably, 
EMT is recognized as a crucial factor contributing to 
metastasis in CRC patients [38], suggesting that higher 
BGNFRS risk scores are indicative of an increased likeli-
hood of metastasis in CRC patients.

Discussion
The recurrence and drug resistance of tumors have 
always been obstacles in the treatment of CRC [39]. Pres-
ently, the tumor microenvironment (TME) has shown 



Page 13 of 20Hu et al. BMC Cancer          (2024) 24:516 

Fig. 6 BGNFRS as an independent adverse prognostic factor for CRC patients
A. Overall survival (OS) curves for the training set TCGA-CRC and three validation sets (GSE17538, GSE39582, and GSE29621). B. OS curves for the Meta1 
cohort (TCGA-CRC, GSE17538, GSE39582, and GSE29621). C. Recurrence-free survival (RFS) curves for the four datasets. D. RFS curves for the Meta2 co-
hort (TCGA-CRC, GSE17538, GSE39582, and GSE29621). E. Multivariate Cox analysis combining OS/RFS with CRC clinical and pathological features for the 
Meta3/Meta4 cohorts (TCGA-CRC, GSE39582, and GSE29621).
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Fig. 7 Nomogram prediction models for predicting OS and RFS in CRC patients
A. OS nomogram prediction model constructed based on the Meta3 cohort. B. Calibration curve for 1, 3, and 5-year OS. C. ROC curve for 1, 3, and 5-year 
OS. D. RFS nomogram prediction model constructed based on the Meta4 cohort. E. Calibration curve for 1, 3, and 5-year RFS. F. ROC curve for 1, 3, and 
5-year RFS.
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Fig. 8 Comparison of the C-index between BGNFRS and the 92 published risk features
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promising potential in dynamically regulating cancer 
progression and influencing treatment outcomes [40]. 
CAFs, as the primary stromal component in the microen-
vironment [41], are potential targets for cancer therapy. 
However, most clinical trials targeting CAFs have yielded 
unexpected results, which may be attributed to their 
heterogeneity [6]. CAFs can undergo dynamic changes 
and even display contradictory biological functions as 
cancer progresses [6]. The specific roles of distinct CAF 
subtypes and their plasticity in interconversion remain 
largely unknown. Hence, we investigated CAF subpopu-
lations in CRC and subsequently provided targeted prog-
nosis assessment for precise CAF subtypes.

In this study, we observed that CAFs represent the pri-
mary cell population in direct communication with CRC 
cells and were systematically categorized. Subsequently, 
nine distinct CAF clusters (Fib_1–9) with different prop-
erties were identified. The study demonstrated that CAFs 

are not static but undergo dynamic changes during can-
cer development [42]. Currently, fibroblasts are com-
monly classified into three types, including MyFibroblasts 
CAF (myCAF), Immune regulatory/inflammatory CAF 
(iCAF), and Antigen presenting CAF (apCAF) [7]. Based 
on the surface markers and biological functional charac-
teristics of these nine fibroblast subtypes, Fib_1/2/3/6/8 
were classified as myCAF, while Fib_4/5/7/9 were classi-
fied as iCAF. Notably, Fib_3 exhibited the most substan-
tial increase in the tumor group compared to the normal 
group and was predominant in the tumor group, with 
its prevalence escalating with CRC progression, particu-
larly in TNM stage IV. Furthermore, time-series analysis 
revealed that Fib_3 is the terminal differentiation sub-
type of CAFs, suggesting its potential involvement in 
CRC advancement. To explore the key regulatory genes 
of Fib_3, a PPI network was constructed to obtain hub 
genes, and the BGN gene was ultimately identified as 

Fig. 9 Association of BGNFRS with epithelial-mesenchymal transition (EMT)
A. GSEA of the high-risk group of BGNFRS. B. Heatmap showing the correlation of BGNFRS risk score with hallmark pathways. C. Analysis of the correlation 
between BGNFRS risk score and EMT score. D. Spatial localization of EMT scores in two spatial tissue slices
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playing a crucial role in Fib_3. BGN, as a component of 
the extracellular matrix, primarily functions to maintain 
the structural integrity of the ECM [43]. Several studies 
have demonstrated a close association between the BGN 
gene and inflammation, with its overexpression observed 
in tumor tissues such as human pancreatic cancer and 
gastric cancer, where it plays crucial roles in tumor 
growth, adhesion, and invasion [44, 45]. A recent inves-
tigation highlighted the immunosuppressive nature of 
CAF-secreted BGN in triple-negative breast cancer [46]. 
Despite limited research on BGN in CRC currently, prior 
studies have shown a close correlation between BGN and 
CRC metastasis, EMT phenotype transition, and shorter 
survival time [47]. Notably, recent research has identified 
BGN derived from CAFs as a promising target for over-
coming immunotherapy resistance [48]. In this study, 
considering the significant expression of BGN in Fib_3, 
and the similarity of BGN’s biological characteristics to 
Fib_3, Fib_3 is defined as BGN + Fibroblast (BGN + Fib).

Several subtypes of fibroblasts have been identified to 
play different roles in CRC. Qi et al. demonstrated that 
disrupting the interaction between FAP-positive fibro-
blasts and SPP1-positive macrophages can improve the 
efficacy of immunotherapy [4]. Zheng et al. showed that 
COL11A1 and INHBA-positive fibroblasts are adverse 
prognostic factors in CRC patients [49]. In the research 
conducted by Peng et al., MFAP5-positive fibroblasts 
were observed to influence the malignant microenviron-
ment of CRC [50]. In our study, we identified BGN + Fib 
as an adverse prognostic factor for OS and RFS in CRC 
patients, which increased with the advancement of CRC 
stages (T, N, M, and stage). In vitro experiments revealed 
significantly higher expression of BGN in cancer-asso-
ciated fibroblasts (CAFs) compared to normal fibro-
blasts (NFs). BGN + Fib was prevalent in CRC tissues but 
scarcely detected in normal colon tissues. Furthermore, 
downregulation of BGN expression in CAFs significantly 
reduced the migration and proliferation of CRC cells. 
Consequently, BGN + Fib acts as a driver in CRC.

Based on the previous analysis, we speculate the feasi-
bility of constructing a CRC prognostic prediction model 
based on the relevant genes in BGN + Fib. CRC samples 
were stratified into high and low infiltration groups based 
on the median value of BGN + Fib infiltration. By utiliz-
ing WGCNA and machine learning, we ultimately con-
structed a BGN + Fib derived risk signature (BGNFRS) 
consisting of 17 risk-associated genes that exhibit stable 
prognostic prediction for CRC. Among these 17 genes, 
studies have shown that 15 genes are associated with 
CRC progression, including COMP, GPC1, POSTN, 
SLC2A3, CTHRC1, TNS1, INHBA, TIMP1, CAV1, 
AEBP1, CRYAB, THBS2, WNT5A, SPARCL1, and 
CALB2 [47, 51–63]. CPXM2 and CHPF have not been 
reported in CRC, but have been found to promote gastric 

cancer progression [64, 65]. The BGNFRS primarily orig-
inates from BGN + Fib and has been validated in spatial 
transcriptomic data. T, N, M, and stage are conventional 
tools for evaluating the prognosis and treatment of CRC 
patients [66]. Our BGNFRS was able to independently 
predict OS and RFS, surpassing the predictive capabil-
ity of these factors. We also compared BGNFRS with 92 
published CRC risk signatures and found that BGNFRS 
outperformed other risk signature based on the C-index. 
In order to improve the level of clinical application, we 
combined BGNFRS with different clinicopathological 
signature to build a nomogram prediction model. The 
nomogram prediction model showed good long-term 
prediction performance, and the prediction ability 
was significantly higher than other clinical prediction 
indicators.

BGNFRS may be involved in multiple signaling path-
ways that contribute to tumor initiation and progres-
sion, yet its potential role in CRC remains incompletely 
understood. Functional enrichment analysis revealed a 
high enrichment of the BGNFRS high-risk group in func-
tional clusters related to epithelial-mesenchymal transi-
tion (EMT). EMT is a process in which cells lose their 
epithelial characteristics and acquire mesenchymal prop-
erties, ultimately increasing their motility and promoting 
an invasive phenotype [38]. EMT is believed to play a key 
role in the progression of various cancers, including CRC, 
by facilitating invasion and metastasis [67]. This observa-
tion indicates that BGNFRS-associated risk genes could 
potentially be involved in CRC metastasis and invasion, 
underscoring their promise as novel biomarkers warrant-
ing further exploration.

The BGNFRS model is readily reproducible through 
straightforward PCR amplification techniques, enhanc-
ing its practicality and aiding in clinical implementation. 
Nevertheless, notwithstanding the favorable predic-
tive accuracy and potential clinical applicability of the 
BGNFRS model, it is essential to recognize its con-
straints. The retrieval keywords used in this study may 
not cover all signatures related to CRC risk, and have not 
included CRC risk-related signatures from other data-
bases. Therefore, comparing BGNFRS with other pub-
lished signatures is limited. Additionally, our data stem 
from retrospective analyses utilizing databases like GEO 
and TCGA, necessitating additional prospective investi-
gations or the utilization of clinical samples and animal 
models to corroborate our discoveries. Secondly, certain 
individual samples within public datasets lack complete 
clinical information, potentially leading to bias in the 
data analysis outcomes.
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Conclusion
In conclusion, the study results suggest that BGN + Fib 
plays a significant role in driving CRC. This discovery 
enhances our comprehension of the involvement of CAF 
subpopulations in CRC and offers novel perspectives on 
devising therapeutic approaches targeting BGN + Fib. The 
BGN + Fib-derived BGNFRS exhibits promising predic-
tive accuracy for both OS and RFS among CRC patients. 
This observation holds substantial importance for the 
management and prognostic evaluation of CRC.
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