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Abstract 

Purpose Preoperative diagnosis of filum terminale ependymomas (FTEs) versus schwannomas is difficult but essen-
tial for surgical planning and prognostic assessment. With the advancement of deep-learning approaches based 
on convolutional neural networks (CNNs), the aim of this study was to determine whether CNN-based interpretation 
of magnetic resonance (MR) images of these two tumours could be achieved.

Methods Contrast-enhanced MRI data from 50 patients with primary FTE and 50 schwannomas in the lumbosa-
cral spinal canal were retrospectively collected and used as training and internal validation datasets. The diagnostic 
accuracy of MRI was determined by consistency with postoperative histopathological examination. T1-weighted 
(T1-WI), T2-weighted (T2-WI) and contrast-enhanced T1-weighted (CE-T1) MR images of the sagittal plane containing 
the tumour mass were selected for analysis. For each sequence, patient MRI data were randomly allocated to 5 groups 
that further underwent fivefold cross-validation to evaluate the diagnostic efficacy of the CNN models. An additional 
34 pairs of cases were used as an external test dataset to validate the CNN classifiers.

Results After comparing multiple backbone CNN models, we developed a diagnostic system using Inception-
v3. In the external test dataset, the per-examination combined sensitivities were 0.78 (0.71–0.84, 95% CI) based 
on T1-weighted images, 0.79 (0.72–0.84, 95% CI) for T2-weighted images, 0.88 (0.83–0.92, 95% CI) for CE-T1 images, 
and 0.88 (0.83–0.92, 95% CI) for all weighted images. The combined specificities were 0.72 based on T1-WI (0.66–0.78, 
95% CI), 0.84 (0.78–0.89, 95% CI) based on T2-WI, 0.74 (0.67–0.80, 95% CI) for CE-T1, and 0.81 (0.76–0.86, 95% CI) for all 
weighted images. After all three MRI modalities were merged, the receiver operating characteristic (ROC) curve 
was calculated, and the area under the curve (AUC) was 0.93, with an accuracy of 0.87.
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Conclusions CNN based MRI analysis has the potential to accurately differentiate ependymomas from schwannomas 
in the lumbar segment.

Keywords Convolutional neural networks, Filum terminale ependymoma, Schwannoma, Contrast-enhanced 
magnetic resonance imaging

Introduction
Filum terminale ependymomas (FTEs) are common pri-
mary spinal cord tumours of the lumbosacral segment, 
and their incidence is secondary only to that of schwan-
nomas [1, 2]. Spinal magnetic resonance (MR) is the 
state-of-the-art method for diagnosing spinal tumours. 
Preoperative distinction of these two kinds of tumours 
via MR images is often difficult and frequently inaccurate.

According to existing radiological analyses of intra-
dural tumours, both FTEs and schwannomas can appear 
as T1 iso-/hypointense and T2 hyperintense on MRI 
with intense enhancement [3]. Solid nodular tumours 
can exhibit a high degree of similarity as shown in Fig. 1. 
These tumours also exhibit more typical imaging fea-
tures, such as long-segment intramedullary FTEs and 
dumbbell-shaped schwannomas. These notable features 
are beyond the scope of our discussion.

With the development and popularity of minimally 
invasive neurosurgery, most intraspinal tumours can be 
removed through microforaminotomy [4] after piece-
meal resection (removing the tumour in small pieces), 

which may increase the risk of tumour metastasis in 
some tumours, such as ependymomas. Ependymomas 
are prone to spread in the spinal canal during surgery [5–
7], and the total laminectomy approach is preferred. En 
bloc resection of the tumour and its surrounding tissue 
as a single piece is more ideal and leads to an improved 
prognosis [8, 9]. A 20-year study [10] suggested that 
en bloc gross total resection (GTR) should be the goal 
during surgery for cauda equina ependymomas. This 
approach can reduce recurrence, but there is no signifi-
cant association between histological subtypes. However, 
schwannomas are more benign. A study involving 2542 
adults reported that the recurrence rate of schwannomas 
was 5.3%, and schwannoma recurrence was associated 
with subtotal resection [11]. In most cases, intracapsular 
tumour decompression is necessary, and patients sub-
jected to this approach have a decreased risk of recur-
rence after GTR [12]. Therefore, surgical approaches 
such as hemilaminectomy or semi-hemilaminectomy 
can be employed to remove tumours while minimizing 
the window size. The advantages of this approach include 

Fig. 1 Enhanced MR images of ependymoma and schwannoma. Images A-C belong to a 13-year-old female patient who was admitted 
to the hospital due to left lower limb pain. Postoperative pathology indicated a spinal ependymoma, WHO Grade II. Images D-F belong 
to a 55-year-old male patient who was admitted to the hospital due to lower back pain and left lower limb pain. Postoperative pathology indicated 
a schwannoma. A & D T1-weighted image (T1-WI). B & E T2-weighted image (T2-WI). C & F Contrast-enhanced T1-weighted image (CE-T1)
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preservation of bony structures, reduced surgical trauma, 
and rapid postoperative recovery. Anticipation of the 
need for en bloc resection is crucial in preoperative sur-
gical planning [13, 14].

In the past decade, radiomics [15], machine learning 
(ML) [16] and deep learning (DL) [17–19] have been 
proposed as effective approaches for feature extraction 
and classification of radiologic images [20]. DL models 
automatically learn feature representations, reducing the 
need for manual feature engineering. For medical imag-
ing learning tasks involving massive amounts of data, 
convolutional neural networks (CNNs) have consider-
able advantages in improving training efficiency and 
preventing overfitting. Despite the important promise 
of DL in visual tasks, there have been few reports on the 
potential for differentiating spinal tumours. One study 
[21] employed CNNs to classify spinal tumours using 
MRI datasets. The model achieved an accuracy of 82%, 
demonstrating DL’s powerful capability in identifying 
complex patterns in medical images that are often imper-
ceptible to the human eye. Since then, a few studies have 
been published on the segmentation and target detection 
of intradural lesions [22, 23].

In light of this, we propose a CNN model to differenti-
ate between two tumours based on MR images. We com-
pared the performances of three different CNN models 
and selected the most efficient model. We also compared 
models using four different MRI modalities. We tested 
this model on an additional external dataset. This model 
does not require manual delineation of tumour bounda-
ries or selection of imaging features by doctors. To the 
best of our knowledge, there is currently no existing work 
on this topic, making it the only model capable of distin-
guishing between ependymomas and schwannomas.

Methods
Patient selection
The demographic data of the patients are shown in 
Table 1.

We retrospectively collected preoperative enhanced 
MR images of lumbosacral FTEs and cauda equina 
schwannomas treated surgically at the Second Affiliated 
Hospital of Zhejiang University between 2013 and 2021. 
Considering intraspinal tumours in the lumbosacral spi-
nal canal, there was a greater incidence of schwannomas 
in males than in females; otherwise, there was a greater 
incidence of ependymomas (p < 0.05). There was no sig-
nificant difference in age distribution. Postoperative path-
ological results served as the gold standard for diagnosis. 
According to the 2021 CNS WHO classification [24], the 
FTE patients we included exhibited two pathological sub-
types: classical spinal ependymoma (SPE, WHO II) and 
myxopapillary ependymoma (MPE, WHO II), without 
MYCN amplification. Patients with other pathological 
subtypes were excluded from our study.

Long-segment intramedullary ependymomas were 
excluded because they can be easily distinguished by 
growth pattern. Dumbbell-shaped schwannomas were 
also included in the exclusion criteria because it is almost 
impossible for ependymomas to grow in this manner.

Datasets and imaging processing
The contrast-enhanced MR images included T1-weighted 
(T1-WI), T2-weighted (T2-WI) and contrast-enhanced 
T1-weighted (CE-T1) MRI sequences. All neuroimag-
ing data were acquired using a 1.5T superconducting 
magnetic resonance scanner with a spinal phase coil. All 
patients underwent axial, sagittal and coronal T1-WI and 
T2-WI scans at various TR/TE values. After the injec-
tion of GD-DTPA (0.1 mL /kg), axial, sagittal and coronal 
T1-weighted images were acquired, and the same param-
eters were used for plain scanning.MR images were col-
lected from nine MR machines, involving various types 
of magnetic resonance vendors such as GE MEDICAL 
SYSTEMS SIGNA EXCITE, GE MEDICAL SYSTEMS 
DISCOVERY MR750, SIEMENS Sonata, SIEMENS Aera 
and uMR790, at two branches of the Second Affiliated 
Hospital of Zhejiang University.

Table 1 Summary statistics of patient characteristics

Variable Cohort, No.(%)

Ependymoma Schwannoma

Patient demographics
 No. of individuals (train: test) 84(50:34) 84(50:34)

 Age(mean ± SD) 50 ± 21 68 ± 12

 Gender (Male: Female) 24:60 56:28

No. of images
 Cross-validation training dataset (T1-WI: T2-WI: CE-T1) 406 (117:165:124) 402 (112:167:123)

 External test dataset (T1-WI: T2-WI: CE-T1) 230 (65:97:68) 210 (59:85:66)
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The sagittal sequences containing the layer of the 
tumour occupying the dura mater were selected from the 
enhanced MR images of each patient. The dataset was 
prepared with the image annotation tool Labelme [25] 
(https:// github. com/ wkent aro/ label me) and annotated 
using the rectangular annotation tool. The saved .json 
files were used as input for the training model. The anno-
tation contains some developed spinal cord or circuitous 
filament fibres, as these areas around the tumour might 
be recognized as different features by the algorithm.

We selected one hundred patients, with a total of 406 
ependymoma and 402 schwannoma images, as a rela-
tively large training and internal validation dataset. An 
additional 34 pairs of patients newly diagnosed in the 
year 2022 were included in the external test groups. A 
total of 230 ependymoma and 210 schwannoma images 
were included in the test set (Table 1).

Deep learning methods
The entire workflow of our tumour diagnosis system is 
shown in Fig.  2. In the training process, we trained spe-
cialized classifiers for different modalities, including the 
T1-weighted image classifier, T2-weighted image classi-
fier and CE-T1 classifier. The dedicated classifier of a sin-
gle mode was integrated by five CNN models, which were 
five models with the same structure obtained by conduct-
ing fivefold cross-validation on the training set as shown 
in Fig. 2. In other words, we evenly divide the training set 

of one mode into 5 parts according to the cases. For each 
fold of cross-validation, we selected the model with the 
best accuracy on the current validation set as the current 
fold model. Then, we obtained 5 models via fivefold cross-
validation. We use average pooling on the diagnoses of 
5 models to form an ensemble classifier, namely, Fig.  2e. 
Before training the models, we used data augmentation, 
which included a maximum of 40 degrees of random rota-
tion, random horizontal-flipping, and random resizing 
with a scale of 1.5. Then, the grayscale images were normal-
ized to 0.5 as the average and 0.5 as the standard deviation, 
and the length and width of the images were standardized 
to 500. After data augmentation and standardization, five 
diagnostic classifier models were trained for three training 
datasets (T1-WI, T2-WI, and CE-T1 MRI) using fivefold 
cross-validation (Fig. 2b). After comparing multiple back-
bones, including EfficientNet-b2 [26], ResNet-50 [27] and 
Inception-v3 [28], we ultimately chose Inception-v3 as the 
backbone of our model.

Consider X = {x1, x2, . . . , xN }, xi ∈ R
W×H as a high-

dimensional representation set of the image dataset. We 
use the cross-entropy loss function during the training pro-
cess, which reads as follows:

Lcross entropy =

N

i=1

1{li=1} log(p(xi))+ (1− 1{li=1}) log(1− p(xi))

Fig. 2 Pipeline of the proposed diagnostic system. a training images. b data augmentation consisted of random rotation, random horizontal-flip 
and normalization. c five-fold split of cross validation. d for every mode, five CNN models are trained at image level. e integrated diagnostic model 
from five CNN models. f external test images of one case. g probability of model diagnosis from 3 MRI modalities. h output of diagnostic system

https://github.com/wkentaro/labelme
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where {li} , li ∈{0, 1} contains the ground truth, and p(xi) 
is the output of the deep learning model, which indicates 
the probability that sample xi is a schwannoma. 1{li=1} is 
a Boolean function that reads:

When a patient needed to be diagnosed during the 
testing process, we used T1-weighted imaging (T1-WI), 
T2-weighted imaging (T2-WI), and contrast-enhanced 
T1-weighted imaging (CE-T1) images and input them into 
a dedicated classifier for the corresponding modality. For a 
patient with multiple image sequences, the average diag-
nostic probability of multiple images was used as the case-
level diagnosis as shown in Fig. 2.

The diagnostic effectiveness of each classifier was 
evaluated in the corresponding test set, which included 
T1-weighted images, T2-weighted images and CE-T1 MR 
images. The final tumour classification model used the 
average probability of five models as the output and was 
tested on an external test set. See Fig. 2.

Statistics and evaluation metrics
The model performance evaluation indices were recorded 
as true positives (TPs), false positives (FPs), true negatives 
(TNs) and false negatives (FNs) as follows:

where {li} , li ∈{0, 1} contains the ground truth, and 
{
−

l i},
−
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Boolean functions.
Confusion matrices were constructed for the evalua-

tion of the deep learning model (see Fig.  6B and Sup-
plementary Fig.  1). The predictive sensitivity and 
specificity of each model in the test sets were combined 
to evaluate its performance in forest plots. The sensitiv-
ity and specificity are defined as:

The diagnostic ability of the classifiers based on 3 
datasets (T1-WI, T2-WI, and CE-T1) and that integrate 

1{li=1} =

{

1, li = 1, sample xi is schwannoma
0, li �= 1, sample xi is ependymoma
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1
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, FN =
∑

i
1
{li �=li}

× 1
{li=0}

.

Sensitivity =
TP
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∑

i 1{li=li}
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,
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TN
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∑
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× 1
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∑
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,

all the modalities were compared in the SROC [29] and 
forest plots. All the statistical data were analysed and 
visualized with R (version 4.1.3) in conjunction with 
the meta4diag [30] and INLA R packages. In addition, 
Cohen’s kappa coefficients [31] for AI diagnosis and 
ground truth were computed.

Results
Implementing and testing
Our system was developed by deep learning experts 
at the Zhejiang University School of Mathematical 
Sciences. The neural network architecture was pre-
trained Inception-v3 with an output layer for classifica-
tion tasks. The network was trained using eight 11 GB 
NVIDIA GeForce GTX 1080 Ti graphical processing 
units with a batch size of 128 and an input image size 
of 500 × 500 pixels using the PyTorch framework (ver-
sion 1.7.1 https:// www. pytor ch. org) and Python (ver-
sion 3.8.5 https:// www. python. org). Each network was 
trained for 50 epochs, with an initial learning rate of 
0.00005 using the Adam optimizer. The training process 
took approximately 7 h.

Comparison on three CNN models
ResNet-50, EfficientNet-b2 and Inception-v3 showed 
their own characteristics in our study (Table  2  and 
Fig.  3). After several years of development, various net-
work structures have been developed to improve the 
accuracy of image recognition, reduce network volume 
and increase efficiency. Inception-v3 [28] uses a combi-
nation of convolutional layers with different kernel sizes 
and pooling layers to extract features from images. Effi-
cientNet-b2 [26] uses compound scaling, which scales 
the depth, width and resolution of the network to bal-
ance accuracy and efficiency. ResNet-50 [27] is a CNN 
architecture that introduces the concept of residual 
connections, which allows the network to learn residual 
functions rather than learning the underlying mapping 
directly. As shown in Fig. 3, the CNN using EfficientNet-
b2 model had an average AUC of 0.81, ResNet-50 had an 
average AUC of 0.72 and Inception-v3 had an average 
AUC of 0.84. For the tasks studied in this paper, Incep-
tion-v3 generally achieved better performance.

Performance of the Inception‑v3 model under different 
MRI modalities
After selecting the optimal Inception-v3 model using 
images, we tested it at the case level on an external test 
set to analyse the performance of the AI algorithms under 
the different MR modalities. If the arithmetic mean of 
the prediction values for multiple images from a single 
examination was greater than 0.5, the case was marked as 

https://www.pytorch.org
https://www.python.org
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1 and diagnosed as a schwannoma. Otherwise, the lesion 
was marked as 0 and diagnosed as ependymoma. All the 
evaluated indicators were analysed using the diagnostic 
test fourfold table. As shown in Fig. 4, in the external test 
dataset, the per-examination combined sensitivity was 
0.78 based on T1-WI (0.71–0.84, 95%CI), 0.79 (0.72–0.84, 
95%CI) based on T2-WI, 0.88 (0.83–0.92, 95%CI) based 
on CE-T1, and 0.88 (0.83–0.92, 95%CI) for all weighted 
imaging. The combined specificities based on T1-WI 
were 0.72 (0.66–0.78, 95% CI), 0.84 (0.78–0.89, 95% CI) 
based on T2-WI, 0.74 (0.67–0.80, 95% CI) for CE-T1, and 
0.81 (0.76–0.86, 95% CI) for all weighted images. The bet-
ter the sensitivity and specificity of a modality, the shorter 
the length of the confidence interval, indicating that the 
model’s judgements are relatively more stable. The CE-T1 
modality had the highest sensitivity for ependymomas. 
For schwannomas, T2-weighted imaging (T2-WI) had 
the highest specificity. For both of them, the combined 
diagnostic efficiency of all the modalities was the second 
highest.

The summary receiver operating characteristic (SROC) 
curve visually summarizes and compares the diagnos-
tic efficiency of the four groups of diagnostic methods 
(T1, T2, CE-T1, and All). The SROC plot represents the 
relationship between sensitivity and specificity across 
multiple studies or datasets, providing a summary of 
the overall diagnostic accuracy. According to the SROC 
curve, a curve closer to the upper left corner indicates 
that the diagnostic performance of the model is better. As 
shown in Fig. 5, the best diagnostic method was achieved 
by the group based on all the images. The second was 
CE-T1 images. The performance of the different MRI 
modalities for Inception-v3 is shown in Table 3.

In summary, the combination of multiple MRI modali-
ties yielded better diagnostic efficiency than a single 
modality.

CNN can achieve differential diagnosis based on image 
feature regions
As shown by the ROC curve and confusion matrix 
(Fig. 6), our diagnostic system achieved an AUC of 0.93 

Fig. 3 The receiver-operating curves (ROC) for the image-level external test set for 3 CNN models. The area under the curve (AUC) can summarize 
the diagnostic effect of different models. The CNN using A EfficientNet-b2 model had an average AUC of 0.81. B ResNet-50 model had an average 
AUC of 0.72. C Inception-v3 had an average AUC of 0.84. The blue, green and orange dot lines represent the diagnostic efficacy of T1-WI, T2-WI 
and CE-T1 MRI modalities, respectively

Table 2 Performance evaluation of different CNN models on test images

Input Model Sensitivity Specificity Accuracy AUC Kappa

T1-WI Resnet-50 55.9% 76.9% 66.9% 0.714 0.331

T2-WI Resnet-50 40.0% 78.8% 60.9% 0.649 0.193

CE-T1 Resnet-50 74.2% 80.9% 77.6% 0.855 0.552

T1-WI Efficientnet-b2 86.4% 69.2% 77.4% 0.854 0.552

T2-WI Efficientnet-b2 72.9% 72.7% 72.8% 0.769 0.455

CE-T1 Efficientnet-b2 81.8% 76.5% 79.1% 0.890 0.582

T1-WI Inception-v3 76.3% 76.9% 76.6% 0.844 0.532

T2-WI Inception-v3 74.1% 82.5% 78.6% 0.874 0.568

CE-T1 Inception-v3 83.3% 75.0% 79.1% 0.871 0.583
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and an accuracy of 0.87, indicating promisingly high 
diagnostic performance.

We used Grad-CAM (gradient-weighted class activa-
tion mapping) [32] to visualize which regions in the neu-
ral network contributed more to the classification results. 

We present our results in the form of heatmaps in Fig. 7. 
In the images, the areas that appear redder indicate that 
the model pays more attention to those regions. Impor-
tantly, we did not use supervised learning to perform 
tumour segmentation. Grad-CAM generates class activa-
tion maps (CAMs) by utilizing the feature maps of deep 
convolutional neural networks, helping us understand 
how neural networks make decisions in image classifica-
tion tasks. We can see that the model pays more atten-
tion to the solid parts of the tumour.

Data availability
We will make the model parameters of this study publicly 
available on GitHub at https:// github. com/ SLYXD WL/ 
Spine Tumor Class ifica tion. git.

Discussion
Successfully identifying FTEs from schwannomas using 
preoperative imaging can be beneficial in clinical prac-
tice. Considering the necessity of en bloc resection for 
ependymomas, surgeons tend to increase the window 

Fig. 4 The forest plot for A sensitivity and B specificity in the external test set. Each row represents a model performance prediction, 
and summary represents the combined metrics for each model. The rhombus represents the combined effect value. The dashed line shadow area 
is the confidence interval

Fig. 5 The Summary Receiver Operating Characteristic (SROC) 
curve of the Inception-v3 model for the test set. The horizontal axis 
is 1-specificity, and the vertical axis is sensitivity. The red, blue, green 
and black lines respectively represent the diagnostic efficacy curves 
of T1-WI, T2-WI, CE-T1 and All. The star points represent the combined 
effect value. The dashed line range is the confidence interval

Table 3 Performance evaluation of different MRI modalities on 
Inception-v3

Input Sensitivity Specificity Accuracy AUC Kappa

T1-WI 73.5% 73.5% 73.5% 0.813 0.471

T2-WI 76.5% 85.3% 80.9% 0.912 0.618

CE-T1 88.2% 76.5% 82.4% 0.888 0.647

ALL 94.1% 79.4% 86.8% 0.928 0.735

https://github.com/SLYXDWL/SpineTumorClassification.git
https://github.com/SLYXDWL/SpineTumorClassification.git
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Fig. 6 ROC curve and confusion matrix of the diagnostic system. A The blue, green and orange dot lines represent the diagnostic efficacy of T1-WI, 
T2-WI and CE-T1 MRI modalities, respectively. B The horizontal axis represents the predicted values, and the vertical axis represents the true values. 
The four quadrants (from top to bottom, left to right) represent true negative, false negative, false positive, and true positive, respectively. The 
shades of red indicate the frequency of occurrences

Fig. 7 Regions of interest of the diagnostic system computed by Grad-CAM. A, B and C are ependymomas, corresponding to T1-WI, T2-WI, 
and CE-T1, respectively. D, E and F are schwannomas, corresponding to T1-WI, T2-WI, and CE-T1, respectively. The areas that appear more red 
indicate that the model pays more attention to those regions
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area to create a wider surgical field. However, schwan-
nomas can be resected using minimum invasive access 
after debulking, protecting weight-bearing spine struc-
tures and creating smaller skin incisions. In this case, our 
diagnostic system can be very helpful for determining the 
pathological type of tumour in advance when choosing 
the procedure.

The FTEs in our definition included spinal epend-
ymoma (SPE) and myxopapillary ependymoma (MPE) 
without MYCN amplification according to the 2021 
CNS WHO classification [24]. Compared with the 2016 
CNS WHO classification, MPE is now regarded as CNS 
WHO grade 2 rather than 1 because the likelihood of 
recurrence and mean interval of recurrence [7, 33–37] 
are now considered similar to those of SPE (WHO II). 
We found compelling evidence that en bloc GTR signifi-
cantly reduces the recurrence of FTEs, regardless of the 
SPE or MPE subtype, based on a 20-year case study [10]. 
Although large-scale prospective studies have not been 
conducted, there is substantial retrospective literature 
evidence indicating that GTR via an en bloc technique 
significantly decreases recurrence and prevents repeated 
surgeries [38–40]. Our diagnostic system’s ability to iden-
tify ependymomas prior to surgery can assist doctors in 
formulating surgical plans for en bloc resection. Before 
or during the dissection of FTEs, conus medullaris and 
cauda equina injuries can occur, leading to a complex 
syndrome of motor, sensory, and autonomic impairments 
[41]. Symptoms such as sexual dysfunction and urinary 
or bowel incontinence drastically affect patients’ health 
and quality of life and impact patient satisfaction with 
surgery. Accurate preoperative diagnosis can provide 
patients and their families with reasonable expectations 
of surgical outcomes and inform patients of potential 
complications. Our diagnostic system can be very impor-
tant for the shared decision-making of patients and clini-
cians about treatment strategies.

In this study, we confirmed the possibility of differenti-
ating FTEs from schwannomas via a CNN. With an AUC 
of 0.93 and an accuracy of 0.87, as demonstrated by the 
ROC curve and confusion matrix (Fig.  6), our diagnos-
tic system exhibited a high diagnostic performance. We 
showed that the results of our model can provide objec-
tive and reproducible second opinions to assist radiolo-
gists and surgeons in making correct decisions. To our 
knowledge, this is the very first study to construct a CNN 
diagnostic model utilizing MR images to distinguish 
between FTEs and schwannomas.

We established a relatively large training set based 
on the strengths of our neurosurgery centre. The sex 
distribution of patients matched that in previous lit-
erature [2, 24]. We also employed 5-fold cross-valida-
tion to validate the developed models. A good model 

requires good generalization capacity, which means 
that it must perform well on both training data and 
new datasets. Fivefold cross-validation reduces vari-
ance by averaging the results of 5 different training 
groups. Therefore, the performance of the model is 
no longer sensitive to the division of data compared to 
that of holdout cross-validation. The 10-patient held-
out test set was still from our institution but was not 
included in the training or validation phase; moreo-
ver, the data were randomly acquired from 9 MRI 
machines to avoid overfitting.

Interpretation of machine learning methods with 
complex internal structures has received a growing 
amount of scholarly attention. We conducted pre-
liminary experiments using Grad-CAM to visual-
ize our model’s attention to different regions of the 
images. When the model made correct predictions, we 
observed that its attention was often focused on the 
tumour mass. Like human observers, CNN models tend 
to rely on features within the tumour mass for classifi-
cation. The features of the results of the present study 
can inspire us to explain the radiological features of 
these two tumours. As shown in Fig.  4, the enhanced 
sequence was most sensitive for identifying schwan-
nomas. The T2-WI sequence is most sensitive to FTEs. 
These characteristics may be related to the vascular 
richness of the two kinds of tumours [42, 43]. Kenyu 
et  al. noted that MRI signal patterns in T2-weighted 
(T2-W) hyperintense areas are based on cell density 
(mucin or free water content) and mesh patterns in the 
interstitial tumour space [44]. After all, the exact fea-
tures learned by the deep learning model could not be 
revealed due to its “black-box” nature and require fur-
ther study.

We also observed that the region of interest in the 
tumour area in the model was generally smaller than the 
actual extent of the tumour across multiple magnetic 
resonance imaging modalities. In some cases, the model 
also focused on intervertebral discs, possibly due to their 
similarity in magnetic resonance signals to tumours. 
These findings suggest that relying solely on pathological 
labels has limitations in accurately determining tumour 
boundaries. Our model lacks detection and segmentation 
modules, which limits the use of a comprehensive intel-
ligent diagnostic system.

Limitations in terms of patient numbers, which is a 
drawback of this research, are inherent to the tumour 
types and therefore unavoidable to at least a degree. We 
employed figure processing and 5-fold cross-validation 
due to the limited amount of data for this task. How-
ever, an international, multicentre, larger sample study 
is the direction of our future efforts. On the premise of 
a larger dataset, MPE and SPE can also be more clearly 
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distinguished. There was also a difference in CT den-
sity between the two tumours. The integration of CT 
sequences into a deep learning model may achieve 
improved diagnostic performance. In the future, it will 
be possible to distinguish between more lesions through-
out different spinal cord segments, such as meningiomas, 
astrocytomas, epidermoid cysts, haemangioblastomas, 
metastatic tumours and syringomyelia.

This study used single-layer 2-dimensional sagittal 
images. In the real clinical process, physicians read all 
the levels and orientations of images to make a compre-
hensive judgement. In the machine learning process, the 
characteristic connections between different layers of the 
tumour are missing. The algorithm for 3D image classifi-
cation may further improve diagnostic efficiency.

Conclusion
We present a deep learning model for the classification 
of filum terminale ependymomas and schwannomas with 
the potential to augment clinical diagnosis. Our work 
represents the application of artificial intelligence in 
medicine and encourages future research in this area.
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