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Abstract
Background Accurate microsatellite instability (MSI) testing is essential for identifying gastric cancer (GC) patients 
eligible for immunotherapy. We aimed to develop and validate a CT-based radiomics signature to predict MSI and 
immunotherapy outcomes in GC.

Methods This retrospective multicohort study included a total of 457 GC patients from two independent medical 
centers in China and The Cancer Imaging Archive (TCIA) databases. The primary cohort (n = 201, center 1, 2017–2022), 
was used for signature development via Least Absolute Shrinkage and Selection Operator (LASSO) and logistic 
regression analysis. Two independent immunotherapy cohorts, one from center 1 (n = 184, 2018–2021) and another 
from center 2 (n = 43, 2020–2021), were utilized to assess the signature’s association with immunotherapy response 
and survival. Diagnostic efficiency was evaluated using the area under the receiver operating characteristic curve 
(AUC), and survival outcomes were analyzed via the Kaplan-Meier method. The TCIA cohort (n = 29) was included to 
evaluate the immune infiltration landscape of the radiomics signature subgroups using both CT images and mRNA 
sequencing data.

Results Nine radiomics features were identified for signature development, exhibiting excellent discriminative 
performance in both the training (AUC: 0.851, 95%CI: 0.782, 0.919) and validation cohorts (AUC: 0.816, 95%CI: 0.706, 
0.926). The radscore, calculated using the signature, demonstrated strong predictive abilities for objective response in 
immunotherapy cohorts (AUC: 0.734, 95%CI: 0.662, 0.806; AUC: 0.724, 95%CI: 0.572, 0.877). Additionally, the radscore 
showed a significant association with PFS and OS, with GC patients with a low radscore experiencing a significant 
survival benefit from immunotherapy. Immune infiltration analysis revealed significantly higher levels of CD8 + T cells, 
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Background
Gastric cancer (GC) ranks as the fifth most prevalent 
cancer and the fourth leading cause of cancer-related 
death globally, contributing to approximately 770,000 
annual fatalities [1]. While surgical resection followed 
by adjuvant chemotherapy is established as an effective 
treatment for early-stage GC, a significant proportion of 
patients are diagnosed beyond this stage due to the dis-
ease’s insidious onset and rapid progression [2, 3]. Pallia-
tive chemotherapy serves as the mainstay treatment for 
unresectable or metastatic GC patients, yet its clinical 
benefits are very limited, resulting in a median survival 
time of less than one year [4, 5].

In recent years, tumor immunotherapy has made 
remarkable strides in both research and clinical prac-
tice, offering a promising treatment avenue for patients 
with unresectable or metastatic gastric cancer [4, 6, 7]. 
The combination of PD-1/PD-L1 inhibitors and chemo-
therapy has now become the standard first-line treatment 
for GC in major guidelines [8–10]. Unfortunately, due to 
the strong heterogeneity of gastric cancer, only a minor-
ity of GC patients respond to current immunotherapy 
treatment [11]. Thus, there is an urgent need to identify 
reliable biomarkers for screening GC patients likely to 
benefit from immunotherapy.

Microsatellite instability (MSI) stands out as the first 
pan-cancer immune biomarker approved by the Food 
and Drug Administration (FDA), with solid tumors 
exhibiting MSI-high (MSI-H) recommended for immu-
notherapy [12, 13]. The MSI-H phenotype generates 
numerous immunogenic neoantigens detected by the 
immune system, rendering MSI status a valuable clinical 
biomarker for checkpoint immunotherapy [14]. Presently, 
MSI status assessment primarily relies on immunohisto-
chemistry or polymerase chain reaction (PCR) analysis of 
specimens obtained through endoscopic biopsy or surgi-
cal resection [15]. However, information on MSI expres-
sion status obtained postoperatively has limited impact 
on treatment planning prior to surgery. Moreover, the 
limited samples obtained through biopsy may not com-
prehensively reflect tumor heterogeneity, leading to false-
negative results (2.1–5.9%) [16, 17]. Additionally, biopsies 
and surgeries are invasive, time-consuming, expensive, 
and carry risks of complications, making repeated 

monitoring inconvenient [17]. Hence, there is an urgent 
need to develop a non-invasive, reliable, and cost-effec-
tive method to identify MSI status.

Radiomics is a rapidly advancing field that utilizes 
advanced computational techniques to transform medi-
cal images, such as CT and MRI, into quantitative fea-
tures, enabling the development of a signature for cancer 
diagnosis and treatment [18, 19]. While several stud-
ies have demonstrated the potential and significance of 
radiomics in evaluating the MSI status of gastric cancer, 
these investigations have not thoroughly delved into the 
clinical value of their radiomics models within cohorts 
of patients undergoing immunotherapy [20–22]. Spe-
cifically, there is a lack of comprehensive validation 
regarding the efficacy of radiomics models in predicting 
immunotherapy outcomes. Moreover, the aforemen-
tioned studies did not delve into the potential biological 
value of radiomics models from the perspectives of the 
immune microenvironment and transcriptome.

Therefore, this study aims to fill the gaps in the cur-
rent research landscape by establishing a non-invasive 
radiomics biomarker. This biomarker will not only iden-
tify MSI status, but will also undergo further validation 
in cohorts of patients undergoing immunotherapy, which 
will offer a comprehensive understanding of its practical 
feasibility. Moreover, we will analyze the immune micro-
environment features of patients stratified into different 
radscore groups based on transcriptomic data, providing 
a deeper understanding of the predictive mechanisms of 
the radiomics model.

Materials and methods
Patients
The study received approval from the local Ethics Com-
mittee (2022-KY-1447-002) in accordance with the 
Declaration of Helsinki. Written informed consent was 
waived by the Human Scientific Ethics Committee of the 
First Affiliated Hospital of Zhengzhou University due to 
the retrospective design of the study.

Patient selection process is depicted in Fig.  1. To 
develop the radiomics signature associated with MSI 
status, the study retrospectively enrolled 201 consecu-
tive gastric cancer (GC) patients from Center 1 (the First 
Affiliated Hospital of Zhengzhou University, 2017–2022). 

activated CD4 + B cells, and TNFRSF18 expression in the low radscore group, while the high radscore group exhibited 
higher levels of T cells regulatory and HHLA2 expression.

Conclusion This study developed a robust radiomics signature with the potential to serve as a non-invasive 
biomarker for GC’s MSI status and immunotherapy response, demonstrating notable links to post-immunotherapy PFS 
and OS. Additionally, distinct immune profiles were observed between low and high radscore groups, highlighting 
their potential clinical implications.
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MSI status was determined using PCR detection. The pri-
mary cohort was randomly divided into a training cohort 
(n = 142) and a validation cohort (n = 59) at a 7:3 ratio. In 
addition, two independent immunotherapy cohorts were 
employed to investigate the association of the radiomics 
signature with immunotherapy response and validate 
its prognostic value. The first cohort, ZZU cohort, com-
prised 184 GC patients treated at Center 1 between 2018 
and 2021. The second cohort, SDU cohort, included 43 
GC patients treated between 2020 and 2021 at Center 2 
(the Second Hospital of Shandong University). Further-
more, one GC cohort (n = 29) from The Cancer Genome 
Atlas (TCGA) and The Cancer Imaging Archive (TCIA) 
databases was included in the study to further evaluate 
the immune infiltration landscape across different sub-
groups of the radiomics signature. Supplementary A out-
lines the inclusion and exclusion criteria for all cohorts, 
and Supplementary B provides information on the immu-
notherapy regimens used in the immunotherapy cohorts.

Detection of MSI status
MSI status was determined by performing PCR test-
ing on tumor tissue obtained from surgical resection or 
biopsy. Five Bethesda microsatellite markers (BAT25, 
BAT26, D2S123, D5S346, and D17S250) were utilized to 
assess MSI status. Tumors with instability at two or more 
of these five markers were classified as MSI-H, while 
those without instability or with instability at only one 
marker were classified as MSS or MSI-L. In this study, 
we grouped tumors with MSI-L and MSS together as the 
MSS group due to their similar clinical significance.

CT acquisition and radiologic evaluation
CT scan parameters are detailed in Supplementary C. 
A consensus review of all images was conducted by two 
radiologists, LL and LP, who evaluated the clinical T 
stage and clinical N stage of each patient based on the 
AJCC version 8 TNM staging system. LL had 5 years of 

experience in abdominal CT imaging, while LP had 10 
years of experience. Any discrepancies in radiologic eval-
uation were resolved through discussion and consulta-
tion with a third senior radiologist, GJ, who had over 20 
years of experience in abdominal CT imaging. The radi-
ologists were blinded to clinical information during the 
evaluation process.

ROI segmentation and feature extraction
Portal venous phase CT images of all patients were ana-
lyzed using the open-source software 3D Slicer (version 
4.13.0; https://www.slicer.org/). Manual ROI segmen-
tations were performed by outlining the tumor lesion’s 
margin on the largest slice. To ensure intra-observer 
reliability, ZP performed the ROI segmentation and 
feature extraction process twice within a week for CT 
images of 50 randomly selected patients. For inter-
observer reliability assessment, two radiologists, ZP and 
YS, independently conducted ROI segmentation and 
feature extraction on medical images of the same 50 
patients. ZP completed the remaining ROI segmentation 
independently.

To minimize the influence of different scanning 
schemes or equipment on quantitative radiomics fea-
tures, the ROI segmented images were resampled to 
a voxel size of 1 × 1 × 1 mm3 and discretized using a bin 
width of 25 for gray level discretization [19]. A total of 
851 radiomics features were extracted from each ROI 
segmented image. Following feature extraction, all 
radiomics features underwent standardized using the 
z-score for subsequent analysis.

Feature selection, model construction and evaluation
All 851 radiomics features were analyzed further based 
on the training cohort. To reduce the dimensional-
ity of radiomics features and identify robust predic-
tors of MSI status, we utilized a meticulous three-step 
procedure. Firstly, we calculated the inter-observer and 

Fig. 1 Patient flowchart for this study. MSI = microsatellite instability, GC = gastric cancer, PCR = polymerase chain reaction
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intra-observer correlation coefficients (ICCs) for each 
feature and retained those with ICCs greater than 0.8 for 
further analysis. Secondly, a multivariate ranking method 
called maximum relevance minimum redundancy 
(mRMR) algorithm was applied to eliminate redundant 
and irrelevant features on the basis of a heuristic scor-
ing criterion, and only the top ranked 200 features were 
retained. Lastly, the least absolute shrinkage and selec-
tion operator (LASSO) logistic regression algorithm was 
performed to choose the most valuable subset of features 
from the top ranked 200 features. The regular parameter 
(λ) of LASSO regression was chosen when the average 
mean square error was minimal by 10-fold cross-valida-
tion. Moreover, the most valuable subset of features was 
utilized to create the radiomics signature in the training 
cohort.

Clinical risk factors associated with MSI status were 
identified through univariate analysis with a significance 
threshold of p < 0.05. Based on the clinical risk factors 
and radiomics signature, we developed three models 
through multivariable logistic regression: the clinical 
model, the radiomics model, and the combined model. 
Discrimination performance was assessed by calculat-
ing the area under the receiver operating characteristic 
curve (AUC), and the results were compared using the 
non-parametric Delong test. The predictive accuracy of 
the radiomics signature was further evaluated in both 
the training and validation cohorts using calibration 
curves and the Hosmer-Lemeshow test. Furthermore, a 
nested 5-fold cross-validation approach was conducted 
on the selected radiomics features using logistic regres-
sion to further assess the performance of the radiomics 
signature. In the outer 5-fold cross-validation loop, we 
divided the data into training (4-folds) and test (1-fold) 
datasets to evaluate the performance of the models with 
an untouched test set. In each training step of the outer 
fold, an inner 10-fold cross-validation was applied using 
all the selected radiomics features to tune the hyperpa-
rameters and select the optimal logistic regression model. 
The nested 5-fold cross-validation process was repeated 5 
times to ensure the robustness of our evaluation results.

Association between radiomics signature and 
immunotherapy outcomes
Patients’ immunotherapy responses were categorized 
into four groups according to the RECIST 1.1 guidelines: 
complete response (CR), partial response (PR), stable 
disease (SD), or progressive disease (PD). The immu-
notherapy cohort patients were then grouped into two 
categories based on their treatment response: the CR/
PR group and the PD/SD group. The radiomics signa-
ture calculated a radscore for each patient in the immu-
notherapy cohorts, and its ability to predict a CR or PR 
response to immunotherapy was evaluated using AUC 

value. Additionally, the prognostic significance of the 
radiomics signature was evaluated through Kaplan-Meier 
survival curves and log-rank tests. Progression-free sur-
vival (PFS) was defined as the time from the initiation of 
immunotherapy to disease progression, while overall sur-
vival (OS) was defined as the duration from the initiation 
of immunotherapy to disease-related death or the last 
follow-up date.

Immune infiltration assessment
In the TCIA cohort, patients were categorized into a high 
radscore group (≥ the median) and a low radscore group 
(< the median). Utilizing mRNA sequencing data, the 
CIBERSORT algorithm estimated the abundance of 22 
immune cell in the tumor immune micro-environment 
(TME). Furthermore, we assessed differences between 
the two groups concerning MSI status and immune-
regulating factors, including co-stimulators, co-inhibi-
tors, and other relevant factors. Immune regulators are 
known to play a crucial role in modulating the function 
of immune cells, exerting either anti-tumor or pro-tumor 
effects.

Statistical analysis
Statistical analyses were conducted using R software (ver-
sion 4.2.2, https://www.r-project.org/). Continuous vari-
ables, if normally distributed, were reported as mean  ±  
standard deviation; otherwise, they were expressed as 
median (lower quartile, upper quartile). Fisher’s exact 
tests were applied to categorical variables, while appro-
priate tests such as Student’s t-test or Mann-Whitney 
U test were used for continuous variables. ICC analy-
sis, mRMR algorithm, and LASSO regression analysis 
were conducted using the “irr”, “mRMRe”, and “glmnet” 
packages, respectively. Receiver operating characteris-
tic (ROC) curves were generated using the “pROC” and 
“ggplot2” packages. The nested 5-fold cross-validation 
was performed by applying “nestedcv” package. The 
prognostic value of the radiomics signature was assessed 
using Kaplan-Meier survival curves and log-rank tests. 
The “survminer” package was used to plot the survival 
curves, and the “IOBR” package [23] was conducted for 
immune infiltration analysis. The MSI status in the TCIA 
cohort was obtained using the “cBioPortalData” package, 
and a threshold of 0.4 was applied to distinguish between 
MSI and MSS [24, 25]. Statistical significance was defined 
as a p-value of less than 0.05.

Results
Patient characteristics
A total of 457 GC patients were enrolled in this study. 
Demographic and clinical characteristics of the training 
cohort (n = 142) and validation cohort (n = 59) are sum-
marized in Table  1. Within the patient population, 149 

https://www.r-project.org/


Page 5 of 14Zhan et al. BMC Cancer          (2024) 24:404 

were male, 77 were aged 65 years or older, and the MSI-H 
positivity rate was 22.4%.

Clinical characteristics of the two immunotherapy 
cohorts are presented in Table 2. In the ZZU cohort, 132 
patients were included, with 71.7% being male and 38.0% 
aged 65 years or older. Among these patients, 64 (34.8%) 
achieved CR or PR with immunotherapy, with median 
PFS and OS of 5.8 (2.9, 10.7) months and 10.8 (6.0, 16.2) 
months, respectively. The SDU cohort comprised 43 
patients, with 81.4% being male, and none were aged 65 
years or older. Among these patients, 18 (41.9%) achieved 
CR or PR with immunotherapy, and the median PFS and 
OS were 5.8 (3.7, 7.9) months and 9.5 (7.2, 14.3) months, 
respectively.

Baseline data for the TCIA cohort (n = 29) is provided 
in Supplementary TableE1. This cohort consisted of 29 
patients, with 85.7% being male and 78.6% aged 60 years 
or older. The median radscore in this cohort was 1.45 
(0.87, 1.84), and 14 (48.3%) patients were classified into 
the low radscore group.

Development and validation of the radiomics signature
Significant associations between tumor location and 
MSI-H expression were identified in both the training 
(p = 0.007) and validation cohorts (p = 0.015) through uni-
variate analysis of clinical factors. To enhance robustness 
and eliminate redundancy, ICC analysis and the mRMR 
algorithm were employed to eliminate radiomics fea-
tures. Subsequently, a 10-fold cross-validation LASSO 
algorithm (Fig.  2) was applied to develop a radiomics 
signature, comprising nine features. Supplementary 
Table E2 provides the coefficients of each feature in the 
radiomics signature. Clinical and radiomics models were 
independently created based on tumor location and 
radiomics signature. The combined model was developed 
by integrating tumor location and radiomics signature 
using multivariate logistic regression (Table 3). Detailed 
explanations for the three logistic regression models are 
presented in Supplementary Results.

Table  4 presents the diagnostic performance indica-
tors, including accuracy, sensitivity, and specificity of the 
three models in both the training and validation cohorts. 

Table 1 Characteristics of patients used to evaluate MSI status
Training cohort (n = 142) Validation cohort (n = 59)

Characteristic MSI-H MSS p value MSI-H MSS p value
Age (years) 1 0.738
 < 65 19 (59.37) 65 (59.09) 8 (61.54) 32 (69.57)
 ≥ 65 13 (40.63) 45 (40.91) 5 (38.46) 14 (30.43)
Sex 0.644 0.037
 Male 23 (71.88) 84 (76.36) 6 (46.15) 36 (78.26)
 Female 9 (28.12) 26 (23.64) 7 (53.85) 10 (21.74)
Location 0.007 0.015
 Cardia 5 (15.63) 40 (36.36) 1 (7.69) 18 (39.13)
 Body 6 (18.75) 34 (30.91) 4 (30.77) 19 (41.31)
 Antrum 20 (62.50) 32 (29.09) 7 (53.85) 8 (17.39)
 Whole 1 (3.12) 4 (3.64) 1 (7.69) 1 (2.17)
Clinical T stage 0.013 0.762
 T3 13 (40.63) 73 (66.36) 7 (53.85) 27 (58.70)
 T4 19 (59.37) 37 (33.64) 6 (46.15) 19 (41.30)
Clinical N stage 0.062 0.113
 N- 17 (53.13) 37 (33.64) 10 (76.92) 22 (47.83)
 N+ 15 (46.87) 73 (66.36) 3 (23.08) 24 (52.17)
CA 72−4 level 0.290 0.187
 Normal 24 (75.00) 93 (84.55) 7 (53.85) 34 (73.91)
 Abnormal 8 (25.00) 17 (15.45) 6 (46.15) 12 (26.09)
CA 19−9 level 0.605 0.357
 Normal 25 (78.13) 91 (82.73) 10 (76.92) 41 (89.13)
 Abnormal 7 (21.87) 19 (17.27) 3 (23.08) 5 (10.87)
CEA level 0.443 1.00
 Normal 25 (78.13) 92 (83.64) 11 (84.62) 40 (86.96)
 Abnormal 7 (21.87) 18 (16.36) 2 (15.38) 6 (13.04)
 Radiomics score * 0.91 (0.50, 1.22) 1.53 (1.22, 1.87) < 0.001 0.85 (0.43, 1.12) 1.49 (0.94, 1.67) < 0.001
Note: Except where indicated, data are number (%) of patients. MSI-H = microsatellite instability-high, MSS = microsatellite stability, CA 72 − 4 = carbohydrate antigen 
72 − 4, CA 19 − 9 = carbohydrate antigen 19 − 9, CEA = carcinoembryonic antigen

* Data in parentheses are interquartile range
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ROC curves for MSI-H positive expression are shown in 
Fig. 3a and b, and the results of the Delong test are pre-
sented in Supplementary Table E3. The analysis dem-
onstrated that the radiomics signature exhibited good 
predictive ability, with an AUC value of 0.851 (95% CI: 
0.782, 0.919) in the training cohort and an AUC value of 
0.816 (95% CI: 0.706, 0.926) in the validation cohort. Cal-
ibration curves (Fig.  3c and d) demonstrated good con-
sistency between the actual and predicted probabilities of 
the radiomics signature, and the Hosmer-Lemeshow test 
indicated a good model fit (p > 0.05). The radscore of the 
MSI-H group calculated by the radiomics signature was 
significantly lower than that of the MSS group in both the 
training (median: 0.91 (0.50, 1.22) vs. 1.53 (1.22, 1.87)) 
and validation cohorts (median: 0.85 (0.43, 1.12) vs. 1.49 
(0.94, 1.67)), as shown in Fig. 3e and f (p < 0.001). Finally, 
the results of the nested 5-fold cross-validation (Supple-
mentary Results) indicated that the radiomics signature’s 
performance remained reliable.

Clinical prognostic validation of radiomics signature in 
immunotherapy
The ZZU cohort exhibited a significant lower radscore 
(median: 1.06 (0.69, 1.35)) in the CR/PR group com-
pared to the PD/SD group (median: 1.47 (1.18, 1.87)) 
(p < 0.001). The AUC value for predicting CR/PR after 
immunotherapy was 0.734 (95% CI: 0.662, 0.806). Simi-
larly, in the SDU cohort, the CR/PR group demonstrated 
a significantly lower radscore (median: 1.02 (0.03, 1.34)) 
compared to the PD/SD group (median: 1.42 (1.00, 1.93)) 
(p = 0.012). The AUC value for predicting CR/PR after 
immunotherapy in this cohort was 0.724 (95% CI: 0.572, 
0.877). The results are presented in Fig. 4a-d.

Furthermore, the results from the ZZU and SDU 
cohorts revealed that patients in the low radscore group 
had a significantly longer median PFS of 8.3 months (4.6, 
12.8) and 7.4 months (4.9, 8.0) and a longer median OS 
of 14.0 months (10.4, 18.7) and 12.2 months (9.0, 21.2), 
respectively, compared to those in the high radscore 
group. The high radscore group had a median PFS of 4.6 

Table 2 Characteristics for immunotherapy cohorts
ZZU cohort (n = 184) SDU cohort (n = 43)

Characteristic CR + PR SD + PD p value CR + PR SD + PD p value
Age (years) 0.874  > 0.999
 < 65 39 (60.94) 75 (62.50) 18 (100) 25 (100)
≥ 65 25 (39.06) 45 (37.50) 0 (0) 0 (0)
Sex 0.308 0.701
 Male 49 (76.56) 83 (69.17) 14 (77.78) 21 (84.00)
 Female 15 (23.44) 37 (30.83) 4 (22.22) 4 (16.00)
Location 0.189 0.624
 Cardia 39 (60.94) 54 (45.00) 6 (33.33) 12 (48.00)
 Body 12 (18.75) 33 (27.50) 5 (27.78) 7 (28.00)
 Antrum 13 (20.31) 31 (25.83) 6 (33.33) 4 (16.00)
 Whole 0 (0.00) 2 (1.67) 1 (5.6) 2 (8.00)
Clinical T stage 0.366 > 0.999
 T3 18 (28.12) 26 (21.67) 0 (0) 0 (0)
 T4 46 (71.88) 94 (78.33) 18 (100) 25 (100)
Clinical N stage 0.457 0.253
 N- 16 (25.00) 24 (20.00) 0 (0) 3 (12.00)
 N+ 48 (75.00) 96 (80.00) 18 (100) 22 (88.00)
CA 72−4 level 0.872 > 0.999
 Normal 21 (32.81) 41 (34.17) 4 (22.22) 5 (20.00)
 Abnormal 43 (67.19) 79 (65.83) 14 (77.78) 20 (80.00)
CA 19−9 level 0.498 0.765
 Normal 16 (25.00) 36 (30.00) 7 (38.89) 11 (44.00)
 Abnormal 48 (75.00) 84 (70.00) 11 (61.11) 14 (56.00)
CEA level 0.640 0.099
 Normal 28 (43.75) 48 (40.00) 15 (83.33) 14 (56.00)
 Abnormal 36 (56.25) 72 (60.00) 3 (16.67) 11 (44.00)
Radiomics score * 1.06 (0.69, 1.35) 1.47 (1.18, 1.87) < 0.001 1.02 (0.03, 1.34) 1.42 (1.00, 1.93) 0.012
Note: Except where indicated, data are number (%) of patients. MSI-H = microsatellite instability-high, MSS = microsatellite stability, CA 72 − 4 = carbohydrate antigen 
72 − 4, CA 19 − 9 = carbohydrate antigen 19 − 9, CEA = carcinoembryonic antigen, PFS = Progression-free survival, OS = Overall survival

* Data in parentheses are interquartile range



Page 7 of 14Zhan et al. BMC Cancer          (2024) 24:404 

months (2.4, 8.7) and 4.9 months (3.2, 6.9) and a median 
OS of 7.7 months (5.3, 12.7) and 6.9 months (6.2, 8.0).

The results of Kaplan-Meier analysis revealed a sig-
nificant association between the radiomics signature 
and both PFS (HR: 1.59 (95% CI: 1.12, 2.27), p = 0.009) 

and OS (HR: 2.00 (95% CI: 1.34, 2.98), p < 0.001) in the 
ZZU cohort (Fig. 4e and f ). Similarly, in the SDU cohort 
(Fig.  4g and h), the radiomics signature was signifi-
cantly associated with both PFS (HR: 3.12 (95% CI: 1.31, 
7.40), p = 0.003) and OS (HR: 2.51 (95% CI: 0.86, 7.35), 
p = 0.025). Importantly, patients in the low radscore 
group, predicted by the radiomics signature, experienced 
a significantly longer median PFS and OS compared to 
those in the high radscore group. These findings indicate 
that the radiomics signature can serve as a useful tool in 
predicting the survival benefit of immunotherapy in GC.

Immune infiltration in the high and low radscore groups
The immune infiltration landscape of both groups is 
depicted in Fig.  5. The results indicated an activated 
immune microenvironment in the low radscore group 
but a potentially immunosuppressive state in the high 
radscore group. Specifically, the low radscore group 
demonstrated significantly higher CD8 + T cell levels 
compared to the high radscore group (Fig. 6a). Although 
memory resting CD4 + B cells were lower, activated 
CD4 + B cells were significantly higher in the low versus 
high radscore group (Fig.  6a). Moreover, regulatory T 
cells (Tregs) were increased in the high radscore group 
compared to the low group (Fig.  6a). Additionally, the 
proportion of microsatellite instability (MSI) was nota-
bly higher in the low radscore group (Fig. 6b), along with 
increased TNFRSF18 expression (Fig.  6c). Meanwhile, 
HHLA2 expression was significantly elevated in the high 
versus low radscore group (Fig. 6d).

Table 3 Multivariable logistic regression analysis of predictors 
for MSI status
Characteristic (reference level) Odds Ratio 95% CI p value
Location (Cardia)
 Body 1.52 0.34–7.17 0.581
 Antrum 3.60 1.06–14.45 0.051
 Whole 0.33 0.01–8.20 0.560
Radiomics signature 0.08 0.02–0.22 < 0.001
Note: Data in parentheses are reference level. MSI = microsatellite instability, 
CI = confidence intervals

Table 4 The specific performances of models for evaluate MSI 
status
Model Cohort AUC Accuracy Sensitivity Specificity
Clinical Training 0.681 

(0.581, 
0.781)

0.690 0.709 0.625

Validation 0.753 
(0.613, 
0.893)

0.763 0.804 0.615

Ra-
diomics 
signa-
ture

Training 0.851 
(0.782, 
0.919)

0.683 0.938 0.609

Validation 0.816 
(0.706, 
0.926)

0.695 1 0.608

Com-
bined

Training 0.875 
(0.815, 
0.935)

0.704 1 0.618

Validation 0.799 
(0.659, 
0.940)

0.780 0.804 0.692

Note: Data in parentheses are 95% CI. MSI = microsatellite instability, AUC = area 
under the receiver operating characteristic curve, CI = confidence intervals

Fig. 2 Radiomics feature selection by using the least absolute shrinkage 
and selection operator (LASSO) logistic regression. (a) The selection of tun-
ing parameter (λ) in the LASSO model used 10-fold cross-validation via 
minimum criteria. The AUC curve was plotted versus log (λ). (b) LASSO 
coefficient profiles of the radiomics features. A vertical line was plotted at 
the optimal λ value, which resulted in 9 features with nonzero coefficients
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Discussion
The detection of MSI status is crucial to guide immuno-
therapy for GC patients, with MSI-H as a predictive bio-
marker [12]. We developed and validated a non-invasive 
radiomics signature with good performance to predict 
MSI-H in GC. Importantly, our investigation revealed an 
association between the signature and immunotherapy 

response and outcomes in multi-center cohorts. Addi-
tionally, findings exhibited an activated immune micro-
environment in the low radscore group, while the high 
radscore group showed immunosuppression. This under-
scores the biological significance of our signature in pre-
dicting immunotherapy efficacy.

Fig. 3 Receiver operating characteristic curves (ROC) for different models in the training (a), and validation cohorts (b); Calibration curves for the ra-
diomics signature in the training (c), and validation cohorts (d); Radscore of different subtypes in the training (e), and validation cohorts (f). MSI-H = mic-
rosatellite instability-high, MSS = microsatellite stable
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Fig. 4 Receiver operating characteristic curves (ROC) illustrating the predictive performance of the radiomics signature for immunotherapy response in 
the ZZU (a) and SDU cohorts (b). Radscore distribution for different immunotherapy responses in the ZZU (c) and SDU cohorts (d). Kaplan-Meier analysis 
of progression-free survival (PFS) and overall survival (OS) based on distinct radscore groups in the immunotherapy cohorts: (e) PFS stratified by radscore 
groups in the ZZU cohort; (f) OS stratified by radscore groups in the ZZU cohort; (g) PFS stratified by radscore groups in the SDU cohort; (h) OS stratified 
by radscore groups in the SDU cohort. CR = complete response, PR = partial response, SD = stable disease, PD = progressive disease
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The prevalence of MSI-H in GC has been reported to 
vary from 5.6 to 33.3% in previous studies, possibly due 
to differences in detection methods. In this study, we 
used PCR as the gold standard for detecting MSI-H and 
observed an incidence rate of 22.4% in our study popu-
lation. Compared to the deficient DNA mismatch repair 
(MMR) immunohistochemistry (IHC) method com-
monly used in most studies, PCR can more accurately 
reflect the MSI status. Furthermore, the IHC method is 
highly dependent on sample quality, and samples may 
gradually lose nucleic acids or proteins over time, leading 
to decreased detection accuracy [26].

Previous studies have demonstrated that certain clini-
cal characteristics, such as age, gender, and tumor loca-
tion, are significantly correlated with GC MSI [27]. A 
recent meta-analysis [28] found that women have a sig-
nificantly higher probability of exhibiting MSI than men 
(OR 1.57, 95% CI: 1.31 to 1.89; p < 0.001), and that MSI 
is significantly associated with those aged 65 years and 
older (OR 1.58, 95% CI: 1.13 to 2.20; p < 0.001) and upper 
GC location (OR 0.38, 95% CI: 0.32 to 0.44; p < 0.001). 
In this study, MSI-H expression was notably correlated 
with tumor location, consistent with previous research. 
The pathogenesis of GC varies depending on its loca-
tion, leading to distinct expressions of phenotype mark-
ers, biological behaviors, and gene expression profiles 

[29, 30]. This may be the biological basis for the higher 
expression of MSI-H in gastric antrum cancer. However, 
age and gender did not demonstrate significant correla-
tions with MSI, possibly due to a limited sample size and 
data bias. Moreover, MSI exhibited notable correlations 
with Lauren classification (intestinal subtype), TNM 
stage, and other pathological features [31]. However, as 
the aim of this study was to establish a pre-treatment 
non-invasive prediction model, these factors were not 
taken into consideration.

In addition to clinical and pathological features, sev-
eral studies have indicated that CT characteristics may 
hold value as predictors of MSI status. A retrospective 
study of 77 patients revealed that dMMR GC typically 
displays a lower stomach location, smaller tumor thick-
ness and lymph node diameter, and fewer lymph nodes 
on CT imaging [32]. Another study conducted by Wu 
et al., which analyzed clinical and pathological informa-
tion from 114 patients with colorectal cancer, showed 
that multi-parameter analysis derived from single-source 
dual-energy CT can relatively accurately distinguish 
between MSI and MSS in colorectal cancer [33]. Never-
theless, further large-scale studies are necessary to vali-
date these findings.

Radiomics holds significant promise in predicting 
the MSI status of tumors [34–36]. While the precise 

Fig. 5 The heatmap of the clinical- and immune-related molecular landscape. From the top to the end, there are five categories, encompassing clinical 
characteristics, immune cells, B7-CD28, TNF superfamily, and other immune-related molecular landscapes
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mechanisms through which radiomics predicts MSI sta-
tus remain incompletely elucidated, it is hypothesized 
that radiomics can capture tumor heterogeneity and 
forecast genetic alterations [15, 26]. Although previous 
radiomics investigations have predominantly centered 
on colorectal cancer, limited research has addressed pre-
dicting MSI status in GC. For instance, Zhao et al. con-
structed a clinical-radiomics combined model capable 
of predicting GC’s MSI status, yielding an AUC of 0.836 
(95% CI: 0.780–0.893) in the training cohort and 0.834 
(95% CI: 0.688–0.981) in the externally validated cohort 
[21]. Similarly, Liang et al. presented a radiomics model 
with AUC values of 0.823 (95% CI: 0.736–0.910) and 
0.760 (95% CI: 0.663–0.858) in the training and external 

validation cohorts, respectively [22]. However, they did 
not further confirm its clinical value in immunotherapy 
effectiveness and prognosis, nor did they deeply investi-
gate its biological mechanisms.

In this study, we utilized the LASSO algorithm to 
construct a radiomics signature associated with MSI-H 
expression in GC. The top-ranking features, determined 
by their coefficient weights, include original_glcm_MCC, 
original_gldm_Large Dependence Low Gray Level 
Emphasis, and wavelet.LHL_glszm_Large Area High 
Gray Level Emphasis. These features offer insights into 
image texture complexity (MCC), gray level distribution 
(Large Dependence Low Gray Level Emphasis), and gray 
heterogeneity (Large Area High Gray Level Emphasis). 

Fig. 6 Immune cell infiltration (a), proportion of microsatellite instability (MSI) status (b), expression status of TNFRSF18 (c) and expression status of 
HHLA2 (d) in different radscore groups
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The findings indicated that MSI-H gastric cancer 
potentially exhibits a more intricate texture structure, 
decreased gray heterogeneity, and a more uniform gray 
level distribution. Furthermore, our results demonstrated 
that the signature displayed promising performance, with 
an AUC of 0.851 (95% CI: 0.782, 0.919) in the training 
cohort and 0.816 (95% CI: 0.706, 0.926) in the validation 
cohort. These AUC values surpassed those reported in 
previous studies, underscoring the potential clinical util-
ity of our signature.

Moreover, this study extended its investigation to assess 
the radiomics signature’s predictive capacity for immuno-
therapy efficacy and prognosis. Notably, patients with a 
low radscore demonstrated a higher likelihood of achiev-
ing CR/PR following immunotherapy. The radiomics 
signature exhibited predictive AUC values of 0.734 (95% 
CI: 0.662, 0.806) and 0.724 (95% CI: 0.572, 0.877) for CR/
PR in the ZZU and SDU cohorts, respectively. Impor-
tantly, patients identified as low radscore through the 
radiomics signature displayed notably extended median 
progression-free survival (PFS) and overall survival (OS) 
compared to those in the high radscore group, suggest-
ing its potential role in anticipating the survival ben-
efits of immunotherapy in GC. Significant parallels can 
be drawn from Huang et al.‘s extensive multi-cohort 
GC study [37], which established a CT-based radiomics 
score (RS) using 2272 patients. This study explored the 
correlation between the radiomics biomarker and the 
neutrophil-to-lymphocyte ratio (NLR) within the tumor 
immune microenvironment, including its link to prog-
nosis and immunotherapy response in advanced GC. 
Huang et al. found that patients with lower RS (60.9% and 
42.9%) exhibited substantially higher objective responses 
to anti-PD-1 immunotherapy compared to those in the 
higher RS group (8.1% and 14.3%). Moreover, Sun et al. 
integrated various solid tumor patient cohorts and devel-
oped an independently validated radiomics biomarker for 
tumour-infiltrating CD8 cells [38]. They demonstrated 
its correlation with the tumor immune phenotype and 
its predictive potential for clinical outcomes in patients 
undergoing immunotherapy. These studies collectively 
underscore the micro-level role of radiomics features in 
predicting immunotherapy outcomes through the dis-
crimination of the tumor immune microenvironment.

Considering this, the study conducted further analy-
sis in the TCIA cohort to investigate the MSI expression 
status and immune infiltration in the two subgroups. 
The results consistently demonstrated a significantly 
higher proportion of MSI in the low radscore group, 
providing additional evidence for the strong correla-
tion between the radiomics signature and MSI status. 
Notably, the immune infiltration analysis revealed com-
pelling findings. The low radscore group exhibited sig-
nificantly elevated levels of CD8 + T cells and CD4 + B 

cells activated compared to the high radscore group, 
indicating enhanced activation and functionality of these 
effector immune cells. On the other hand, the high rad-
score group showed notably higher levels of CD4 + B 
cells memory resting and Tregs compared to the low 
radscore group, suggesting a more immunosuppressive 
microenvironment with increased regulatory T cell pres-
ence. Furthermore, the low radscore group displayed sig-
nificantly higher TNFRSF18 expression, while the high 
radscore group exhibited significantly elevated levels of 
HHLA2. TNFRSF18 is involved in immune activation, 
promoting T cell proliferation and enhancing anti-tumor 
immune responses, while HHLA2 plays a role in immune 
checkpoint regulation, suppressing T cell activation and 
contributing to immune evasion in the tumor microen-
vironment. Collectively, these comprehensive results 
provide further insights into the immune landscape asso-
ciated with the radiomics signature. The observed acti-
vated immune microenvironment in the low radscore 
group and the immunosuppressive state in the high rad-
score group contribute to a better understanding of the 
underlying biological significance of the radiomics signa-
ture in predicting immunotherapy outcomes.

Our study has some limitations that need to be con-
sidered. Firstly, this is a retrospective study, which may 
inevitably lead to some selection bias in the collected 
information. Secondly, in the current study, we exclu-
sively employed the median as the grouping thresh-
old. Depending solely on a singular threshold, like the 
median, for patient stratification as a biomarker might 
prove insufficient to accommodate the intricacies of clin-
ical practice [39]. Thirdly, the methods for assessing MSI 
status differed between the cohort from Center 1 and the 
TCIA cohort. In addition, despite being a multicohort 
study, this research had a relatively small sample size and 
relied on publicly available databases. Future prospective 
multi-center studies with larger sample sizes are war-
ranted to further validate the findings of this study.

In conclusion, our study developed a novel radiomics 
signature for predicting MSI-H expression in GC 
patients, guiding immunotherapy and predicting clinical 
outcomes. The radiomics signature also unveiled distinct 
immune profiles between low and high radscore groups, 
underscoring their clinical relevance. These findings 
emphasize the potential of radiomics analysis as a non-
invasive tool for tumor characterization and personalized 
treatment selection in GC, warranting further validation 
in diverse populations and clinical settings to establish its 
clinical implications.
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