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Abstract 

Background The development of drug resistance is a major cause of cancer therapy failures. To inhibit drug resist‑
ance, multiple drugs are often treated together as a combinatorial therapy. In particular, synergistic drug combina‑
tions, which kill cancer cells at a lower concentration, guarantee a better prognosis and fewer side effects in cancer 
patients. Many studies have sought out synergistic combinations by small‑scale function‑based targeted growth 
assays or large‑scale nontargeted growth assays, but their discoveries are always challenging due to technical prob‑
lems such as a large number of possible test combinations.

Methods To address this issue, we carried out a medium‑scale optical drug synergy screening in a non‑small cell 
lung cancer cell line and further investigated individual drug interactions in combination drug responses by high‑
content image analysis. Optical high‑content analysis of cellular responses has recently attracted much interest 
in the field of drug discovery, functional genomics, and toxicology. Here, we adopted a similar approach to study 
combinatorial drug responses.

Results By examining all possible combinations of 12 drug compounds in 6 different drug classes, such as mTOR 
inhibitors, HDAC inhibitors, HSP90 inhibitors, MT inhibitors, DNA inhibitors, and proteasome inhibitors, we successfully 
identified synergism between INK128, an mTOR inhibitor, and HDAC inhibitors, which has also been reported else‑
where. Our high‑content analysis further showed that HDAC inhibitors, HSP90 inhibitors, and proteasome inhibitors 
played a dominant role in combinatorial drug responses when they were mixed with MT inhibitors, DNA inhibitors, 
or mTOR inhibitors, suggesting that recessive drugs could be less prioritized as components of multidrug cocktails.

Conclusions In conclusion, our optical drug screening platform efficiently identified synergistic drug combina‑
tions in a non‑small cell lung cancer cell line, and our high‑content analysis further revealed how individual drugs 
in the drug mix interact with each other to generate combinatorial drug response.
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Introduction
Cancer is one of the top causes of human death world-
wide. In recent decades, many molecular studies have 
made it possible to significantly extend the 5-year sur-
vival rates of various cancers worldwide, but complete 
remission is rare when cancer metastasizes due to the 
inherent development of drug resistance [1, 2]. Com-
binatorial drug treatment has been an effective way to 
fight cancer drug resistance, as heterogeneous popula-
tions of cancers are efficiently killed by multiple cancer 
drugs [3, 4].

Several quantitative measures based on different drug 
combination action models, such as Loewe’s additivity, 
Bliss independence, or highest single agent (HSA), have 
been used for synergy screening [5, 6]. Loewe’s additivity 
model determines the expected combination effect as if 
the same drugs are mixed. The Bliss independence model 
considers the effect of individual drugs in combination 
as independent but competitive. The highest single agent 
model assumes that the strongest single drug effect is the 
same as the combined drug effect. Since each model has 
advantages and disadvantages for determining drug syn-
ergy, most drug studies choose one method according 
to their experimental conditions and needs. Recently, a 
quantitative method comparing the area under the drug 
inhibition curve has also been suggested for efficient 
drug synergy screening [7]. However, despite all these 
efforts, it is still challenging to carry out systematic drug 
combination screening due to the large number of pos-
sible drug combinations for testing.

Systematic synergy screening has been carried out 
mostly by two methods, large-scale high-throughput 
screens [8–10] or model-based computational approaches 
[11–13]. Recently, a phenotypic screen was also suggested 
as an effective way to screen drug synergy, in which phe-
notypic profiles of a series of cancer cells to different 
cancer drug treatments were deduced by high-content 
analysis of cell images [14] or by sequencing analysis of 
RNA transcripts [15]. High-content (HC) analysis nor-
mally profiles cellular responses to certain drug treat-
ments using specific protein- or cell morphology-based 
features from microscope images [16–19]. To do this, cells 
of interest are first recorded by a microscope and seg-
mented by image analysis software (sup Fig. 1A). Various 
features describing cell or nucleus morphology, reporter 
gene intensity, and texture pattern are then extracted from 
the segmented cell images. Population responses to per-
turbations are represented by the median or KS statistics 
of each feature, and top hit perturbations can be identified 
by ranking specific feature scores. In some cases, medians 
or KS statistics of all features are used to make phenotypic 
profiles of perturbations for their classification or further 
characterization by machine learning algorithms. This 

method has been used to screen drug candidates [20], 
regulators of biological processes [21], potential toxicity 
of drug candidates [22], and many others [16–18, 23]. In 
drug discovery particularly, it identifies mechanisms of 
action, targets, and even toxicity of drug candidates by 
comparing their phenotypic signatures with known com-
pounds or genetic perturbation [24–28]. Cell painting is a 
good example of such approaches [18, 29, 30]. However, 
drug combination responses have not been systematically 
studied by the HC analysis.

Here, we carried out a medium-scale optical drug syn-
ergy screening and HC analysis using 12 drugs from 6 
different drug classes in the A549 cell line, a human non-
small cell lung cancer (NSCLC) cell line, providing an 
effective platform for drug synergy screening. NSCLC is 
known to be the major lung cancer type with few effec-
tive treatment options [31, 32]. In conclusion, our analy-
sis successfully identified synergism between INK128, an 
mTOR inhibitor, and HDAC inhibitors, which has been 
reported previously [33–35]. Furthermore, we found 
that HDAC, HSP90, and proteasome inhibitors played 
dominant roles in combination drug responses when 
they were mixed with MT, DNA, or mTOR inhibitors. 
This information can be utilized for the rational design of 
multidrug cocktails in the future.

Results
The viability of cancer cells was determined from cell 
images.
To find synergistic drug combinations targeting non-
small cell lung cancer cells, we carried out a drug screen 
with A549 adenocarcinoma cells using a small set of can-
cer drugs spanning multiple drug classes. In this screen, 
we utilized the HC image analysis method to examine 
whether HC analysis could further empower the cur-
rent synergistic drug screening regimen. Previously, we 
generated approximately 700 central dogma tag reporter 
cell lines for HC analysis and examined their discrimina-
tive power in recognizing various drug responses [20]. 
The reporter cell line expressing H2B-CFP, XRCC5-YFP, 
and mCherry protein was shown to be the best classi-
fier among 93 reporter cell lines and was successfully 
used for single-compound drug screening. Thus, we used 
the same reporter cell line for the current drug synergy 
screen.

Twelve different cancer drug compounds in 6 dif-
ferent categories, including mTOR inhibitors, DNA 
inhibitors, MT inhibitors, HSP90 inhibitors, HDAC 
inhibitors, and proteasome inhibitors, were used for 
combination screening. Because a full factorial com-
bination of serially diluted drugs greatly increased the 
total number of test combinations, which is a bottle-
neck of extensive drug synergy screening, we adopted 
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an equimolar drug combination strategy, which would 
significantly reduce the total number of test combina-
tions. Each drug was prepared from the highest to the 
lowest concentration by 3.5-fold serial dilution, and 
two drugs in an equimolar concentration were mixed 
for combination (Fig. 1A – C). Cells were then treated 
with a drug mix for 3 days and imaged by a microscope 
using three different fluorescent channels. Cell num-
bers were directly counted from microscope images, 
and cellular drug responses were analyzed by the HC 
analysis platform, which has been used successfully in 
our previous study [20]. Optical cell number counting 
from images was very convenient because no additional 
reagent treatment was necessary for cell counting and 
was accurate because cells on images were directly 
counted (sup Fig. 1B).

To ensure robust comparison of different cell popu-
lations, we further calculated the growth rates of drug-
treated cells by comparing their cell numbers with 
those of DMSO-treated cells [15, 36]. The heatmap of 
growth rate in Fig.  2 shows that cells with the highest 

concentration-drug mix mostly died (growth rate, -1), 
but cells with the lowest concentration-drug mix grew 
well (growth rate, 1), which validated that our serial dilu-
tion method was accurate.

Drug synergism or antagonism was predicted by synergy 
scores.
Combination drug screening often utilizes synergy scores 
to find drug synergism. We also calculated drug synergy 
scores according to three different drug action models 
[5–7]: Bliss independence, Loewe’s additivity, and HSA. 
For the Bliss independence model, we calculated the 
excess of Bliss (EOB) for all combinations as a synergy 
score. EOBs were then summed in three different ways: 
three higher concentrations, three lower concentra-
tions, or all concentrations. Various drug combinations 
were shown to be synergistic at three higher or three 
lower concentrations. Interestingly, two combinations of 
mTOR/HDAC inhibitors and one combination of mTOR/
HSP90 inhibitors were synergistic at all concentrations 
(Fig. 3A and Table 1). Growth rate plots confirmed that 
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Fig. 1 Scheme of drug combinations and their analysis. A Each drug was serially diluted by 3.5‑fold. Then, two drugs in an equimolar concentration 
were mixed and treated to cells for combination. B 12 drugs, two drugs each in 6 different drug classes, were used for combination. 6 different 
doses of the equimolar drug mix were treated to cells individually. Then, cells were imaged under microscope by 3 different channels at 4 different 
timepoints. C Cells were directly counted from cell images by Nikon Eclipse software. Then, growth rate and synergy score were calculated 
from cell numbers for drug synergy screen. Cell images were also used for HS analysis, which included background subtraction, cell segmentation, 
and feature extraction. Phenotypic profiles were analyzed by KS statistics and LDA for KNN assignment, which allowed us to determine 
how individual drugs contributed to combination drug responses
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Fig. 2 Growth rate after drug combination treatment. Cells were treated with drugs for 3 days and imaged by microscope. Alive cell numbers 
were extracted from the microscope images and used to calculate growth rate of drug treated cells. Mean values of growth rate were shown 
as a heatmap (n = 4). Cell numbers ranged from 4000 to 10 s. Drug concentration C1 means the highest concentration and C6 means the lowest 
concentration. Growth rate 1 means no inhibition and ‑1 means all death
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combination treatment increased drug potency (Sup 
Fig. 2A-C).

Next, we calculated the combination index as a synergy 
score by Loewe’s additivity model [5, 6]. Since the com-
bination index (CI) utilized the IC50 value of each drug, 
we determined the IC50 of each drug from the growth 
inhibition curve by a nonlinear regression algorithm in 
GraphPad software. The IC50 values of most drugs were 
distributed between the 3rd and 4th serial dilution con-
centrations (Sup Fig.  2D). We next examined whether 
combination treatment reduced the IC50s of individual 
drugs. To do this, we compared the IC50 of drug A in 
combination with the IC50 of drug A in a single treat-
ment. Similarly, we compared the IC50 of drug B in com-
bination with the IC50 of drug B in a single treatment. 
Many combinations reduced the IC50s of either drug A 
or B, but few reduced those of both drugs (Fig. 3B). Next, 
we calculated Loewe’s CI from the IC50 values of all 
combinations. Out of 66 combinations, 8 combinations 

gave CI values less than 1, which would be synergistic 
(Sup Fig. 4A and Table 1). In Fig. 3C, we compared CIs 
with summed EOBs. The same two combinations that 
belonged to the mTOR/HDAC inhibitor combination 
were synergistic by both methods if we set CI cutoff to 
0.6 and EOB cutoff to 0.2.

IC50 is a good indicator of drug potency changes, 
but it might not detect efficacy changes. One approach 
that could detect changes in potency and efficacy would 
be comparing the area under the growth inhibition 
curve (AUC). A recent study [7] elegantly showed that 
the drug sensitivity score (DSS), based on normalized 
AUC by effective inhibition area, accurately predicted 
drug synergy. Thus, we calculated the DSSs of all com-
binations and compared them with the DSSs of proper 
single drugs. Many combinations were shown to be 
synergistic if we set zero as a cutoff value (Fig.  3D). 
Interestingly, when we compared ΔDSSs with summed 
EOBs, 3 combinations identified from the previous 
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Fig. 3 Synergistic combination by EOB, CI, and ΔDSS method. A Excess of bliss (EOB) was determined from the growth rate of cells to find 
synergistic drug combination. The sum of the three low dose EOBs or three high dose EOBs was separately calculated and plotted together. Three 
combinations in colors exhibited positive EOB in both low and high doses of drug concentration. B Change of IC50s by combination. IC50s of two 
drugs (drug A and B) in combination were examined separately and a fold change (IC50db/IC50sg) of each drug in combination were plotted 
together. IC50db represents IC50 of one drug in combination treatment and IC50sg represents IC50 of the same drug in single treatment. C Sums 
of all EOBs were plotted together with Loewe’s Combination Index (CI). Two combinations in different colors exhibited EOB, bigger than 0.2, 
and log10(CI), less than ‑0.2, suggesting clear synergism. D Delta drug sensitivity score (ΔDSS) was determined from the area under the inhibition 
curve (AUC) of drug treatment to find synergistic drug combination. ΔDSS of the three‑low doses or three‑high doses were separately calculated 
and plotted. E Sums of all EOBs were plotted together with ΔDSS using regions of more than 10% of full inhibition. Three combinations in different 
colors exhibited EOB, bigger than 0.2, and ΔDSS, bigger than 0.1, suggesting clear synergism
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comparison (Fig.  3A) were also shown to be synergis-
tic if we set EOB cutoff to 0.2 and ΔDSS cutoff to 0.1 
(Fig.  3E). Consistently, a similar synergistic interac-
tion between mTOR inhibitors and HDAC inhibi-
tors has been reported by other groups [33–35]. To 
confirm synergism of INK128/SAHA and INK128/

panobinostat combination, we have carried out drug 
matrix-based synergy analysis at 8 × 10 different drug 
doses. For this, we also included AUY922/SAHA com-
bination as a negative control. As shown in Fig.  4, 
INK128/SAHA and INK128/panobinostat showed pos-
itive EOBs at many different drug doses, but AUY922/

Table 1 Drug synergy scores via three different methods

Drug synergy scores were calculated by three different ways, combination index (CI) by Loewe additivity model, sum of excess of bliss (EOB) by Bliss independence 
model, and delta drug sensitivity score (ΔDSS) by area under curve method. Synergistic interaction gave CI less than 1, EOB more than zero, and ΔDSS more than 
zero. Drug combinations which showed synergism by all three methods were indicated by “ a ”. Those which showed synergism by EOB and ΔDSS were indicated by 
“b”. Those which showed synergism by CI and ΔDSS were indicated by “c”. 12 drug names: INK128 (INK), paclitaxel (PAC), vinblastine (VIN), 17AAG (AAG), AUY922 (AUY), 
PS341 (PS), MG132 (MG), etoposide (ETO), gemcitabine (GEM), panobinostat (PAN). Six drug classes: mTOR inhibitor (mTOR), microtubule dynamics inhibitor (MT), 
HSP90 inhibitor (HSP), proteasome inhibitor (PROT), DNA synthesis inhibitor (DNA), histone deacetylase inhibitor (HDAC)

mTOR MT HSP PROT DNA HDAC CLASS

INK PAC VIN AAG AUY PS MG ETO GEM PAN SAHA NAME

CI by Loewe additivity
5.33 1.14 1.20 1.06 2.15 1.18 1.49 9.39 0.95c 0.84a 0.96c DEF mTOR

1.66 1.34 1.03 1.47 2.22 3.15 9.25 2.43 0.51a 0.57a INK
0.85c 1.45 2.12 1.16 1.71 1.53 0.98 1.32 1.03 PAC MT

2.18 2.41 1.67 3.52 1.71 0.66 1.25 1.08 VIN
1.59 1.85 3.06 2.91 3.09 1.96 2.13 AAG HSP

4.59 3.34 1.50 2.64 2.92 2.45 AUY 
1.69 3.72 5.86 2.10 1.16 PS PROT

4.92 6.48 1.81 1.16 MG
4.40 1.99 3.44 ETO DNA

4.02 6.48 GEM
1.70 PAN HDAC

Sum of EOB by Bliss independence
‑0.01 ‑0.24 ‑0.24 0.17b ‑0.39 ‑0.12 ‑0.17 ‑0.05 ‑0.42 0.20a ‑0.04 DEF mTOR

‑0.12 ‑0.54 0.41b ‑0.05 ‑0.31 ‑0.20 ‑0.66 ‑0.49 0.67a 0.41a INK
‑0.87 ‑0.37 ‑0.65 ‑0.25 ‑0.26 ‑1.09 ‑0.98 ‑0.17 ‑0.15 PAC MT

‑0.48 ‑0.64 ‑0.41 ‑0.57 ‑1.34 ‑1.18 ‑0.11 ‑0.16 VIN
‑0.75 ‑0.69 ‑0.86 ‑0.51 ‑0.58 ‑0.59 ‑0.30 AAG HSP

‑1.26 ‑1.06 ‑0.46 ‑0.91 ‑0.95 ‑0.43 AUY 
‑0.81 ‑0.81 ‑0.90 ‑0.43 0.11b PS PROT

‑0.68 ‑0.75 ‑0.54 ‑0.05 MG
‑1.14 ‑0.49 ‑0.15 ETO DNA

‑0.57 ‑0.30 GEM
‑0.47 PAN HDAC

ΔDSS by area under curve (%)
‑9.82 ‑0.58 ‑1.61 5.76b ‑5.83 0.86 ‑0.76 ‑0.57 1.61c 7.07a 3.01c DEF mTOR

3.95 0.87 14.80b 5.91 ‑2.99 ‑2.50 ‑4.96 4.85 21.09a 14.08a INK
2.08c 2.45 ‑6.09 5.71 5.98 ‑5.47 ‑4.52 4.68 2.77 PAC MT

2.90 ‑3.76 4.94 1.72 ‑2.53 ‑5.76 10.18 4.64 VIN
2.41 0.43 ‑0.31 7.28 5.92 4.44 1.88 AAG HSP

‑7.06 ‑1.59 11.43 0.79 2.58 2.61 AUY 
‑3.68 ‑1.82 0.54 5.03 9.11b PS PROT

2.13 ‑0.90 3.92 5.67 MG
‑3.66 8.33 2.89 ETO DNA

3.04 ‑1.14 GEM
‑0.93 PAN HDAC
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SAHA combination didn’t. These data together clearly 
indicated that mTOR inhibitors were synergistic with 
HDAC inhibitors, and our HC screening platform using 
image-based cell counting and equimolar drug concen-
tration mix efficiently identified the known synergistic 
drug combinations.

Cellular responses to drug combinations were profiled 
by HC image analysis.
We next investigated how cancer cells respond to drug 
combinations. Cellular responses to drug combinations 
were shown to be the sum of individual drug responses 
according to protein dynamics studies [37] or shRNA 

Fig. 4 Isobologram of cell viability after drug combination treatment. Cells were treated with (A) AUY922 and SAHA, (B) INK128 and SAHA, or (C) 
INK128 and panobinostat, for 3 days and cell viability was measured by CCK8 luminescent assay. Relative growth value (left) was determined 
by comparing their growth with DMSO‑treated cells or blank media. Mean values of relative growth were shown as a heatmap (n = 4). EOBs (right) 
were then calculated as previously and their values were also shown as a heatmap. Positive EOBs indicate synergism and negative EOBs indicate 
antagonism
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sensitivity signature studies [38], but in-depth phe-
notypic studies have not been carried out. Thus, we 
wanted to study how individual drugs in combination 
would contribute to combination drug responses via 
HC image analysis. To do this, cells were treated with 
drug combinations, and images were taken by a fluo-
rescence microscope at the 24-h timepoint and 48-h 
timepoint for three different reporters: H2B-CFP for 
nuclear morphology and DNA dynamics, YFP-XRCC5 
for XRCC5 protein dynamics, and mCherry for cell 
morphology. The images were then preprocessed for 
cellular feature extraction (sup Fig. 1A). A total of 237 
features (sup Table 1) representing various information 
of the three reporters’ intensities, their distribution tex-
ture patterns, and cell or nucleus morphologies were 
extracted from segmented single-cell images, and the 
population average of each feature was calculated by KS 
statistics as previously described [20].

We then carried out principal component analysis 
(PCA) to determine whether different classes of drug 
compounds generated unique cellular drug responses 
by their phenotypic profiles. PCA is a mathematical 
method that can analyze multidimensional data and 
visualize them in a low-dimensional space [39]. The 
original coordinates are linearly transformed into new 
coordinates, in which variations in the data are kept in 
decreasing order. We applied PCA to all KS feature pro-
file data of drug-treated cells and plotted them in the 
transformed space using the first two PCA coordinates 
(sup Fig. 3A&B). The eigenvalues of the first two coor-
dinates indicated that 59% of the total variation was 
displayed for the first data set and 73% for the second 
data set. However, we failed to observe distinct cellular 
responses by drugs of the different classes such that dif-
ferent drug class profiles significantly overlapped.

Thus, we carried out a different analysis, linear discri-
minant analysis (LDA), to maximize the separation of 
phenotypic profiles from drugs across different classes. 
LDA allowed us to identify a linear combination of 
multiple features to obtain new coordinates, in which 
drug profiles within the same classes would separate 
less but drug profiles across the different classes would 
separate more [40, 41]. The model identified by train-
ing objects could be further applied to test new objects 
for their classification. For the LDA training data set, 
we used all single drug treatments at high concentra-
tions because those drug treatments generated distinct 
cellular responses. After finding the clustering model of 
our training drug set, we applied the same model to all 
profile data and plotted them in the transformed space 
using the first two LDA components. In this approach, 
we clearly observed good clustering of cellular drug 

responses within the same drug classes but separating 
across different drug classes (Fig. 5A&B).

The combination drug response was mostly determined 
by dominant drug phenotypes.
We next studied how the combination drug response was 
affected by individual drugs in combination. We envi-
sioned three scenarios. When drug A was dominant and 
drug B recessive, the A/B combination would follow A 
drug response, mimicking drug A response profile. When 
the drug A and drug B were codominant, the A/B combi-
nation would exhibit a median response, partially mim-
icking the single drug response profile of drug A and B. 
When the drug A and B affected the cell response syn-
ergistically, the A/B combination would yield a new and 
distinct response profile. Thus, by searching single drug 
k-nearest neighbors (KNNs) of drug combinations and 
their reliability evaluation by confidence score [20], we 
could predict how individual drugs contributed to cellu-
lar response upon combination drug treatment (Fig. 6A).

We then assigned single drug KNNs for all combinations 
at the 24-h timepoint (T1) in the LDA transformed space, 
and their confidence scores were calculated by the training 
drug distribution distance. Half of the KNN assignments 
were shown to be reliable since their confidence scores 
were higher than 90% (Fig.  6B). When we examined the 
drug combinations with a reliable KNN prediction only 
(higher than 90% CS), approximately 50% of those drug 
combinations showed drug dominancy behavior, such that 
their phenotypic profiles were similar to one dominant 
drug’s profile. These dominant drugs were mostly protea-
some inhibitors, HSP90 inhibitors, and HDAC inhibitors 
(Fig.  6C). In contrast, DNA inhibitors, mTOR inhibitors, 
and MT inhibitors failed to maintain their unique drug 
responses when mixed with other drug compounds. This 
dominancy pattern was consistently repeated with all 
drug combination data sets (Fig.  6D). However, we also 
observed that a significant fraction of drug combinations 
gave low confidence scores for their KNN assignments, 
indicating that their profiles were dissimilar to any sin-
gle drug profile. This might imply that those combination 
responses could be codominant or potentially synergistic, 
as we explained earlier. We repeated the analysis with the 
48-h timepoint (T2) data set and observed a similar pat-
tern (sup Fig. 4B–D). However, we had to be cautious in 
interpreting the 48-h timepoint data set since increased 
cell death might obscure distinct drug responses.

Next, we examined how drug concentrations affected 
the drug dominancy pattern. To visually examine drug 
responses by concentration, we aligned the same drug 
treatment profiles of different concentrations in the 
LDA-transformed space as a concentration trace (sup 
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Fig.  1A and Fig.  7A-C). The lined single drug treat-
ment is shown in a unique color, but the combination 
treatment is shown in black. The results again showed 
three different patterns of drug interactions: dominant-
recessive, codominant, and interactive. 17AAG was 
codominant when it was mixed with DNA inhibitors 
and HDAC inhibitors (Fig.  7A). The combination drug 
response lines were positioned in between the two sin-
gle drug responses, consistent with a median response 
of two single drug compounds. Interestingly, when it 
was mixed with proteasome inhibitors, its effect was 

changed by concentration. At a low concentration, it was 
codominant, as it was positioned between the two sin-
gle drug responses, but at a high concentration, its drug 
response lines overlapped with proteasome inhibitor 
response lines, which would indicate that 17AAG was 
recessive to proteasome inhibitors. In the case of pacli-
taxel (Fig. 7B), it was recessive to HSP90 inhibitors, pro-
teasome inhibitors, and HDAC inhibitors. In the case of 
INK128 (Fig. 7C), its effect was changed by drug class. It 
was dominant to MT inhibitors but recessive to HSP90 
inhibitors. However, when it was mixed with HDAC 
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inhibitors, which was shown to be a synergistic interac-
tion, the combination phenotype was drastically different 
from either single drug, especially at the highest concen-
tration, implicating a distinct combination phenotype. It 
would be interesting to study in the future what molecu-
lar changes were responsible for this distinct phenotype.

The drug combination was reported to treat cancer 
patients more effectively by independent actions, as two 
effective cancer drugs cured heterogeneous patients bet-
ter [42]. Thus, multidrug cocktails in which individual 
drugs elicit strong responses are commonly used in can-
cer therapeutics, but unexpected drug interactions often 
hinder their effective treatment. Here, we showed how 

individual drugs in combination contribute to cellular 
drug responses by HC analysis and suggested the priority 
of drug compounds in making multidrug cocktails such 
as dominant types in lower concentrations, which may 
reduce cell toxicity. To test our prediction, we prepared 
three-drug combos with different drug classes and exam-
ined cell viability after their treatment. To have similar 
potency of each drug, we calculated EC20s and EC50s of 
all drugs from single drug growth curve (Sup Fig. 5A-G) 
and mixed them at EC20 or EC50 of each drug. The most 
dominant drug type such as proteasome inhibitor was 
again shown to be more potent than other inhibitors (Sup 
Fig.  6), confirming our earlier finding. Thus, our study 
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opens a new possibility that high content analysis of drug 
interactions can help the rational designing of multid-
rug cocktails to combat not only drug resistance but also 
drug toxicity.

Discussion
A common approach to cancer therapy is monother-
apy or combination therapy. Combination therapy is 
an effective treatment option because it reduces drug 
resistance development and relieves drug side effects. 
However, it is not easy to find synergistic drug combina-
tions by high-throughput screening due to a large testing 

sample size. Here, we developed an image-based high-
throughput synergy screening and carried out a pilot 
screening using 12 chemotherapeutic and targeted can-
cer drug compounds over 6 different drug classes. The 
screening identified that mTOR inhibitors showed syn-
ergism with HDAC inhibitors. This finding was consist-
ent with several earlier studies. One study showed that 
this combination greatly increased the death of B-cell 
acute lymphoblastic leukemia cells compared to single 
treatment [35]. Another study showed that more than 
60 cancer cell lines exhibited synergistic sensitivity to 
this combination and that breast cancer patient-derived 
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xenograft and BCL-XL plasmacytoma mouse models 
both exhibited enhanced responses [34]. They further 
showed that the synergy resulted from enhanced MYC 
degradation. Another study reported that HDAC/mTOR 
inhibitors synergized with a HER2 inhibitor to kill pan-
creatic ductal adenocarcinoma [33]. Furthermore, we 
also observed a synergistic interaction between mTOR 
inhibitors and HSP90 inhibitors by the Bliss independ-
ence and AUC methods, albeit weak. Consistently, Mill-
son et  al. also reported that HSP90 inhibitor treatment 
often activates HSF1 to develop resistance, but mTOR 
inhibitor cotreatment sensitizes cells [43]. Another study 
showed that HSP90 inhibitors were synergistic with dual 
PI3K/mTOR inhibition in Burkitt lymphoma driven by 
MYC dysregulation [44]. Last, cisplatin-resistant human 
bladder cancer cells were also shown to be more sensi-
tized with combined treatment of HSP90 and a PI3K/
mTOR dual inhibitor, which was mediated by increased 
G1 arrest and apoptosis [45]. Therefore, our study clearly 
proved the effectivity of our platform on a medium-scale 
drug synergy screening and its potential for a large-scale 
synergy screening in future.

The synergistic killing of cancer cells by drug combina-
tions has been intensively studied, but individual drug 
interactions in drug combinations have not been sys-
tematically investigated. Here, we studied combination 
drug responses by using the HC drug profiling method. 
Our analysis showed that distinct cellular responses 
were observed by different drug classes, and combina-
tion responses could be determined largely by one domi-
nant drug. In our studies, HDAC, HSP90, or proteasome 
inhibitors played dominant roles in combination drug 
responses when they were mixed with DNA, MT, or 
mTOR inhibitors. For instance, proteasome inhibitors 
such as PS341 were clearly dominant over all other drug 
compounds at high concentrations (data not shown), 
but MT inhibitors such as paclitaxel were the opposite 
(Fig. 7B). We thought that the cell cycle effect played an 
important role in this behavior. DNA or MT inhibitors 
normally arrest cells at specific cell cycle stages, which 
eventually leads to cell death. However, HDAC, HSP90, 
or proteasome inhibitors directly induce apoptotic cell 
death regardless of the cell cycle stage. Interestingly, we 
found that synergistic combinations generated distinct 
combination responses. When INK128 was mixed with 
HDAC inhibitors, which was a synergistic interaction 
according to the cell proliferation assay (Table  1), the 
combination response followed INK128’s response at a 
low dose but HDAC’s response at higher doses (Fig. 7C). 
Since we mixed drug in equal concentrations, it is quite 
possible that INK128 is more potent at lower concen-
trations but HDAC is potent and dominant at higher 
concentration. However, at the maximum dose, the 

combination response was drastically different from both 
the INK128 and HDAC inhibitor responses. Interestingly, 
the drug concentrations that gave the highest synergy 
scores were low doses (Fig. 4). Thus, INK128 and HDAC 
inhibitors exhibited interesting concentration-depend-
ent drug interactions, which need further study for their 
interesting molecular behavior and drug potency.

We showed in this study that HC analysis could 
enhance the effectiveness of current synergistic drug 
screening regimens by providing additional informa-
tion on drug interactions in combination. Our HC image 
analysis used various cellular features, such as cell or 
nucleus morphology, DNA dynamics, XRCC5 protein 
intensity, and its distribution pattern (sub Table 1). How 
each feature contributes to the cellular drug response is 
an important question that we would like to answer in 
the future. In the current study, however, we have not 
been able to address this issue since we used the LDA 
classification method, which transformed individual fea-
tures to maximize distance over different types of drugs 
but minimize distance among the same types of drugs. It 
was clear that XRCC5 protein dynamics played an impor-
tant role in discriminating different drug responses since 
the XRCC5 reporter cell line was the top ranked cell line 
for its discriminative power, but we did not have any evi-
dence that its power could result from XRCC5’s DNA 
damage repair role. Therefore, it would be an important 
topic to study in the future.

Conclusion
Combinatorial drug treatment has been an effective way 
to fight cancer drug resistance. But there are few studies 
that systematically screen multidrug combos to treat can-
cers. Here, we have set up an optical screening platform 
to screen drug synergism and identified a synergistic 
interaction between mTOR inhibitors and HDAC inhibi-
tors. Furthermore, we have discovered interesting drug 
interaction patterns between individual drugs in pairs 
such as dominant, codominant, recessive, or synergistic. 
Since unexpected drug interactions often hinder their 
effectiveness targeting cancer cells, drug interaction stud-
ies by our optical screening and analysis could provide an 
important insight in the field of therapeutic drug combi-
nation studies.

Methods
Cell culture and drug treatment
The A549 adenocarcinoma cell line was purchased from 
ATCC and genetically engineered to express H2B-CFP, 
YFP-XRCC5, and mCherry as described previously 
[20]. Cells were cultured in Dulbecco’s modified Eagle’s 
medium (DMEM, Invitrogen Gibco) supplemented 
with 10% fetal bovine serum (FBS, SORFA), 100 U/mL 
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penicillin, and 100 μg/mL streptomycin (MesGen Bio-
tech) in a 37°C, 5% CO2 incubator. All cells were tested 
for the absence of mycoplasma. For drug combination 
screening, we seeded 3000 cells in each well of a 384-
well optical plate (Thermo Fisher Scientific, plastic) 
by brief centrifugation and sealed them with Breathe-
Easy® sealing membrane (Sigma–Aldrich). After cells 
adhered to the plates, we took images of the cells by a 
Nikon Eclipse Ti-E microscope with a 10X objective 
lens every 24 h for 3 days.

Single drugs were prepared in six different concen-
trations by 3.5-fold dilution, and two different single 
drugs in equimolar concentrations were combined as a 
drug mix. The drug mix was then treated to replicates 
of cells by a MINI 96 (INTEGRA) multichannel pipette 
(1st data set of 8 × 8 drugs, 17AAG, AUY922, PS341, 
MG132, etoposide, gemcitabine, panobinostat, SAHA, 

has 4 duplicates; 2nd data set of 4 × 12 drugs, deforoli-
mus, INK128, paclitaxel, vinblastine, 17AAG, AUY922, 
PS341, MG132, etoposide, gemcitabine, panobinostat, 
SAHA, has 3 duplicates). After 3  days of drug treat-
ment, cells were fixed with 75% ethanol, stained with 
Hoechst 33342 (MESGEN), and counted by the bright 
spot detection function of the Nikon Eclipse HC soft-
ware. Initial cell counting was carried out similarly but 
using H2B-CFP signal in live cell images. When cell 
numbers in one of four (or three) biological replicates 
significantly diverged from their mean by more than 
one standard deviation, we removed it from the follow-
ing analysis as outlier.

For luminescent-based cell viability assay, cells were 
seeded in a 96-well plate by brief centrifugation and 
appropriate drugs were treated by multichannel pipette 
(Sup Table 2). After three days of drug treatment, CCK8 
(cell counting kit-8, GLPBIO) assay was carried out and 
luminescent light was recorded by a microplate reader 
(Bio-Rad).

GR, CI, EOB, DSS, and RG calculation
We calculated the growth rate of drug-treated cells based 
on an earlier report [15, 36], which allows robust com-
parison of cell survival among drug-treated samples. The 
normalized growth rate formula is:

where  Xc is the cell count after 72 h of drug treatment,  Xo 
is the cell count before drug treatment, and  Xdc is the cell 
count after 72 h of no drug treatment.

GR =
2(log

2
(Xc/Xo)/log2(Xdc/Xo)))− 1

The three methods described below were used to meas-
ure the synergy of the two drugs. The combination index 
(CI) according to the Loewe additivity model was calcu-
lated by the following formula [46]:

where IC50 is the half maximal inhibitory concentra-
tion of a given drug,  IC50a(a + b) is the IC50 of drug A in 
the combination of Drug A and Drug B,  IC50b(a + b) is the 
IC50 of drug B in the combination of drug A and drug 
B, and  IC50a and  IC50b are the IC50 of drug A and drug 
B, respectively. CI < 1 is synergism; CI = 1 is an additive 
effect; CI > 1 is antagonism. Drug IC50s were calculated 
by the nonlinear regression algorithm of GraphPad soft-
ware using growth rates in given log drug concentrations.

The excess of Bliss independence (EOB) was calcu-
lated by the following formula:

where  GRcom is the growth rate of the drug combina-
tion, and  GRa and  GRb are the growth rates of drug A 
and drug B, respectively. EOB > 0 is synergism; EOB < 0 is 
antagonism.

The drug sensitivity score (DSS) was calculated as 
described in a previous report [7]. In short, the dose–
response function y as a continuous function of the 
dose x was modeled using a nonlinear regression func-
tion as follows:

where a is the maximal response, b is the slope of the 
curve, c is the IC50, and d is the minimal response. The 
area under the curve (AUC) was then calculated by the 
following formula over the selected concentration range 
from  x1 to  x2:

where the integral function of the dose–response can be 
expressed as

The DSS was finally calculated after normalization of 
the AUC as follows:

CI = IC50a(a+b)/IC50a + IC50b(a+b)/IC50b

EOBGR = (1− GRcom)− (1− GRa)− (1− GRb)+ (1− GRa)× (1− GRb)

y = d +
a− d

1+ 10
b(c−x)

AUC =

x2

x1
y(x)dx = Y (x2)− Y (x1)

Y (x) =
(a− d)log

10
(1+ 10

b(c−x))

b
+ ax

DSS =
AUC − t × (x2 − x1)

(100− t)× (Cmax − Cmin)
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where t is the minimum activity level at which integra-
tion begins (10% by default), and  Cmax and  Cmin are the 
maximum and minimum drug concentrations, respec-
tively, in which the drug was screened.

ΔDSS > 0 indicates synergism.
Relative growth (RG) value for CCK8 growth assay is 

calculated by the next formula:

where  LCd is the luminescence signal value of 72 h-drug 
treated cells,  LCm is the luminescence signal value of 
blank cell culture media, and  LCc is the luminescence sig-
nal value of 72 h-DMSO treated cells.

HC analysis
Image background subtraction, segmentation, feature 
extraction, and phenotypic profiling by KS statistics were 
carried out as described previously [20]. The following anal-
yses of KS profiles of drug-treated cells, such as principal 
components analysis, linear discriminant analysis, k-nearest 
neighbor classification, and confidence score calculation, 
were also carried out as described previously [20]. All MAT-
LAB codes and data can be found in the supplemental data.

Abbreviations
HC  High‑content
NSCLC  Non‑small cell lung cancer
MT  Microtubule
DNA  Deoxynucleic acid
HSP90  Heat shock protein 90
HDAC  Histone deacetylase
mTOR  Mammalian target of rapamycin
HSA  Highest single agent
EOB  Excess of bliss
CI  Combination index
AUC   Area under curve
DSS  Drug sensitivity score
KS  Kolmogorov‑Smirnov
GR  Growth rate
PCA  Principle component analysis
LDA  Linear discriminant analysis
KNN  K‑nearest neighbor
XRCC5  X‑ray repair cross complementing 5
CFP  Cyan fluorescent protein
YFP  Yellow fluorescent protein
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Additional file 1: Sup Figure 1. Overall scheme of HC image analysis. (A) 
HC analysis of drug combination. Cells with or without drugs were first 
imaged by microscope. Background subtraction, cell segmentation, and 
feature extractions were carried out as similarly as our earlier studies [20] 
to give phenotypic feature profiles. Population average of each feature 

△DSS = DSScombination −max [DSSdrug A, DSSdrug B]

RG = (LSd − LSm)/(LSc − LSm)

was calculated by KS statistics and concatenated as KS profile. After LDA, 
each concentration of drug treatment (C1 through C6) was lined as a con‑
centration trace. (B) Cell counting by Nikon Element HC analysis software. 
DNA was stained, imaged, and counted by bright spot detection function 
of Nikon element. Representative images were shown. Error bar, 10μm.

Additional file 2: Sup Figure 2. Synergistic combination. Growth 
rate curves of (A) INK128/SAHA, (B) INK128/panobinostat, and (C) 
INK128/17AAG treatments. Means of growth rates were shown with 
standard deviation (n=4). All three combinations were shown to be 
synergistic by more than one synergy model. Six different drug concentra‑
tions from the highest (C1) to the lowest (C6) were made by 3.5‑fold serial 
dilution. Highest concentration is 10 µM for INK128, 200 µM for SAHA, and 
5 µM for panobinostat. (D) Violin plot of drug IC50s. Drug IC50s for single 
or double treatments were determined from the growth rate inhibition 
curve using GraphPad software.

Additional file 3: Sup Figure 3. PCA plot using phenotypic profiles of 
KS statistics after drug combination treatment. The HC analysis extracted 
cellular features from images of cells treated with different classes of drugs 
in multiple concentrations. Phenotypic profiles of each drug treatment 
were calculated by KS statistics and analyzed by PCA. Two independent 
experiments testing different sets of drug combinations, as described in 
Figure 4, were analyzed separately and their distinct phenotypic profiles 
were shown in the two‑dimensional space by the first two principle 
components (A and B). Single treatments were distinguished in different 
colors and combination in gray color. Different drug concentrations were 
also distinguished by different sizes, and different timepoints by different 
transparencies. DMSO control were diluted from the highest concentra‑
tion, 0.1%, as similarly as other drugs.

Additional file 4: Sup Figure 4. (A) Venn diagram summary of drug 
synergy screen. Drug synergy was determined by three different methods, 
Loewe additivity, Bliss independence, and area under curve. Among 66 
combinations, 8 combinations were synergistic by Loewe additivity, 6 by 
Bliss independence, and 41 by AUC. 3 combinations are synergistic by 
all three methods. (B) Histogram of confidence score. Confidence scores 
of KNN assignment for all combinations at 48‑hr timepoint were shown 
in a histogram. KNN assignments with dominant behavior were shown 
in brown. (C‑D) Drug dominancy statistics of 48‑hr timepoint data set. 
Percentages of drug combinations showing dominant behavior was 
shown in a bar graph, using drug combinations with CS higher than 0.9 
confidence score (C) or all combinations (D). 12 drug names: INK128 (INK), 
paclitaxel (PAC), vinblastine (VIN), 17AAG (AAG), AUY922 (AUY), PS341 (PS), 
MG132 (MG), etoposide (ETO), gemcitabine (GEM), panobinostat (PAN).

Additional file 5 Sup Figure 5. Relative growth curves of single drug 
treatment. Cells were treated with (A) AUY922, (B) PS341, (C) gemcitabine, 
(D) paclitaxel, (E) INK128, (F) SAHA, or (G) panobinostat, for 3 days and cell 
viability was measured by CCK8 luminescent assay. Relative growth value 
was determined by comparing their growth with DMSO‑treated cells or 
blank media. Mean values of relative growth were plotted with standard 
deviation (n=4). EC50 values were calculated by GraphPad prism.

Additional file 6: Sup Figure 6. Relative growths after drug combination 
treatmentd and their EOBs. EC20 or EC50 values of each single drug were 
first deduced from growth rate curve (Sup Figure 5) by GraphPad prism 
and adjusted values after verification were used. EC20 and EC50: INK128 
(17 nM & 96 nM), SAHA (1.5 µM & 5 µM), AUY922 (31 nM & 68 nM), PS341 
(10 nM & 15 nM), Gemcitabine (12 nM & 37 nM), and Paclitaxel (50 nM & 
500 nM). Drug mixture (single, double or triple) using EC20 level of each 
drug was then treated to cells for 3 days and cell viability was measured 
by CCK8 luminescent assay. Relative growth value was determined by 
comparing their growth with DMSO‑treated cells or blank media and EOB 
was accordingly calculated. Mean values of relative growth (n=4) and 
EOBs were shown as a heatmap.

Additional file 7: Sup Table 1. List of all features in high‑content analysis. 
239 features representing morphology, texture, and intensity information 
are described.

Additional file 8: Sup Table 2. Relative growth rates of survival assays. All 
combinations of survival assay using CCK8 reagents were described.

https://doi.org/10.1186/s12885-024-12057-4
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