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Abstract
Background Patients with hepatocellular carcinoma (HCC) who undergo transarterial chemoembolization (TACE) 
may have varied outcomes based on their liver function and tumor burden diversity. This study aims to assess the 
prognostic significance of the tumor burden score (TBS) in these patients and develop a prognostic model for their 
overall survival.

Methods The study involved a retrospective analysis of 644 newly diagnosed HCC patients undergoing TACE 
treatment. The individuals were assigned randomly to a training cohort (n = 452) and a validation cohort (n = 192). We 
utilized a multivariate Cox proportional risk model to identify independent preoperative predictive factors. We then 
evaluated model performance using the area under the curve (AUC), consistency index (c-index), calibration curve, 
and decision curve analysis (DCA) methods.

Results The multivariate analysis revealed four prognostic factors associated with overall survival: Tumor Burden 
Score, Tumor Extent, Types of portal vein invasion (PVI), and Child-Pugh score. The total score was calculated based on 
these factors. The model demonstrated strong discriminative ability with high AUC values and c-index, providing high 
net clinical benefits for patients. Based on the model’s scoring results, patients were categorized into high, medium, 
and low-risk groups. These results were validated in the validation cohort.

Conclusions The tumor burden score shows promise as a viable alternative prognostic indicator for assessing tumor 
burden in cases of HCC. The new prognostic model can place patients in one of three groups, which will estimate 
their individual outcomes. For high-risk patients, it is suggested to consider alternative treatment options or provide 
the best supportive care, as they may not benefit significantly from TACE treatment.
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Background
Hepatocellular carcinoma (HCC) is the sixth most 
common cancer, and the second most lethal [1]. HCC 
ranks fourth in morbidity and second in mortality in 
China. It poses a serious threat to people’s health, with 
its high malignancy, rapid progression, poor progno-
sis, and a 5-year survival rate of only 12.1% [2]. Despite 
the improvements in screening and treatment over the 
years, a considerable proportion of patients are ineligible 
for surgical treatment at the time of diagnosis. Accord-
ing to many current HCC practice guidelines, transar-
terial chemoembolization (TACE) is considered one of 
the most commonly used local treatment modalities for 
intermediate-stage HCC [3, 4]. However, TACE is used in 
clinical practice beyond the guideline recommendations, 
not only for patients suffering from unresectable early 
HCC but also for those with liver-confined advanced 
disease [5–7]. Due to differences in tumor burden and 
liver reserve function among cancer patients, there may 
be heterogeneity in patients receiving TACE, which may 
result in variable outcomes [5, 8–10].

Researchers have explored the influencing factors of 
overall survival (OS) in HCC patients receiving TACE 
treatment, mainly including tumor characteristics and 
liver function [11]. Based on factors such as tumor size, 
number, liver function, and alpha-fetoprotein (AFP) level, 
researchers have developed several prognostic models, 
including the 6&12 score [5], HAP score [12], mHAP 
score [13], mHAPII score [14], mHAPIII score [15], and 
the pre-TACE prediction model [16]. However, these 
previous prognostic models have been questioned due to 
complex formulas, poor external validation results, and 
non-TACE populations [17–19], limiting their clinical 
application.

Recently, a new indicator called the “Tumor Burden 
Score (TBS)” has been proposed to stratify the risk of 
multifocal tumors [20]. The indicator considers tumor 
size and the number of tumors and has shown potential 
in predicting the prognosis of patients with colorectal 
liver metastasis, HCC, and intrahepatic cholangiocar-
cinoma who undergo surgical resection [20–23]. In this 
study, we created and validated a new model using pre-
operative TACE data in HCC patients. The model uses 
independent risk factors obtained from multivariate Cox 
analysis to determine the appropriateness of TACE as ini-
tial treatment.

Methods
Study population
A total of 1276 patients with HCC who received the 
TACE procedure were enrolled from January 2017 to 
December 2021 at the First Affiliated Hospital of Wen-
zhou Medical University. Eventually, 644 HCC patients 
were included according to the inclusion and exclusion 

criteria (Fig.  1). Based on a training cohort verification 
cohort ratio of approximately 7: 3, 452 patients were 
included in the training cohort and 192 patients in the 
validation cohort. The study protocol was approved by 
the Institutional Ethics Committee of the First Affili-
ated Hospital of Wenzhou Medical University. This study 
adhered to the ethical guidelines of the 1975 Declaration 
of Helsinki and was approved by the Ethics Commit-
tee of the First Affiliated Hospital of Wenzhou Medical 
University.

Data collection
Clinical and sociodemographic data were collected from 
patients’ electronic medical records. Data captured 
included gender, age, etiology of hepatopathy (hepati-
tis B virus (HBV) infection or other causes), Barcelona 
Clinic Liver Cancer (BCLC) stage, China liver cancer 
staging (CNLC) stage, Child-Pugh score, presence of liver 
cirrhosis, presence of ascites, presence of extrahepatic 
metastasis (especially recorded lung metastasis and bone 
metastasis), level of AFP, and tumor characteristics such 
as maximum tumor size, number of liver lesions, lesion 
extent (unilobar or mutilobar), completeness of tumor 
capsule and types of portal vein invasion. The diagno-
sis of cirrhosis and PVI was based on clinical, radiologi-
cal [computed tomography (CT) or magnetic resonance 
imaging (MRI)], and histological criteria.

TBS was calculated using a combination of tumor size 
and the total number of tumors for each patient [20]. TBS 
was defined as the distance from the origin to a point on 
a plane, incorporating the maximum tumor diameter and 
the number of intrahepatic tumors. The formula used to 
calculate TBS was: (maximum tumor diameter)2 + (num-
ber of liver lesions)2=TBS2 (Fig.  2). Cut-off values for 
TBS were determined using X-tile, a retrospective bio-
informatics tool developed by Camp and colleagues [24]. 
Patients were divided into three groups according to the 
TBS: high (over 10.00; 185, 28.6%), medium (5.20–10.00; 
227, 35.4%), and low (less than 5.20; 269, 36.0%). Increas-
ing TBS was associated with a progressively higher risk 
of death (referent low TBS, medium TBS, HR 3.20, 95% 
CI 2.39–4.28, P < 0.001; high TBS, HR 6.62, 95% CI 4.72–
9.27, P < 0.001).

The primary outcome measure was OS, defined as the 
time from the date of TACE to the date of death or last 
follow-up. Patients who were alive at last follow-up or 
lost to follow-up were censored. Several scoring systems, 
namely 6&12 score [5], HAP score [12], mHAP score 
[13], mHAPII score [14], mHAPIII score [15], and the 
pre-TACE-Predict Model [16], were calculated based on 
their criteria.
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Treatment procedure
The experienced interventional radiologists performed 
the conventional TACE (cTACE) procedure. Firstly, they 
used the modified Seldinger technique to insert an angio-
graphic catheter through the right femoral artery and 
access the hepatic artery. They then performed angiog-
raphy of the common hepatic artery and superior mes-
enteric artery to visualize hepatic artery anatomy and 
portal vein patency. Next, a microcatheter was super-
selected to the tumor-feeding artery, and then a mixture 

of chemotherapeutics and lipiodol was injected, the dos-
age of which was adjusted according to the number, max-
imum diameter, and embolization extent of the tumor 
lesions. Gelatin sponge or embolic microsphere was 
used for embolization until the tumor arterial flow was 
reduced on angiography. The chemotherapy drugs mainly 
include pirarubicin (10-50  mg), epirubicin (10-50  mg), 
mitomycin (10  mg), oxaliplatin (50-150  mg), raltitrexed 
(1-4 mg) and 5-fluorouracil (250-1000 mg). The range of 
lipiodol is 1 to 30 ml.

Fig. 1 Diagram for inclusion of patients into the study. Abbreviations: TACE, transarterial chemoembolization; HAIC, hepatic artery infusion chemotherapy
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During the drug-eluting beads-TACE (DEB-TACE) 
procedure, the recommended injection rate for drug-
loaded microspheres is 1  ml/min. The microspheres 
should be well distributed and evenly suspended dur-
ing the injection process. When the flow rate of micro-
spheres loaded with drug and contrast agent suspension 
in the artery has not emptied within 3–4 cardiac cycles, 
the injection should be stopped as it marked the end-
point of embolization. After a pause of 5 to 15 min, angi-
ography was repeated. If tumor staining was still present, 
continue embolization until the endpoint of embolization 
was reached (tumor staining disappeared). Lesions that 
had not yet reached the endpoint of embolization could 
be further embolized with drug-loaded microspheres or 
blank microspheres, with a single embolization dose not 
exceeding 4  ml. Other particle embolic agents could be 
injected or re-embolized if economic conditions were 
limited.

TACE procedures would be repeated if viable tumor 
lesions or new emerging lesions were found by imag-
ing examination in patients with tolerable physical 
conditions.

Statistical analysis and model development
The presentation of quantitative variables following a 
normal distribution was expressed as mean ± standard 
deviation. Otherwise, they were described as the median 
and interquartile range (IQR). These data were com-
pared using either Student’s t-test or non-parametric 

Mann-Whitney U test. Categorical variables were pre-
sented as their n (%) and compared using the Chi-squared 
test or Fisher’s exact test. In the training cohort, univari-
ate Cox proportional hazards regression analysis was 
performed to determine the association of each param-
eter with all-cause mortality. A correlation heat map was 
performed to check the variables’ collinearity included in 
the previous step. A correlation coefficient greater than 
0.7 indicated multicollinearity. Next, the variables with a 
P value less than 0.10 in the univariate regression analy-
sis were included. Cox proportional hazards regression 
analysis with backward stepwise variable selection was 
used to extract independent predictors, while variables 
with collinearity were not included in the same model 
simultaneously. The new model was built by backward 
stepwise variable selection, with entry criteria set at the 
P < 0.05 level. To compare the performance of different 
models, the area under the curve (AUC) values were cal-
culated, and the model with the highest AUC value was 
considered the final model. The β regression coefficients 
were multiplied by six and rounded to the nearest unit to 
obtain the score of the variable. The sum of the scores for 
each variable constituted the final score for each patient. 
Both TBS stratification and patient mortality risk stratifi-
cation were carried out using x-tile software, a retrospec-
tive analysis tool. Statistical analysis was performed using 
R software (version 4.3.1, www.r-project.org). A two-
sided P value less than 0.05 was considered statistically 

Fig. 2 Scatter plot about maximum tumor diameter (x-axis) and number of intrahepatic tumors (y-axis), 
(maximumtumordiameter)2 + (numberofliverlesions)2 = TBS2. Abbreviations: TBS, Tumor Burden Score
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significant. The R packages used in this study are listed in 
Supplementary Table 1.

Model evaluation and validation
To determine the accuracy of the predictive model, we 
used two methods: the area under the time-dependent 
receiver operating characteristic (ROC) curve and the 
concordance index (c-index). The ROC curve measures 
the predictive ability of the model over time, while the 
c-index estimates the probability that the predicted 
results match the actual results. Calibration, on the 
other hand, refers to the agreement between estimated 
and actual risk. We depicted the calibration curves to 
evaluate calibration. Another important consideration 
in clinical practice is the issue of benefits. We analyzed 
the benefits of the model using decision curve analysis 
(DCA) by comparing it to default strategies of treating all 
or no patients.

We evaluated the model using the above methods on 
both the training cohort and validation cohorts, compar-
ing them with other models, like 6&12 score [5], HAP 
score [12], mHAP score [13], mHAPII score [14], mHAP-
III score [15], and pre-TACE-Predict Model [16].

Results
Characteristics of training and validation cohorts
A total of 644 patients met the eligibility criteria and were 
included in the final cohort and randomized into training 
(N1 = 452, 70%) and validation (N2 = 192, 30%) cohorts 
(Fig.  1). The baseline characteristics of the two cohorts 
were comparable, and there was no significant difference 
between patients (Table 1). 85% of the enrolled patients 
were male, 15% were female, and the median age was 
59.5 years old. HBV was the main cause of the patients, 
accounting for 79%, and 75% of patients had liver cir-
rhosis. The liver function grading was mainly distributed 
in A5, A6, and B7. In terms of tumor characteristics, the 
median of the maximum diameter of HCC was 6.1  cm 
(IQR: 3, 9.7), and most patients did not have portal vein 
invasion or extrahepatic metastasis. TBS was almost 
evenly distributed among the low, medium, and high 
groups. In a subgroup analysis based on the BCLC stage, 
significant differences in OS were observed among high, 
medium, and low TBS patients in the BCLC stage B/C 
group. Patients with high TBS had the worst prognosis 
in the BCLC stage B/C group (Supplementary Fig.  1B). 
However, it is important to note that TBS did not sig-
nificantly affect BCLC stage 0/A stage (Supplementary 
Fig. 1A). The median OS for the training cohort was 33 
months (95% CI: 29, 39), and 32 months (95% CI: 30, NA) 
for the internal validation cohort (Fig. 3).

Building a prognostic model in training cohort
Before constructing our model, we conducted univari-
ate and multivariate analyses of prognostic factors in 
our inclusive population. Based on the results of uni-
variate analysis (Table  2), BCLC-stage, CNLC-stage, 
Child-Pugh score, tumor size, tumor number, tumor 
burden score, tumor extent, tumor capsule, types of PVI, 
bone meta, ascites, and AFP were correlated with OS 
(p < 0.05). Subsequently, we completed the correlation 
analysis. We defined a correlation coefficient greater than 
0.7 as a strong correlation. We found a strong correla-
tion between BCLC-stage and CNLC-stage, tumor size 
and TBS, tumor number and tumor capsule, and BCLC-
stage and types of PVI (Fig.  4). For factors with strong 
correlation, we selected only one from each group for 
permutation and combination with other factors. Then 
we performed multiple stepwise regression analyses and 
ultimately selected the model with the highest AUC value 
obtained as our final model (Table 2).

After a backward stepwise removal of variables, four 
remained significant for OS: Child-Pugh score, TBS, 
Tumor extent, and Types of PVI (p < 0.05). We con-
structed the model using two methods integrating these 
predictors. One used the nomogram to predict the 1-, 2-, 
3-, and 5-year OS (Supplementary Fig. 2), and the other 
used the calculated β values (regression coefficient) of 
variables derived from stepwise Cox regression analysis 
multiplied by 6 and rounded to get a new score (Table 3). 
Comparing the AUC values of the two models, it was 
found that the second assignment scoring model had 
a higher AUC value (Supplementary Figs.  4 and 10A). 
Therefore, we selected the second model as our final 
model.

Performance assessment and validation
ROC analysis and c-index are commonly used as a 
stick to evaluate the predictive performance of clini-
cal research, namely discrimination [25, 26]. The AUCs 
for 1-, 2-, 3-, and 5-year OS in the training cohort were 
0.847, 0.803, 0.777, and 0.768, respectively (Fig. 10A and 
C). Similarly, in the validation cohort, the AUCs for 1-, 
2-, 3-, and 5-year OS were 0.862, 0.845, 0.788, and 0.733, 
respectively (Fig. 10B and D). The C-indexes for OS pre-
diction in the training and validation cohorts were 0.75 
and 0.75 respectively. The curve of the c-index of the 
training and validation cohorts over time is shown in 
Fig.  5. The values for 1-, 2-, 3-, and 5-year were 0.787, 
0.738, 0.732, and 0.715 for the training cohort, while 
the validation cohort were 0.803, 0.766, 0.745 and 0.732, 
respectively. Another evaluation method is calibration, 
which compares the predicted survival rate to the actual 
survival rate. The calibration curve visually demonstrates 
the accuracy of the model’s predictions [27]. Figure  6 
showed that the predicted OS results of the 1-, 2-, 3-, and 
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Variables Total (n = 644) Training group (n = 452) Validation Group (n = 192) P value
Gender 0.808
 Male 545 (85) 381 (84) 164 (85)
 Female 99 (15) 71 (16) 28 (15)
Age (years) 59.5 (53, 68) 59 (51, 67) 60 (54, 68) 0.173
Etiology 0.145
 HBV 511 (79) 366 (81) 145 (76)
 Others 133 (21) 86 (19) 47 (24)
BCLC-stage 0.115
 0 47 (7) 31 (7) 16 (8)
 A 199 (31) 128 (28) 71 (37)
 B 211 (33) 156 (35) 55 (29)
 C 187 (29) 137 (30) 50 (26)
CNLC-stage 0.181
 Ia 112 (17) 73 (16) 39 (20)
 Ib 140 (22) 90 (20) 50 (26)
 IIa 69 (11) 51 (11) 18 (9)
 IIb 136 (21) 101 (22) 35 (18)
 IIIa 145 (23) 103 (23) 42 (22)
 IIIb 42 (7) 34 (8) 8 (4)
Ascite 0.982
 No 461 (72) 324 (72) 137 (71)
 Mild 165 (26) 115 (26) 50 (26)
Moderate and above 16 (2) 11 (2) 5 (3)
Liver cirrhosis 0.956
 No 160 (25) 113 (25) 47 (24)
 Yes 483 (75) 338 (75) 145 (76)
AFP 0.28
 ≤ 400 390 (64) 267 (63) 123 (68)
 >400 215 (36) 157 (37) 58 (32)
Child-Pugh score 0.725
 5 270 (42) 189 (42) 81 (43)
 6 183 (29) 135 (30) 48 (25)
 7 121 (19) 83 (19) 38 (20)
 8 46 (7) 30 (7) 16 (8)
 9 17 (3) 11 (2) 6 (3)
Tumor size(cm) 6.1 (3, 9.7) 6.1 (3.1, 9.8) 6.1 (3, 9.43) 0.687
Tumor number 2 (1, 4) 3 (1, 4) 2 (1, 4) 0.058
Tumor Burden Score 0.784
 Low 232 (36) 159 (35) 73 (38)
 Medium 227 (35) 162 (36) 65 (34)
 High 185 (29) 131 (29) 54 (28)
Tumor extent 0.053
 Unilobar 425 (67) 288 (65) 137 (73)
 Mutilobar 209 (33) 158 (35) 51 (27)
Tumor capsule 0.236
 Complete 298 (46) 202 (45) 96 (50)
 Incomplete 344 (54) 249 (55) 95 (50)
Types of PVI 0.698
 No 496 (77) 344 (76) 152 (79)
 I(branch) 97 (15) 71 (16) 26 (14)
 II(trunk) 51 (8) 37 (8) 14 (7)
Extrahepatic metastasis 0.161
 No 602 (93) 418 (92) 184 (96)

Table 1 Characteristics of patients in the training and validation cohort
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5-year survival have good consistency with actual obser-
vations both in the training and validation cohorts. In 
addition to measures such as discrimination and calibra-
tion, DCA is an important verification tool for evaluating 
the clinical benefits of a model and comparing multiple 
models to determine the best decision-making model 
[28]. Figure 7 shows that our model has a significant net 
clinical benefit in predicting survival.

HCC patients were classified into three levels using 
x-tile based on the total score obtained: low-risk group 
(0–7), medium-risk group (8–12), and high-risk group 

(greater than 13). Kaplan-Meier curves of the two 
cohorts are shown in Fig. 8. For the low, the medium OS 
was 44 months (95% CI, 39-NA); for the medium and the 
high, the medium OS was 18 months (95% CI, 16–27) 
and 8 months (95% CI, 6–13), respectively (p < 0.0001). 
In the validation cohort, the median OS was 52 months 
(95% CI, 43–63) for the low-risk group, 24 months (95% 
CI, 16-NA) for the medium-risk group, and 13 months 
(95% CI, 6-NA) for the high-risk group (p < 0.0001). In 
the training cohort, there was a significant statistical dif-
ference in OS among three different risk stratification 

Fig. 3 Kaplan-Meier survival curves of the training cohort and validation cohort

 

Variables Total (n = 644) Training group (n = 452) Validation Group (n = 192) P value
 Yes 42 (7) 34 (8) 8 (4)
Lung meta 0.25
 No 630 (98) 440 (97) 190 (99)
 Yes 14 (2) 12 (3) 2 (1)
Bone meta 1
 No 637 (99) 447 (99) 190 (99)
 Yes 7 (1) 5 (1) 2 (1)
Number of TACE 1
 1 231 (36) 162 (36) 69 (36)
 ≥ 2 413 (64) 290 (64) 123 (64)
Types of TACE 0.612
conventional TACE 555 (86) 387 (86) 168 (88)
drug-eluting beads TACE 89 (14) 65 (14) 24 (12)

Table 1 (continued) 
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groups for BCLC stage 0/A patients (log-rank p < 0.0001, 
Fig.  9A), and for BCLC stage B/C (log-rank p < 0.0001, 
Fig. 9B). The same results were obtained in the validation 
group (Supplementary Fig. 3).

Comparison of different scoring systems
As previously mentioned, both AUC and c-index are 
used to evaluate discrimination ability. DCA provides 
a clear demonstration of the net clinical benefits of 

Table 2 Univariate and multivariate Cox proportional hazard analysis of OS in the training cohort
Variables Univariate analysis Multivariate analysis

Hazard Ratio 95%CI p value Hazard Ratio 95%CI p value
Gender (Male vs. Female) 0.98 0.66–1.45 0.926
Age (years) 1 0.99–1.02 0.917
Etiology (Others vs. HBV) 1.15 0.8–1.65 0.464
BCLC-stage
 0 Ref
 A 3.47 1.25–9.63 0.017
 B 6.07 2.21–16.63 < 0.001
 C 11.31 4.1-31.18 < 0.001
CNLC-stage
 Ia Ref
 Ib 2.08 1.15–3.77 0.015
 IIa 2.14 1.09–4.21 0.027
 IIb 4.18 2.38–7.33 < 0.001
 IIIa 6.5 3.7-11.42 < 0.001
 IIIb 4.91 2.34–10.32 < 0.001
Child-Pugh score
 5 Ref Ref
 6 1.32 0.94–1.87 0.111 1.25 0.87–1.79 0.222
 7 1.55 1.05–2.28 0.027 1.99 1.34–2.96 0.001
 8 2.07 1.18–3.62 0.011 2.12 1.2–3.76 0.01
 9 1.89 0.76–4.71 0.169 3.34 1.32–8.45 0.011
Tumor size 1.13 1.09–1.16 < 0.001
Tumor Number 1.27 1.19–1.37 < 0.001
Tumor Burden Score
 Low Ref Ref
 Medium 2.66 1.83–3.86 < 0.001 2.42 1.62–3.62 < 0.001
 High 5.78 3.9–8.57 < 0.001 5.38 3.44–8.41 < 0.001
Tumor extent 
(Mutilobar vs. Unilobar)

1.65 1.24–2.21 0.001 1.46 1.07–2.01 0.019

Tumor capsule (Yes vs. No) 2.37 1.76–3.2 < 0.001 1.22 0.86–1.73 0.264
Types of PVI
 No Ref Ref
 I(branch) 2.77 1.93–3.96 < 0.001 1.93 1.3–2.86 0.001
 II(trunk) 2.81 1.71–4.63 < 0.001 2.82 1.67–4.74 < 0.001
Extrahepatic metastasis
(Yes vs. No)

1.61 0.91–2.85 0.101

Lung meta (Yes vs. No) 1.96 0.72–5.32 0.185
Bone meta (Yes vs. No) 4.57 1.44–14.53 0.01
Ascites
 No Ref
 Mild 1.64 1.21–2.23 0.002
 Moderate and above 1.17 0.37–3.67 0.793
Liver cirrhosis (Yes vs. No) 0.76 0.55–1.04 0.085
AFP (ng/ml)
(> 400 vs. ≤ 400)

1.77 1.32–2.38 < 0.001

Number of TACE(≥2 vs. 1) 0.58 0.43–0.77 < 0.001
Types of TACE
(DEB-TACE vs. c-TACE) 1.26 0.84–1.88 0.26
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Table 3 β-coefficient and corresponding rounded risk score from multivariate Cox regression model in the training cohort
Variables Overall survival point p value

HR 95%CI β-coefficient
Child-Pugh score 5,6 Ref

7 1.99 1.34–2.96 0.69 4 0.001
8 2.12 1.2–3.76 0.74 4 0.01
9 3.34 1.32–8.45 1.21 7 0.011

Tumor Burden Score Low Ref
Medium 2.42 1.62–3.62 0.89 5 < 0.001
High 5.38 3.44–8.41 1.68 10 < 0.001

Tumor extent unilobar Ref
Mutilobar 1.46 1.07–2.01 0.38 2 0.019

Types of PVI No Ref
I(branch) 1.93 1.3–2.86 0.66 4 0.001
II(trunk) 2.82 1.67–4.74 1.04 6 < 0.001

Fig. 4 Correlation heat map between various factors
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models for patients. We calculated the results of several 
other models, including 6&12 score [5], HAP score [12], 
mHAP score [13], mHAPII score [14], mHAPIII score 
[15], and pre-TACE-Predict Model [16]. Our model con-
sistently had AUC values higher than 0.80 for both 1-year 
and 2-year in both cohorts, surpassing the AUC values of 
other models. In the training cohort, the AUC values of 
the 3-year and 5-year were higher than 0.75, outperform-
ing other models. Similarly, in the validation cohort, our 
model had higher AUC values for 3-year and 5-year com-
pared to most models (Fig. 10C and D).

The C-indexes of these models were also calculated. 
The HAP, mHAP, and mHAPII models had C-index 

values below 0.7 in the training cohort, while our model 
consistently had C-index values above 0.7, surpassing 
other models (Fig.  5). Regarding the validation cohort, 
the C-index values of 6&12, HAP, mHAP, and mHAPIII 
were all below 0.7. Our prediction model was above 0.7 
and performed better than other models.

Our predictive model showed a better ability to pre-
dict survival compared to the all-patients dead scheme 
and the no-patients dead scheme, as shown by the DCA 
curve in Fig.  7. The DCA curve demonstrated that our 
model yielded greater net benefit improvement com-
pared to other prognostic evaluation systems.

Fig. 7 Clinical decision curve analysis for the training cohort (A) and validation cohort (B) for clinical benefits. The black line represents the net benefit of 
the strategy of treating all patients. The gray line represents the net benefit of the strategy of treating no patients

 

Fig. 6 The plots of calibration of 1-year, 2-year, 3-year, and 5-year overall survival. Calibration curves of my model in training cohort (A). Calibration curves 
of my model in the validation cohort (B). The dotted lines represent the ideal predictive model, and the solid red line represents the observed model

 

Fig. 5 Time-dependent concordance index curve of the new model in the training and validation cohort. (A) The c-index for the training cohort. (B) The 
c-index for the validation cohort
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Discussion
The high malignancy, rapid progression, and poor prog-
nosis have seriously threatened the lives and health of 
our people. TACE is the most commonly used treat-
ment method for mid-term HCC [3, 4]. However, TACE 
is also applied to patients suffering from unresectable 
early HCC and those with liver-confined advanced dis-
eases [5–7]. However, due to differences in tumor burden 
and liver reserve function, patients often have different 
prognosis [5, 8–10]. This heterogeneity makes progno-
sis prediction challenging, therefore making treatment 
decisions for these patients remains difficult. Despite the 
development of numerous prognostic models to predict 
the effectiveness of TACE treatment, there is currently 
no standardized policy to determine which patients can 
benefit from TACE. The objective of this study is to con-
struct and verify a new model for predicting the prognos-
tic role of HCC patients receiving TACE.

When the Milan Criteria (MC) was first proposed in 
1996, they quickly became the cornerstone for selecting 
and managing liver cancer patients. However, due to the 
variable tumor burden, significant differences in treat-
ment choices may be present for patients who exceed 

MC. To address this, up-to-7 criteria and up-to-11 cri-
teria for evaluating the burden of liver cancer have been 
proposed. These two models combine the maximum 
nodule diameter and the number of nodules, with a total 
of no more than 7 or 11. Unlike the traditional method of 
using the maximum diameter and the number of nodules 
as the burden of liver cancer, TBS has recently been pro-
posed to minimize the heterogeneity of cancer patients. 
Duvoux’s team proposed a French AFP liver transplan-
tation model consisting of maximum tumor diameter, 
number of tumors, and AFP level, with transplant eligi-
bility of ≤ 2 points. As long as the AFP is ≤ 100 (0 points) 
and the maximum tumor diameter is ≤ 3  cm (0 points), 
the patient can be put on the waiting list regardless of the 
number of tumors in the patient [29], which means that 
patients can easily be on the waiting list, provided they 
have micronodular HCC and are AFP negative. However, 
a later study by Mazzotta found that there was a signifi-
cant difference in 3-year and 5-year survival among those 
with AFP ≤ 2 grouped with a cutoff of 5 after entering the 
waiting list and before undergoing liver transplantation 
[30]. Tumor diameter and number were found to have 
important prognostic value in liver transplant patients. 

Fig. 9 Kaplan-Meier survival curves of patients in the training cohort stratified by the new model in the BCLC 0/A (A) and BCLC B/C (B)

 

Fig. 8 Kaplan-Meier survival curves of patients with HCC stratified by the new model in the training cohort (A) and in the validation cohort (B)
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TBS is an index that combines them to reduce the bias 
in prognostic estimation due to the truncated values 
described above. TBS is a promising tool for predicting 
the outcomes of HCC patients after liver transplantation. 
A study by Moris D et al. showed that patients with high 
TBS had worse OS and recurrence free survival. When 
the study superimposed TBS on the Milan standard, it 
was found that patients with higher TBS values within 
the Milan standard had a higher risk of recurrence [23]. 
Further research is needed to determine whether our 
TBS-based model can be extended to patients with other 
treatment options. It has been proven to have excellent 
prognostic discrimination in colorectal liver metastasis, 

liver cancer resection, and liver transplant patients [20, 
22, 23, 31].

In this study, we performed an OS analysis on the TBS 
values of all the patients included. The results showed 
that it could distinguish the OS of liver cancer patients 
receiving TACE, consistent with previous research 
results [21].

In subgroup analysis based on BCLC stage, it was found 
that patients with high TBS had the worst prognosis in 
the BCLC B/C. However, TBS did not play a role in the 
early BCLC stage. According to the definition of BCLC, 
BCLC 0/A refers to a single nodule or multiple small 
nodules. So even if the patient is in the high or medium 

Fig. 10 Time-dependent ROC curve for predicting OS at 1-, 2-, 3-, and 5-year in the training cohort (A) and in the validation cohort (B). Comparison of 
time-dependent AUC values of different prediction models at 1-, 2-, 3-, and 5-year in the training cohort (C) and the validation cohort (D)
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TBS group, the increase in TBS is mostly caused by iso-
lated large nodules, TACE treatment still has a nice effect 
on the tumor-feeding artery, leading to a good prognosis, 
similar to the conclusions obtained in previous studies 
[21].

We then added tumor extent (Mutilobar vs. Unilobar) 
and PVI level (no or below branches or above branches) 
to the TBS to jointly form tumor features. Combining 
with the Child-Pugh score, we constructed a prognos-
tic prediction model that demonstrated excellent sur-
vival prediction performance. As the Child-Pugh score, 
TBS, tumor distribution increase, and the grade of PVI 
increases, the survival prognosis of patients will deterio-
rate. We validated the model in the training and valida-
tion cohorts using AUC and C-index, and the validation 
cohort had even better discriminative ability with higher 
AUC and C-index values. We also used a nomogram-like 
approach to estimate patient survival based on patient 
scores, which created a graphical statistical prognostic 
model that can predict the probability of death over time 
(Supplementary Fig.  5) [32, 33]. From this, we can see 
that as patient scores increase, the survival rate gradu-
ally deteriorates. In clinical practice, we can infer the 
survival rate of patients at different times in their basic 
clinical data. Moreover, we divided HCC patients into 
three different risk groups based on the predicted risk of 
death using the model. There was a significant difference 
in survival among the three groups in both the training 
and validation cohorts. Additionally, survival analysis 
on the training and validation cohorts showed that our 
model has prognostic stratification ability for both early 
and advanced HCC. With the continuous development 
of clinical trials of new drugs [34, 35], our model could 
guide the identification of patients who may not benefit 
from TACE treatment, allowing for timely shifts to sys-
tematic or evidence-based treatment when poor patient 
survival outcomes were estimated. Therefore, our predic-
tion model may have sufficient external utility and poten-
tial for further clinical application in the future.

Our scoring system includes risk factors consistent 
with previous research. TBS represents the maximum 
diameter of the tumor and the number of intrahepatic 
tumors. To our knowledge, our study was the first to 
incorporate TBS into the TACE treatment prognosis 
model for HCC, providing solid evidence that TBS has 
good discrimination ability as a tumor burden indicator. 
PVI and tumor extension represent the invasiveness of 
tumor biology [36–39]. Unlike other prognostic models 
for solid tumors, liver reserve function plays an impor-
tant role in disease analysis and prognosis of patients. The 
Child-Pugh score represents liver reserve status and eval-
uates liver tolerance to TACE, widely used in liver reserve 
function evaluation and predictive systems [4, 40, 41]. 
The traditional liver cancer monitoring indicator AFP 

did not have significant prognostic value in this study. 
It remained a controversial biomarker for liver cancer, 
as many patients exhibit negative AFP and its sensitiv-
ity and specificity are not high, similar to some previous 
research findings [42, 43]. Our analysis showed that our 
scoring system predicted the survival of TACE-treated 
patients better than other scoring systems. The model 
has the highest discriminatory ability to predict OS due 
to its maximum AUC value and c-index while providing 
relatively higher clinical net benefits for patients from 
the DCA results. Above all, our model has the following 
advantages. Firstly, it includes simple clinical indicators 
that are easily obtainable. Secondly, it can be applied to 
patients outside of TACE guidance standards. Lastly, the 
probability of specific survival time can be provided to 
clinical doctors.

As our model demonstrates prognostic stratification 
significance for HCC patients receiving TACE at differ-
ent stages, it is important to note that for HCC patients 
treated with other methods, such as surgery, radiofre-
quency, liver transplantation, etc., they cannot be vali-
dated from our inclusion population due to limitations in 
inclusion and exclusion criteria. For patients undergoing 
surgical resection treatment, OS gradually deteriorates 
with increasing TBS. Regardless of the BCLC stage, there 
was no difference in OS between patients with simi-
lar TBS groups (BCLC-A/medium TBS and BCLC-B/
medium TBS, P = 0.930; BCLC-A/high TBS and BCLC-
B/high TBS, P = 0.175). Patients with BCLC-B HCC with 
medium TBS have better OS than those with BCLC-A 
with high TBS [22].

This study has certain limitations that should be con-
sidered when interpreting the results. Like all retrospec-
tive studies, there may be selection bias in determining 
which patients receive TACE treatment. Moreover, most 
of the included patients had HBV infection-related liver 
cancer, so we still need more external validation when 
extrapolating the results to other etiological populations. 
Additionally, the validation group used in our research 
is from the same institution, so external data validation 
from multiple centers is necessary. Lastly, this study only 
focused on patients receiving TACE as their initial treat-
ment. Studying patients who have previously received 
other treatments, such as surgery or radiofrequency abla-
tion, may broaden the application scope of the model.

Conclusion
In summary, this study developed a simple, clinically rel-
evant, and easily accessible model to predict the progno-
sis of patients receiving TACE treatment, which includes 
three tumor features and one liver function indicator. 
One of the indicators, TBS, is entering the TACE prog-
nostic model for the first time. From the model predic-
tion, high-risk patients may not benefit from TACE 
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treatment and should consider alternative treatments. 
This model has been validated in the validation cohort 
and performs well compared to other prognostic systems, 
but it still needs to be prospectively validated in a larger 
cohort to confirm the suitability of our findings.
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