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Abstract 

Background This study aimed to develop and validate a machine learning (ML)-based fusion model to preopera-
tively predict Ki-67 expression levels in patients with head and neck squamous cell carcinoma (HNSCC) using mul-
tiparametric magnetic resonance imaging (MRI).

Methods A total of 351 patients with pathologically proven HNSCC from two medical centers were retrospectively 
enrolled in the study and divided into training (n = 196), internal validation (n = 84), and external validation (n = 71) 
cohorts. Radiomics features were extracted from T2-weighted images and contrast-enhanced T1-weighted images 
and screened. Seven ML classifiers, including k-nearest neighbors (KNN), support vector machine (SVM), logistic 
regression (LR), random forest (RF), linear discriminant analysis (LDA), naive Bayes (NB), and eXtreme Gradient Boosting 
(XGBoost) were trained. The best classifier was used to calculate radiomics (Rad)-scores and combine clinical factors 
to construct a fusion model. Performance was evaluated based on calibration, discrimination, reclassification, and clin-
ical utility.

Results Thirteen features combining multiparametric MRI were finally selected. The SVM classifier showed the best 
performance, with the highest average area under the curve (AUC) of 0.851 in the validation cohorts. The fusion 
model incorporating SVM-based Rad-scores with clinical T stage and MR-reported lymph node status achieved 
encouraging predictive performance in the training (AUC = 0.916), internal validation (AUC = 0.903), and external vali-
dation (AUC = 0.885) cohorts. Furthermore, the fusion model showed better clinical benefit and higher classification 
accuracy than the clinical model.

Conclusions The ML-based fusion model based on multiparametric MRI exhibited promise for predicting Ki-67 
expression levels in HNSCC patients, which might be helpful for prognosis evaluation and clinical decision-making.
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Background
Head and neck squamous cell carcinoma (HNSCC), 
which arises from the mucosal epithelium of the oral 
cavity, larynx, and pharynx, is one of the most typical 
malignant tumors of the head and neck [1]. Although 
multimodal treatment strategies have been established 
in recent years, the prognosis for this highly malignant 
disease is still poor, and 5-year survival rates are unsatis-
factory [2]. The current approach used to assess the prog-
nosis of HNSCC patients mainly depends on the Tumor 
Node Metastasis (TNM) staging system. Nevertheless, 
due to variability in pathological features and tumor biol-
ogy, even patients with the same TNM staging may have 
completely different survival outcomes and treatment 
results [3]. Therefore, it is crucial to identify a reliable 
prognostic indicator for HNSCC.

Ki-67 is a nuclear antigen related to cell proliferation 
and correlated positively with cancer aggressiveness [4]. 
Some studies confirmed that a high Ki-67 expression 
level was closely associated with the aggressive behavior 
and poor prognosis of HNSCC [5, 6]. In addition, prior 
studies demonstrated that tumors with a higher Ki-67 
index were more sensitive to radiation and responded 
significantly better to radiation therapy [7–9]. Conse-
quently, accurately determining the preoperative Ki-67 
expression level is essential for evaluating the prognosis 
of HNSCC patients and clinical decision-making. In clin-
ical practice, the Ki-67 expression level is mainly deter-
mined based on immunohistochemistry (IHC) using 
surgery- or biopsy-derived pathological tissues, which is 
invasive and time-consuming and does not enable real-
time assessment. Moreover, due to the high heterogene-
ity of tumor tissues, local tissues obtained through biopsy 
alone may not accurately reflect the whole tumor [10, 11]. 
Therefore, an accurate and noninvasive tool is required to 
preoperatively assess Ki-67 expression levels in patients 
with HNSCC.

Magnetic resonance imaging (MRI) and computed 
tomography (CT) are widely used imaging modalities 
in the diagnosis, staging, and treatment follow-up of 
HNSCC. Compared with CT, MRI is considered to have 
substantial advantages in demonstrating the extent of 
tumor invasion and visualizing soft tissue [12]. How-
ever, conventional MRI results are mostly subjective 
and qualitative, which may lead to a lack of consist-
ency and reproducibility between different institutions 
and physicians. Some quantitative parameters of func-
tional MRI have been demonstrated to be associated 
with the Ki-67 expression level in HNSCC patients 
[13–15]. Nevertheless, these measurements are likely 
to be taken outside the biopsied area and may not fully 
reflect tumor heterogeneity. In addition, functional 
MRI examinations require additional scan sequences, 

resulting in increased costs and scan times for patients. 
Radiomics can extract deep quantitative features from 
medical images that cannot be recognized by the naked 
eye. By analyzing the correlation between these features 
and clinical, pathological, and genetic information, the 
overall heterogeneity and biological behavior of tumors 
can be unraveled [16]. In recent years, some studies 
have achieved a good predictive efficiency for Ki-67 in 
several malignant cancers, including breast cancer [17], 
meningioma [18], hepatocellular carcinoma [19], and 
sinonasal malignancy [20], using MRI-based radiomics. 
However, the predictive value of radiomics regarding 
the Ki-67 expression level in HNSCC patients remains 
uncertain. Moreover, multiple machine learning (ML) 
algorithms have not been combined with radiomics to 
predict Ki-67 expression in HNSCC thus far.

This study aimed to develop an ML-based radiomics 
model using multiparametric MRI to effectively predict 
the Ki-67 expression level in HNSCC patients. In addi-
tion, we constructed a fusion model based on clinical 
characteristics and MRI radiomics features to improve 
the predictive power and interpretability of the Ki-67 
expression level.

Methods
Patient selection and clinical data
This study approved by the Institutional Review Boards 
of the Fifth Affiliated Hospital of Wenzhou Medical 
University (Center 1) and the Sixth Affiliated Hospi-
tal of Wenzhou Medical University (Center 2). The 
requirement for informed consent from patients was 
waived due to the study’s retrospective nature. This 
study was conducted in accordance with STARD 2015 
guidelines (equator-network.org). HNSCC patients 
with confirmed pathology were identified in Center 
1 (from January 2017 to August 2023) and Center 2 
(from January 2020 to August 2023). After applying 
the inclusion and exclusion criteria (see Appendix E1), 
351 patients with HNSCC were enrolled in the study. 
Among them, 280 eligible patients from Center 1 were 
randomly divided into a training cohort (n = 196) and 
an internal validation cohort (n = 84) in a 7:3 ratio, 
while 71 patients from Center 2 were recruited as an 
external validation cohort. The clinical data of the 
enrolled patients were retrospectively collected from 
the medical record system and included age, sex, smok-
ing history, tumor location, and clinical T stage. The 
clinical T stage of HNSCC was based on the 2017 8th 
edition manual of the American Joint Committee on 
Cancer (AJCC) [21]. The detailed patient enrollment 
process is shown in Fig. 1, and the sample size estima-
tion is described in Appendix E2.
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MRI acquisition and evaluation
MR images were obtained using different 3.0-T MR scan-
ners from two manufacturers (Center 1: Ingenia, Philips 
Healthcare; Center 2: Discovery 750W, GE Healthcare), 
both with the neck orthogonal coil. The scan sequences 
included T2-weighted imaging fat suppression (T2WI-
FS) and contrast-enhanced T1-weighted imaging (CE-
T1WI) sequences. The acquisition parameters of these 
protocols are summarized in Table S1. Gd-DTPA (Scher-
ing, Germany) was used as the contrast agent, injected 
via the arm vein with a MEDRAD high-pressure syringe 
at a dose of 0.2 mmol/kg and a flow rate of 2.5 ml/s. After 
contrast injection, 20 ml of saline was injected continu-
ously at the same flow rate. CE-T1WI was acquired 15 s 
following the contrast injection.

All MRI images were reviewed in consensus by two 
radiologists (reader A and reader B, with 7 and 16 years 
of experience in head and neck MRI diagnostics, respec-
tively) in a blinded manner (knowing the diagnosis 
of HNSCC but not the other clinical and pathologi-
cal details). The classification criterion of MR-reported 
lymph node (LN) status is shown in Appendix E3.

IHC staining of Ki‑67
The expression level of Ki-67 was assessed by performing 
IHC staining on surgical histopathology samples. After 
sample fixation, embedding, drying, dewaxing, rinsing, 

and hydration, IHC staining was performed using a Ki-67 
protein antibody (dilution 1:300). Cells were considered 
positive when the nuclei were dark yellow or brown. Posi-
tive cells were selected from among the five areas with 
the highest density of positives, following which 100 
nuclei were counted at a high magnification (× 200) to 
determine the percentage of positive cells. According to 
previous studies [22–24], using 50% as the cut-off value 
of Ki-67 in HNSCC can effectively predict the prognosis. 
Thus, a Ki-67 index of < 50% was considered low expres-
sion, while that of ≥ 50% was defined as high expression. 
The Ki-67 analyses were retrospectively performed by 
two pathologists (with 5 and 10 years of experience) who 
were blinded to the clinical information. Representative 
MRI images from patients with Ki-67 expression levels 
identified as low and high are shown in Fig. 2.

Tumor segmentation, feature extraction, and repeatability 
analysis
The radiomics workflow of the present study is shown 
in Fig.  3. Bias field correction was performed to elimi-
nate signal intensity variations due to magnetic field 
inhomogeneities before outlining the regions of interest 
(ROIs). The pre-processed images were uploaded to the 
Radcloud platform (v7.1, http:// radcl oud. cn/). Two radi-
ologists (reader A and reader B) who were blinded to the 
final pathological results outlined ROIs along the edges of 
the lesion layer-by-layer on the T2WI-FS and CE-T1WI 

Fig. 1 Recruitment pathway for eligible patients in this study. HNSCC, head and neck squamous cell carcinoma; IHC, immunohistochemistry; MRI, 
magnetic resonance imaging

http://radcloud.cn/


Page 4 of 14Chen et al. BMC Cancer          (2024) 24:418 

images, respectively. For each sequence image, a separate 
whole-tumor volume of interest (VOI) was generated by 
ROI superimposition.

Then, the radiomics features from each VOI were 
extracted using the Radcloud platform with a wide vari-
ety of engineered, hard-coded feature algorithms [25, 26]. 
Before feature extraction, all images were resampled to a 
voxel size of 1 × 1 × 1  mm3 using B-Spline interpolation 
to reduce the effect of slice thickness variations and iso-
tropic voxels to ensure rotation invariance. Subsequently, 
to minimize inherent differences in pixel intensities 
across two different MR scanners, the gray-level intensity 
for all image volumes was scaled in the range of 0–255 
after removing pixels with outlier values [27]. A total of 
1688 radiomics features were initially extracted from 
each VOI for each patient image sequence. The details 
of the extracted features are given in Appendix E4. The 

intra- and inter-class correlation coefficients (ICCs) were 
calculated for repeatability analysis (Appendix E5).

Feature selection, radiomics signature construction, 
and evaluation
To eliminate scaling differences, radiomics features were 
normalized using a standardized method (Appendix E6). 
Then, a three-step procedure involving variance thresh-
old, SelectKBest, and least absolute shrinkage and selec-
tion operator (LASSO) regression was performed for the 
selection of task-specific radiomics features in the train-
ing cohort from the feature subsets of T2WI-FS and CE-
T1WI sequences alone and in combination, as detailed in 
Appendix E7.

Thereafter, the selected features were entered into 
the following ML classifiers to construct radiomics sig-
natures: k-nearest neighbors (KNN), support vector 

Fig. 2 Representative MRI images of head and neck squamous cell carcinoma patients whose Ki-67 expression levels were determined as being 
low and high. A A 67-year-old male patient with a visible mass in the hypopharynx. The immunohistochemical image presented a low Ki-67 
expression level (× 200; Ki-67 index = 20%). B A 62-year-old male patient with a visible mass in the hypopharynx. The immunohistochemical image 
presented a high Ki-67 expression level (× 200; Ki-67 index = 90%). MRI, magnetic resonance imaging
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Fig. 3 The workflow of radiomics analysis in the present study. First, VOIs were manually delineated around the entire tumor outline on each axial 
slice of T2WI-FS and CE-T1WI images. Second, 1688 radiomics features were extracted from each three-dimensional segmentation. Third, three steps 
of feature selection were applied to all extracted features. Then, seven radiomics signatures were built using seven machine learning classifiers, 
and the radiomics signature with the best predictive performance was used to build the radiomics model. A clinical model was constructed using 
logistic regression analysis. Finally, a fusion model incorporating the optimal radiomics score and key clinical characteristics was built and presented 
as a nomogram, which was evaluated by ROC analysis, calibration curve, and DCA. CE-T1WI, contrast-enhanced T1-weighted imaging; DCA, decision 
curve analysis; LASSO, least absolute shrinkage and selection operator; ROC, receiver operating characteristic; T2WI-FS, T2-weighted imaging fat 
suppression; VOI, volume of interest
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machine (SVM), logistic regression (LR), random for-
est (RF), linear discriminant analysis (LDA), naive Bayes 
(NB), and eXtreme Gradient Boosting (XGBoost). The 
rationales and considerations behind the choice of the 
seven ML classifiers in this study were detailed in the 
Appendix E8. The Grid Search in Python was utilized 
to automatically search for the optimal hyperparameter 
combinations for each classifier (see in the Appendix 
E9). Additionally, the seven classifiers were validated in 
the validation cohorts. The prediction performance of 
the radiomics signatures was evaluated using the area 
under the receiver operator characteristic (ROC) curve 
(AUC), sensitivity, specificity, and accuracy. The classi-
fier with the highest average AUC value in the validation 
cohorts was chosen as the best classifier [28–30]. The 
best classifier was used to classify key radiomics features 
of HNSCC patients according to different Ki-67 expres-
sion levels, thereby calculating Radiomics (Rad)-scores, 
which indicate the relative risk of high Ki-67 expression 
in HNSCC patients, and were used to build the radiomics 
model. The distribution of the Rad-scores between the 
Ki-67 low- and high-expression groups was also analyzed 
to verify its diagnostic performance.

Development and validation of the prediction models
Univariate LR analysis was performed to assess the asso-
ciation between clinical-radiological characteristics and 
Ki-67 expression level, and clinical predictors with P < 0.1 
were included in the multivariate LR analysis to develop 
the clinical model. Afterward, multivariate analysis and 
backward stepwise regression analysis based on the 
Akaike Information Criterion were performed to estab-
lish the fusion model and corresponding nomogram 
incorporating the Rad-score and significant clinical pre-
dictors in the training cohort. During this procedure, 
collinearity was examined, and variables with a variance 
inflation factor (VIF) of greater than 10 and P > 0.05 were 
excluded [31]. The models were tested in the validation 
cohorts. The predictive performance of the prediction 
models was evaluated using ROC analysis, calibration 
curves, and decision curve analysis (DCA). The percent-
age of true positive, false positive, true negative, and false 
negative results was determined according to the refer-
ence standard of pathological results by ROC analysis, 
and the results are displayed in the form of a confusion 
matrix diagram. Calibration curves were plotted by boot-
strapping with 1000 resamples, and DCA was performed 
to visualize the net benefit for clinical decisions. The 
net reclassification improvement (NRI) and integrated 
discrimination improvement (IDI) values were used to 
quantify the different models’ clinical usefulness and net 
benefit.

Statistical analysis
All statistical analyses were completed using Python 
v3.7.6 and R software. The Kolmogorov–Smirnov 
test was performed to test the normality of continu-
ous variables. Student’s t-test was applied to compare 
continuous variables with a normal distribution, the 
Mann–Whitney U test was used for non-normally 
distributed variables, and the chi-square test was per-
formed for categorical variables. The R packages used 
in this study included “glmnet” (for LASSO regression), 
“rms” (for LR analysis and calibration curves), “rmda” 
(for DCA), and “PredictABEL” (for the calculation of 
NRI and IDI). ROC analysis was performed using Med-
Calc, and the DeLong test was used to compare the dif-
ferences in AUC values between models. All tests were 
two-tailed, and P < 0.05 was considered statistically 
significant.

Results
Patient characteristics and clinical model construction
The clinical characteristics and MRI features of the 351 
patients in the training, internal validation, and exter-
nal validation cohorts are summarized in Table  1 and 
Table S2. Overall, the three cohorts were balanced 
and comparable. Significant differences in the clini-
cal T stage and MR-reported LN status were observed 
between the Ki-67 low- and high-expression groups 
in all three cohorts (all P < 0.05), while differences in 
other characteristics were not statistically significant 
(all P > 0.05). Following univariate and multivariate 
regression analyses, clinical T3-T4 stage (odds ratio 
[OR]: 3.715, confidence interval [CI]: 1.580–8.737, 
P = 0.003) and MR-reported LN metastasis (OR: 2.836, 
CI: 1.195–6.729, P = 0.018) were confirmed as inde-
pendent predictors of high Ki-67 expression and used 
to construct the clinical model (Table S3). No collinear-
ity was detected since the VIFs of the predictors were 
1.077 and 1.131, respectively.

Radiomics feature selection and signature construction
Intra-observer ICCs ranged from 0.858 to 0.963, while 
inter-observer ICCs ranged from 0.827 to 0.931. The 
results of feature selection in the training cohort are 
shown in Fig. S1. The optimal radiomics feature sub-
sets selected from T2WI-FS and CE-T1WI for predict-
ing high Ki-67 expression are listed in Table S4. Finally, 
13 radiomics features were retained from the combined 
images of T2WI-FS (n = 7) and CE-T1WI (n = 6) using 
LASSO regression (Fig. S2), and the relative importance 
of the 13 selected features is shown in Fig. S2C. The 
correlation heatmap indicated that the selected features 
from the combined images were relatively independent 
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(Fig. S3). Then, all selected features were combined to 
generate the radiomics signature with seven ML classi-
fiers (KNN, SVM, LR, RF, LDA, NB, and XGBoost).

Performance of radiomics signatures and radiomics model 
construction
For the combined sequences, the predictive perfor-
mances of the radiomics signatures based on six clas-
sifiers in the training, internal validation, and external 
validation cohorts are shown in Fig.  4 and Table  2. 
Among these classifiers, the accuracy of RF was 100.0% 
in the training cohort but 60.2% and 63.4% in the inter-
nal and external validation cohorts, respectively, which 
suggested the presence of overfitting. The SVM classifier 
achieved the highest average AUC of 0.851 and the high-
est average accuracy of 0.832 in the validation cohorts. 
Moreover, the SVM classifier exhibited better predic-
tive performance than the other classifiers in the valida-
tion cohorts according to the ROC curves (Fig. S4) and 
DeLong tests (Fig.  4B). Therefore, SVM was selected as 

the optimal classifier to calculate Rad-scores for con-
structing the radiomics model.

We constructed the radiomics models using the sin-
gle sequence (T2WI-FS and CE-T1WI) images based on 
the SVM classifier. As depicted in Fig. S5, the radiomics 
model using the combined sequences had higher AUC 
values than the models with T2WI-FS and CE-T1WI in 
all three cohorts (all P < 0.05). The SVM-based Rad-scores 
using combined sequences showed significant differences 
between the Ki-67 low- and high-expression groups in all 
three cohorts (all P < 0.001, Fig. S6A-C), and the correla-
tion between Ki-67 status, clinical features, and radiom-
ics features is shown in Fig. S6D-F.

Development and validation of an individualized 
prediction nomogram
We further integrated the SVM-based Rad-scores with 
significant clinical factors (clinical  T stage and MR-
reported LN status) to build a fusion prediction model. 
The detailed performance of three models in the train-
ing and validation cohorts is summarized in Table 3 and 

Table 1 Comparison of clinical characteristics and MRI features between patients with Ki-67 low expression and those with high 
expression of HNSCC

HNSCC Head and neck squamous cell carcinoma, LN Lymph node, MRI Magnetic resonance imaging

Characteristic Training cohort (n = 196) P value Internal Validation cohort 
(n = 84)

P value External Validation cohort 
(n = 71)

P value

Low Ki‑67 
expression 
(n = 104)

High Ki‑67 
expression 
(n = 92)

Low Ki‑67 
expression 
(n = 44)

High Ki‑67 
expression 
(n = 40)

Low Ki‑67 
expression 
(n = 38)

High Ki‑67 
expression 
(n = 33)

Age, years 0.495 0.785 0.702

 < 60 48 (46.1) 38 (41.3) 20 (45.5) 17 (42.5) 19 (50.0) 15 (45.5)

 ≥ 60 56 (53.8) 54 (58.7) 24 (54.5) 23 (57.5) 19 (50.0) 18 (54.5)

Sex 0.187 0.403 0.571

Male 85 (81.7) 68 (73.9) 33 (75.0) 33 (82.5) 29 (76.3) 27 (81.8)

Female 19 (18.3) 24 (26.1) 11 (25.0) 7 (17.5) 9 (23.7) 6 (18.2)

Smoking his-
tory

0.767 0.749 0.592

No 60 (57.7) 55 (59.8) 26 (59.1) 25 (62.5) 23 (60.5) 22 (66.7)

Yes 44 (42.3) 37 (40.2) 18 (40.9) 15 (37.5) 15 (39.5) 11 (33.3)

Tumor location 0.466 0.226 0.113

Oral cavity 42 (40.4) 33 (35.9) 20 (45.4) 13 (32.5) 18 (47.4) 10 (30.3)

Oropharynx 11 (10.6) 17 (18.5) 7 (15.9) 4 (10.0) 6 (15.8) 3 (9.1)

Larynx 35 (33.6) 28 (30.4) 15 (34.1) 17 (42.5) 12 (31.6) 13 (39.4)

Hypopharynx 16 (15.4) 14 (15.2) 2 (4.5) 6 (15.0) 2 (5.3) 7 (21.2)

Clinical T stage  < 0.001 0.004 0.006

T1-T2 63 (60.6) 24 (26.1) 28 (63.6) 13 (32.5) 24 (63.2) 10 (30.3)

T3-T4 41 (39.4) 68 (73.9) 16 (36.4) 27 (67.5) 14 (36.8) 23 (69.7)

MR-reported LN 
status

 < 0.001 0.005 0.029

Negative 78 (75.0) 42 (45.7) 33 (75.0) 18 (45.0) 27 (71.1) 15 (45.5)

Positive 26 (25.0) 50 (54.3) 11 (25.0) 22 (55.0) 11 (28.9) 18 (54.5)
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depicted in Fig. 5A by confusion matrices. The ROCs for 
Ki-67 status prediction according to these three models 
and the results of DeLong’s tests are shown in Fig.  5B. 
Notably, the incorporation of Rad-scores led to a signifi-
cant increase in the AUC values for the clinical model in 
the training, internal validation, and external validation 

cohorts from 0.737 to 0.916 (Z = 5.702, P < 0.001), 0.715 to 
0.903 (Z = 3.485, P = 0.011), and 0.654 to 0.885 (Z = 3.477, 
P < 0.001), respectively. However, no significant differ-
ence in AUCs was found between the radiomics model 
and fusion model in the internal and external validation 
cohorts (all P > 0.05).

Fig. 4 ROC analysis results (A) and DeLong’s tests (P value) of different radiomics signatures (B) in the internal validation cohort (left) and external 
validation cohort (right). ACC, accuracy; AUC, area under the curve; KNN, k-nearest neighbors; LDA, linear discriminant analysis; LR, logistic 
regression; NB, naive Bayes; RF, random forest; ROC, receiver operating characteristic; SEN, sensitivity; SPE, specificity; SVM, support vector machine; 
XGBoost, eXtreme Gradient Boosting

Table 2 Diagnostic performance of various machine learning-based radiomics signatures

AUC  Area under the curve, ACC  Accuracy, CI Confidence interval, KNN K-nearest neighbors, SVM Support vector machine, LR Logistic regression, RF Random forest, LDA 
Linear discriminant analysis, NB Naive Bayes, XGBoost eXtreme Gradient Boosting

Model Training cohort Internal validation cohort External validation cohort Validation cohorts

AUC (95% CI) ACC (%) AUC (95% CI) ACC (%) AUC (95% CI) ACC (%) Average AUC Average ACC (%)

KNN 0.829 (0.753—0.904) 77.55 0.778 (0.675—0.862) 72.62 0.768 (0.653—0.860) 76.06 0.773 74.34

SVM 0.884 (0.831—0.925) 80.61 0.860 (0.767—0.926) 83.33 0.841 (0.734—0.917) 83.10 0.851 83.22

LR 0.870 (0.815—0.914) 82.14 0.809 (0.708—0.886) 79.76 0.744 (0.627—0.840) 74.64 0.777 77.20

RF 1.000 (1.000–1.000) 100.0 0.642 (0.530—0.744) 63.10 0.642 (0.519—0.752) 63.38 0.642 63.24

LDA 0.830 (0.770—0.880) 75.00 0.782 (0.678—0.864) 77.38 0.717 (0.598—0.818) 73.24 0.749 75.31

NB 0.769 (0.704—0.826) 70.92 0.762 (0.657—0.848) 75.00 0.691 (0.571—0.796) 69.01 0.727 72.01

XGBoost 0.926 (0.880—0.959) 85.71 0.686 (0.575—0.783) 69.05 0.643 (0.520—0.753) 69.01 0.665 69.03
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Finally, we visualized the fusion model as a nomogram 
to individually predict the risk of high Ki-67 expression 
in HNSCC patients (Fig.  6A). The calibration curves 
showed that the predicted Ki-67 high-expression prob-
abilities of the fusion model had excellent agreement 
with the actual observations (Fig.  6B). Additionally, the 
DCA results showed that the radiomics model and fusion 
model had a higher overall net benefit than the clini-
cal model across the majority of the range of reasonable 
threshold probabilities in the three cohorts (Fig.  6C). 
Furthermore, the inclusion of Rad-scores in the fusion 
model yielded a total NRI of 0.477 (95% CI: 0.206–0.748, 
P < 0.05) and IDI of 0.204 (95% CI: 0.112–0.325, P < 0.05). 
Similar results were observed in the validation cohorts 
(Fig. S7), which showed improved prediction efficiency 
and classification accuracy for the Ki-67 expression out-
come. However, we found no significant difference in the 
NRI and IDI between the radiomics model and the fusion 
model in the three cohorts (all P > 0.05).

Discussion
High Ki-67 expression in HNSCC correlates with strong 
proliferative activity and tumor invasiveness [5]. Addi-
tionally, the Ki-67 index can be used as an important 
indicator to help identify candidates for radiotherapy 
[7]. Thus, the accurate preoperative assessment of Ki-67 
expression is essential for prognostic evaluation and 
treatment planning. This is the first study to establish 
a fusion model using multiparametric MRI to preop-
eratively predict the Ki-67 expression level in HNSCC 
patients by incorporating SVM-based radiomics signa-
tures and clinical features. The fusion model accurately 
distinguished between Ki-67 indexes of < 50% and ≥ 50% 
with favorable AUCs (0.916, 0.903, and 0.885, respec-
tively) and high accuracies (85.20%, 85.71%, and 84.51%, 
respectively) in the training, internal validation, and 
external validation cohorts. The proposed fusion model 

had superior performance to the clinical model that 
included clinical T stage and MRI-reported LN, sug-
gesting that the addition of radiomics features enhanced 
its diagnostic efficacy and incremental value in predict-
ing Ki-67 expression level. Thus, this model can accu-
rately and robustly predict high Ki67 expression in 
HNSCC and provide additional information for clinical 
decision-making.

Radiomics can extract abundant high-dimensional 
information from medical images and characterize the 
heterogeneity within tumors comprehensively and accu-
rately. Tumors with different Ki-67 expression levels 
have been reported to exhibit significant heterogene-
ity in terms of cell proliferation and differentiation [24]. 
Therefore, by analyzing the radiomics features corre-
sponding to tumors with different Ki-67 expression lev-
els, the correlation between these characteristics and 
their potential biological significance can be explored. By 
transforming CT or MRI images into high-throughput 
quantitative data, radiomics features have been used to 
predict the Ki-67 index in various tumor types [17–20, 
32, 33]. In this study, 13 optimal radiomics features were 
screened for their correlation with Ki-67 expression level 
in HNSCC, including nine wavelet transformed fea-
tures, three first-order statistical features, and one filter 
transformed feature. The wavelet transformed features 
obtained by wavelet decomposition of the first order 
and texture features can extract heterogeneity informa-
tion from the original images [34]. The wavelet features 
mainly include the gray level size zone matrix (GLSZM), 
gray level dependence matrix (GLDM), and first-order 
features. GLSZM is the number of linker voxels with the 
same gray intensity, while GLDM is the number of linker 
voxels within a specific distance dependent on the central 
voxel. The above two texture parameters are calculated 
values based on voxel alignment, which can character-
ize the irregularity of voxel alignment in the tumor space. 

Table 3 Predictive performance of the clinical model, SVM-based radiomics model and fusion model in the training, internal 
validation and external validation cohorts

AUC  Area under the curve, ACC  Accuracy, CI Confidence interval, SEN Sensitivity, SPE Specificity, SVM Support vector machine

Cohort Model AUC (95% CI) SEN (%) SPE (%) ACC (%)

Training Clinical 0.737 (0.669—0.797) 71.74 64.42 67.86

SVM-based radiomics 0.884 (0.831—0.925) 86.96 75.00 80.61

Fusion 0.916 (0.868—0.951) 91.30 79.81 85.20

Internal validation Clinical 0.715 (0.606—0.808) 90.00 50.00 69.05

SVM-based radiomics 0.860 (0.767—0.926) 85.00 81.82 83.33

Fusion 0.903 (0.819—0.957) 80.00 90.91 85.71

External validation Clinical 0.654 (0.532—0.763) 54.55 76.32 66.20

SVM-based radiomics 0.841 (0.734—0.917) 81.82 84.20 83.10

Fusion 0.885 (0.787—0.949) 84.85 84.21 84.51
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Fig. 5 A Confusion matrices and (B) ROC curves of Ki-67 expression level classification for different models in the training, internal validation, 
and external validation cohorts. A Confusion matrices of the clinical model, radiomics model, and fusion model. The color depends on the number 
inside the square: the higher the number, the darker the color. B ROC curves of different models for predicting Ki-67 expression levels 
and the results of DeLong’s tests. AUC, area under the curve; ROC, receiver operating characteristic
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Additionally, tumor heterogeneity may be related to local 
tumor cell number, proliferation, hypoxia, angiogenesis, 
and necrosis [35], and these factors are closely related to 
Ki-67 expression levels. This further suggests that medi-
cal image-based radiomics analysis can reflect tumor 
heterogeneity by describing the voxel arrangement in the 
tumor space.

In recent years, MRI has become an indispensable 
part of radiomics analysis due to its ultra-high soft-tis-
sue resolution, absence of ionizing radiation, and mul-
tiparametric imaging capabilities. Previous MRI-based 
radiomics studies mainly focused on the evaluation of 
the staging [36], prognosis [37, 38], and treatment effi-
cacy [39] of HNSCC. Ren et  al. [36] reported an MRI-
based radiomics signature using combined T2WI-FS 

and CE-T1WI images for the preoperative assessment 
of stage I-II and III-IV HNSCC with an AUC of 0.850 in 
the training cohort, which was higher than that of the 
radiomics signatures based on T2WI-FS images (AUC: 
0.818) and CE-T1WI images (AUC: 0.828) alone, indi-
cating that combined sequences can more comprehen-
sively mine the heterogeneous features of the tumor. The 
advantage of multiparametric MRI was also confirmed in 
the study of Khanfari et  al. [40]. Thus, we extracted the 
radiomics features from these two conventional MRI 
images to predict the Ki-67 expression level in HNSCC. 
The results showed that both sequences contributed to 
radiomics signature construction (seven features from 
T2WI-FS and six features from CE-T1WI). Then, based 
on the selected features, we used various ML classifiers 

Fig. 6 The nomogram, calibration curves, and DCA. A The fusion nomogram incorporating the SVM-based Rad-score and clinical characteristics 
(clinical T stage and MR-reported lymph node status) for predicting the probability of high Ki-67 expression (Ki-67 index ≥ 50%). B The calibration 
curves of the fusion model in the training, internal validation, and external validation cohorts. C The DCA results of the clinical model, radiomics 
model, and fusion model in the three cohorts. DCA, decision curve analysis; MR, magnetic resonance; SVM, support vector machine
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to generate radiomics signatures, among which the SVM 
classifier showed the best performance in the validation 
cohorts and was selected as the optimal classifier. One 
possible explanation for this result is that the SVM algo-
rithm usually seeks the best balance between complexity 
and learning ability, which can facilitate maximum gen-
eralizability in limited sample data [41]. In the present 
study, the SVM-based radiomics model using the com-
bined sequences had higher AUC values (training cohort 
AUC: 0.884, validation cohorts average AUC: 0.851) 
than the models based on a single sequence. The results 
are comparable to a previous study that established a 
CT-based radiomics model to predict Ki-67 expression 
in HNSCC, with AUCs of 0.919 and 0.825 in the train-
ing and validation cohorts, respectively [22]. However, 
it should be noted that the soft-tissue resolution of CT 
images is poorer than that of MR images, and it may be 
challenging to precisely distinguish tumor boundaries in 
clinical practice by outlining ROIs. In addition, the high 
level of ionizing radiation generated by CT is a key con-
cern for operators and patients.

This study also confirmed that clinical T stage and 
MR-reported LN status were significantly associated 
with the Ki-67 expression level in HNSCC. Significantly 
more HNSCC patients in the T3-T4 stage were present 
among those with a high Ki-67 index than among those 
with a low Ki-67 index, similar to a previous study [6]. 
This may be because tumors with high Ki-67 expression 
grow faster, are more aggressive, and are more likely to 
exhibit invasive growth and invade surrounding tissues. 
MR-reported LN status is another essential predictor. 
Liu et  al. [42] indicated that the Ki-67 index correlated 
with the LN metastasis of HNSCC, and Gadbail et  al. 
[43] found that the Ki-67 index was significantly higher 
in oral squamous cell carcinoma patients with LN metas-
tasis. Our results were consistent with these findings. 
Nevertheless, the clinical model constructed based on 
the above two features only showed moderate perfor-
mance, with AUCs of 0.737, 0.715, and 0.654 in the train-
ing, internal validation, and external validation cohorts, 
respectively. This is because clinical characteristics pro-
vide only visually observed anatomical data and cannot 
adequately reflect intra-tumoral heterogeneity. There-
fore, we further integrated Rad-scores with clinical fea-
tures to establish the fusion model. The incorporation of 
Rad-scores led to a significant increase in predictive effi-
ciency and classification accuracy for the clinical model. 
However, there was no significant difference between the 
fusion model and the radiomics model in terms of AUCs, 
DCA, NRI, and IDI in the validation cohorts, which fur-
ther confirmed the limitations of clinical features and 
highlighted the unique advantage of the radiomics signa-
ture in predicting Ki-67 expression levels.

Our study has some limitations. First, it is a retrospec-
tive study with unavoidable bias and a limited sample 
size. Further prospective studies and datasets with larger 
sample sizes from more centers are required to validate 
our prediction model. Second, we only adopted T2WI-
FS and CE-T1WI images without diffusion-weighted 
images (DWI), because a significant proportion of 
patients lacked DWI. Given the potential value of DWI 
in radiomics analysis, subsequent studies should con-
sider to incorporate DWI when available. Third, only 
HNSCC patients with a tumor maximal diameter beyond 
5 mm were included in this study to obtain better tumor 
boundaries and sufficient pixel size for radiomics analy-
sis. To broaden the model’s applicability, future research 
should consider including HNSCC patients with smaller 
tumor diameters. Fourth, due to the substantial dispari-
ties in prognosis and treatment response between naso-
pharyngeal carcinoma (NPC) and HNSCC at other sites, 
NPC patients were not included in this study. Thus, 
further parallel research on NPCs would be beneficial. 
Finally, manual segmentation is complex and time-con-
suming, thereby an automated, reliable, and reproducible 
segmentation method is required to develop in the future 
[44].

Conclusions
In summary, we developed and validated an ML-based 
fusion model and corresponding nomogram that incor-
porated multiparametric MRI radiomics features and 
clinical factors to preoperatively predict the Ki-67 expres-
sion level in HNSCC patients. The risk calculated based 
on the nomogram helps to identify HNSCC patients with 
different risks of high Ki-67 expression, thereby identi-
fying which patients have highly aggressive tumor and 
poor prognosis. Thus, this prediction model can provide 
important supplementary information to evaluate prog-
nosis and guide treatment decisions.
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