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Abstract
Background Immune checkpoint inhibitors (ICIs) can lead to life-threatening pneumonitis, and pre-existing 
interstitial lung abnormalities (ILAs) are a risk factor for checkpoint inhibitor pneumonitis (CIP). However, the 
subjective assessment of ILA and the lack of standardized methods restrict its clinical utility as a predictive factor. This 
study aims to identify non-small cell lung cancer (NSCLC) patients at high risk of CIP using quantitative imaging.

Methods This cohort study involved 206 cases in the training set and 111 cases in the validation set. It included 
locally advanced or metastatic NSCLC patients who underwent ICI therapy. A deep learning algorithm labeled the 
interstitial lesions and computed their volume. Two predictive models were developed to predict the probability 
of grade ≥ 2 CIP or severe CIP (grade ≥ 3). Cox proportional hazard models were employed to analyze predictors of 
progression-free survival (PFS).

Results In a training cohort of 206 patients, 21.4% experienced CIP. Two models were developed to predict the 
probability of CIP based on different predictors. Model 1 utilized age, histology, and preexisting ground glass opacity 
(GGO) percentage of the whole lung to predict grade ≥ 2 CIP, while Model 2 used histology and GGO percentage in 
the right lower lung to predict grade ≥ 3 CIP. These models were validated, and their accuracy was assessed. In another 
exploratory analysis, the presence of GGOs involving more than one lobe on pretreatment CT scans was identified as 
a risk factor for progression-free survival.
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Background
In advanced non-small cell lung cancer (NSCLC), a grow-
ing number of clinical studies have suggested that a last-
ing response and improvement in long-term survival can 
be achieved with immune checkpoint inhibitors (ICIs), 
which target programmed cell death protein-1 (PD-1) or 
programmed cell death protein ligand-1 (PD-L1) [1–6]. 
Importantly, ICIs can also cause immune-related adverse 
events (irAEs), including checkpoint inhibitor pneumo-
nitis (CIP) [7].

CIP is defined as the development of a new infiltrative 
shadow on chest imaging following the application of ICI 
therapy, with or without respiratory symptoms. However, 
identification of a clinical condition, such as a lung infec-
tion or tumor progression, will exclude a diagnosis of 
CIP. According to the data of clinical trials and real-world 
studies, the incidence of CIP is 3-19% in NSCLC [1–4, 
8–12], and it is more prevalent and severe in NSCLC 
than in other cancers [8, 9]. CIP may result in the dis-
continuation of ICI therapy permanently, leading to an 
increased utilization of critical care and risk of mortality 
for patients [11–14]. The results of previous retrospective 
studies suggest that advanced age [14], smoking status 
[15], combination therapy [8], PD-1 inhibitor use (rather 
than PD-L1 inhibitor use) [10], chest radiation [16, 17], 
nonadenocarcinoma [11], lower albumin [12], fibrosis 
score [18] and baseline pulmonary function impairment 
[19] may be related to the occurrence of CIP.

Despite these risk factors, baseline lung disease, spe-
cifically, preexisting interstitial lung disease (ILD), is also 
independently associated with the development of CIP 
[14, 20–23]. Caution is warranted because of the high 
incidence of pneumonitis in patients with ILD. However, 
the diagnosis of ILD is often challenging due to its non-
specific and insidious presenting symptoms, along with 
scarce knowledge of ILD among non-ILD experts; there-
fore, the incidence of ILD among real-world patients 
with lung cancer is underestimated. Interstitial lung 
abnormalities (ILAs), which have been defined as areas 
of increased lung density on lung computed tomography 
(CT) in individuals with no known ILD [24], are also con-
sidered to be a risk factor for CIP [25].

It is important to note that most risk factors men-
tioned above, such as advanced age, long-term smoking, 

combined use of targeted therapies, a history of radia-
tion therapy, and baseline lung disease, may increase the 
likelihood of developing pulmonary interstitial lesions 
on CT, and in turn, baseline pulmonary function impair-
ment may result from these lesions. It is therefore pos-
tulated that preexisting pulmonary interstitial lesions 
on CT play a crucial role in early detection and manage-
ment of CIP. In practice, however, pulmonary interstitial 
lesions are heterogeneous and difficult to evaluate, and 
it is understandable that radiological examinations are 
qualitatively interpreted with a certain degree of sub-
jectivity. Thus, quantitative analysis of imaging is likely 
to become increasingly important in the assessment of 
interstitial lesions.

Therefore, we hypothesized that the quantified volume 
and component of interstitial lesions at pretreatment CT 
would be associated with CIP in patients with NSCLC. 
We conducted a retrospective analysis to quantify inter-
stitial lesions at pretreatment CT by using a deep learn-
ing algorithm and to evaluate their extent, component 
and distribution as predictors of CIP, as well as to assess 
the association between pretreatment radiographic find-
ings and progression-free survival (PFS) in patients with 
advanced NSCLC.

Materials and methods
Data sources and participants
This single-center cohort study was approved by the eth-
ics committee of the Tianjin Medical University Cancer 
Institute & Hospital. To avoid selection bias, consecutive 
histologically confirmed locally advanced or metastatic 
NSCLC patients without radical surgery or radiotherapy 
who underwent checkpoint inhibitor therapy (nivolumab, 
pembrolizumab, tislelizumab or atezolizumab) from June 
2017 to October 2021 in our hospital were potential can-
didates for this study. We retrospectively reviewed data 
for 431 patients with complete information about clini-
copathological characteristics. Among the 431 patients, 
we excluded patients who had undergone thoracic sur-
gery within 3 months of ICI treatment (n = 9) or had 
received chest radiotherapy during checkpoint inhibi-
tor therapy (n = 5) and patients who had previously had 
severe tuberculosis or other infectious diseases (n = 3) 
or interstitial pneumonia associated with autoimmune 

Conclusions The assessment of GGO volume and distribution on pre-treatment CT scans could assist in monitoring 
and manage the risk of CIP in NSCLC patients receiving ICI therapy.

Clinical relevance statement This study’s quantitative imaging and computational analysis can help identify 
NSCLC patients at high risk of CIP, allowing for better risk management and potentially improved outcomes in those 
receivingICI treatment.
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diseases (n = 4). We also excluded 93 patients who had 
not undergone thin-section CT in our hospital within 1 
month before ICI therapy or whose clinical response to 
ICI therapy could not be evaluated. Finally, 206 patients 
treated before November 2020 were considered the 
training cohort, and the validation cohort consisted of 
111 patients treated between November 2020 and Octo-
ber 2021. Patient characteristics and clinical data before 
administration of anti-PD-1/PD-L1 antibodies were 
obtained by using medical records. Tumor responses 
were evaluated using the Response Evaluation Criteria 
for Solid Tumors version 1.1. March 15, 2022 was set as 
the end of the follow-up. The Transparent Reporting of 
a multivariable prediction model for Individual Progno-
sis or Diagnosis (TRIPOD) statement was used as the 
reporting guideline [26]. The flow diagram is shown in 
Fig. 1.

CT imaging acquisition and evaluation
Pretreatment thin-section volumetric CT images were 
performed according to standard noncontrast chest CT 
protocols in our institution. CT examinations were per-
formed using a Somatom Sensation 64 (Siemens Medi-
cal Solutions, Forchheim, Germany) CT scanner or a 
Discovery CT 750 HD (GE Medical Systems; Milwaukee, 
USA). The scan tube voltage was 120 kVp with automatic 
tube current modulation. The scan range included the 
pulmonary apex level to below the diaphragm. Key imag-
ing parameters such as pitch (0.95/0.984  mm), rotation 
speed (0.8 /0.6s), kernel (B70f and B30/Stnd and Lung), 
slice thickness (1.50/1.25  mm), and W/L settings for 
lung window (window width: 1200, window level: -500) 
were carefully configured to optimize the image quality 

and highlight specific tissue contrasts, particularly in the 
assessment of pulmonary structures.

We investigated the presence of abnormal findings 
other than lung cancer lesions, including preexisting ILA 
on CT. ILA was defined as nondependent abnormalities 
affecting more than 5% of any lung zone (upper, middle, 
and lower lung zones are demarcated by the levels of the 
inferior aortic arch and right inferior pulmonary vein) 
[24]. Two expert chest radiologists (J.Z., with 15 years of 
experience, and X.C., with 6 years of experience) inde-
pendently evaluated the CT images in a randomized 
order without any clinical information. The radiologists 
evaluated whether ILA existed by using a previously 
reported scoring system [27], in which a score of 1 indi-
cated no ILA; a score of 2 indicated equivocal ILA; and 
a score of 3 indicated ILA. A third radiologist (Z.Y., with 
25 years of experience) who was blinded to the clinical 
information provided the majority opinion in cases with 
discrepant results between the first two radiologists. The 
radiologists (J.Z. and X.C.) also determined the extent 
of each fibrosis lesion, and we used the average of the 
results. The sum of reticulation, honeycombing and trac-
tion bronchiectasis was calculated as the fibrosis extent 
for each examination.

Analysis of pretreatment CT images by using the dedi-
cated multitask deep learning algorithm developed for 
pulmonary pneumonia (Beijing Deepwise & League of 
PhD Technology Co. Ltd, China) [28]. Further informa-
tion regarding this approach is reported in the Supple-
mentary Methods (Supplementary Material 1). Fig.  2 
shows examples of pulmonary lobe and opacity seg-
mentation. First, we segmented each lung lobe and the 
bilateral lungs and calculated the volume. Subsequently, 

Fig. 1 Flowchart of the study. Abbreviation: NSCLC, non-small cell lung cancer. ICI, immune checkpoint inhibitor
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fibrosis lesions were labeled by radiologists, while the 
GGO and consolidation lesions in the corresponding 
lobes were labeled using the well-trained artificial intelli-
gence (AI) algorithm, and then the volume of each lesion 
was computed. All opacity pieces extracted by the AI sys-
tem were checked by a radiologist (J.Z.) to prevent lung 
cancer lesions from being labeled. The lesion volume 
percentage in each lobe as well as the number of involved 
lung lobes were calculated. ILA determined by AI was 
defined as the sum of GGO and fibrosis extent affecting 
more than 5% of any lung zone.

Outcomes
The diagnosis of CIP was first made according to the 
medical records, and then each case was reviewed to 
confirm the diagnosis by the oncologist (X.W., R.J.) in 

consultation with the radiologist (J.Z.) based on previous 
literature descriptions [15]. By combining clinical data, 
radiographic data and biologic data, cases with alterna-
tive etiologies such as heart failure, infection, and tumor 
progression were excluded. Each case of pneumonitis was 
classified according to the American Thoracic Society/
European Respiratory Society (ATS/ERS) international 
multidisciplinary classification of interstitial pneumo-
nia with slight modifications from previous reports on 
drug-induced ILD with slight modifications from previ-
ous reports on drug-induced pneumonitis [17, 29, 30], 
including cryptogenic organizing pneumonia (COP)-
like pattern, GGOs, nonspecific interstitial pneumonia 
(NSIP)-like pattern, hypersensitive pneumonitis (HP)-
like pattern, and others. According to the National Com-
prehensive Cancer Network (NCCN) guidelines [31], CIP 

Fig. 2 Examples of pulmonary lobe segmentation and opacity segmentation (A, B), pretreatment CT images of a patient with ground glass opacity, the 
patient developed grade 3 CIP at 133 days after ICI treatment. (C, D), pretreatment CT images of a patient with ground glass opacity, the patient devel-
oped grade 1 CIP at 118 days after ICI treatment. (E, F) pretreatment CT images of a patient with fibrosis, the patient did not develop CIP after ICI treatment
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is graded into four levels according to the combination 
of clinical manifestations and radiological findings. ICI 
therapy was discontinued in all cases in which a patient 
was diagnosed with symptomatic CIP (grade ≥ 2 CIP). 
High-grade CIP (grade ≥ 3 CIP) is more likely to cause 
treatment interruption or complete withdrawal from ICI 
treatment and severely decrease pulmonary function, 
which leads to poor efficacy and quality of life. Cortico-
steroid treatment was given to all patients with grade ≥ 2 
CIP in accordance with current guidelines. A reduc-
tion in oxygen requirement, an improvement in exercise 
capacity, and a decrease in radiographic infiltrates were 
considered to indicate clinical improvement.

Data analysis
The detailed methods of data analysis, which encompass 
data quality and missing data, variable selection, model 
development, performance evaluation of the model, vali-
dation, and statistical analysis, have been provided in 
Supplementary Methods (Supplementary Material 1).

Results
Study population characteristics
The characteristics of the training cohort (n = 206) and 
validation cohort (n = 111) are listed in Table S1. Of the 
206 patients in the training cohort, the median age [inter-
quartile range] was 62 [56–68] years, and 168 (81.6%) 
patients were male. Forty-four (21.4%) patients expe-
rienced CIP during follow-up. The median follow-up 
time was 419 days [20-1369] days, and the median time 
to develop CIP was 105 days [20–183] days. Compared 
with the training cohort, more patients in the validation 
cohort received first-line ICI treatment (P = 0.001). No 
statistically significant differences in other variables were 
found between the training and validation cohorts.

Demographic characteristics of patients who did and 
did not experience CIP are shown in Table 1. In the CIP 
group, the patients were older (P = 0.025). In addition, 
there was a significant difference in the distribution of 
tumor histological types between CIP patients and non-
CIP patients: although nonsquamous cell lung cancer 
was the main type of non-small cell lung cancer, squa-
mous cell carcinoma accounted for a larger proportion in 
the CIP group (P = 0.049). The grading, radiological pat-
tern and outcome of CIP are shown in Table S2.

Table  1 also summarize the pretreatment CT find-
ings. Among the 206 patients in the training cohort, the 
radiologists identified 137 (66.5%) patients without ILA, 
32 (15.5%) patients with equivocal ILA, and 37 (18.0%) 
patients with ILA. According to the AI evaluation, there 
were 153 (74.3%) patients without ILA and 53 (25.7%) 
patients with ILA. The existence of ILA according to the 
AI evaluation correlated well with the existence of ILA 
according to the radiologists (contingency coefficient 

r = 0.77; P<0.001). The CT results before ICI treatment 
revealed that the mean percentage fibrosis extent was 
0.75 ± 2.14, and the percentage of GGO extent according 
to the AI evaluation was 0.37 ± 1.70. The percentage of 
consolidation volume according to the AI evaluation was 
2.13 ± 3.41. As shown in Table 1, CT quantitative assess-
ment of lung lesions showed that the lung GGO extent 
of patients with CIP was higher than that of patients 
without CIP (P = 0.002), and pretreatment lung GGOs in 
patients with CIP occupied more lobes (P = 0.048).

Model development
For the variables “HGB”, “PLT”, “WBC”, “NEUT”, “LYM”, 
“EOS”, and “MONO”, data were missing for 22 out of 206 
patients (10.68%), “ALB” data were missing for 24 out of 
206 patients (11.17%), and “LDH” data were missing for 
39 out of 206 patients (18.93%). In the variable “number 
of ICI cycles”, data were missing for 5 out of 206 patients 
(2.43%), and in the variable “line of ICI therapy”, data 
was missing for 19 patients (9.22%). The main reasons 
for missing values were lost to follow-up or omissions 
of follow-up information. PD-L1 expression information 
from medical records was available in 88 patients, and 
EGFR/ALK mutation status was available in 78 cases in 
the training set. Baseline C-reactive protein (CRP) levels 
were available for only in 35 patients in the training set. 
The data for all other variables were complete. Missing 
values were imputed using random forest imputations, 
and the missing values of PD-L1 expression, EGFR/ALK 
gene mutation status and CRP had not been imputed 
and were not included in the development of the model. 
After multiple imputation, the data of all 206 patients 
were complete and could be used to develop a prediction 
model.

Forty-three variables (shown in Table 1) were included 
in the LASSO regression. After LASSO regression selec-
tion (Fig. S1), no variable remained a significant predictor 
of CIP. Seven variables remained significant predictors 
of grade ≥ 2 CIP, including histology, age, GGO percent-
age in whole lung, fibrosis percentage in whole lung, 
GGO percentage in the right lower lung, the number of 
involved lung lobes involved in GGOs and number of ICI 
cycles. Three variables remained significant predictors of 
high-grade CIP, including age, histology, and GGO per-
centage in the right lower lung.

Multivariate logistic regression analysis using back-
ward stepwise model selection showed that the AI-
evaluated percentage GGO extent was an independent 
predictor of the presence of grade ≥ 2 CIP (odds ratio 
(OR), 1.446; 95% confidence interval (CI): 1.103–2.257, 
P = 0.045) after adjustment for age and histology. Pre-
existing GGO extent in the right lower lung (OR, 1.157; 
95% CI: 1.055–1.341, P = 0.009) and histology (OR, 4.734; 
95% CI: 1.502–18.379, P = 0.012) were independent 
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Variables CIP Grade 2–4 CIP Grade 3–4 CIP
+(n = 44) -(n = 162) P value * +(n = 26) -(n = 180) P value * +(n = 16) -(n = 190) P value *

Age, years a 66 [62, 69] 61 [55, 67] 0.025 66 [62, 70] 61 [55, 67] 0.002 67 [62, 70] 61 [55, 67] 0.018
Gender b

 Female 7 (15.9) 31 (19.1) 0.787 5 (19.2) 33 (18.3) 1 3 (18.8) 35 (18.4) 1
 Male 37 (84.1) 131 (80.9) 21 (80.8) 147 (81.7) 13 (81.2) 155 (81.6)
ECOG-PS b

 0 15 (34.1) 69 (42.6) 0.127 8 (30.8) 76 (42.2) 0.538 5 (31.2) 79 (41.6) 0.524
 1 21 (47.7) 80 (49.4) 15 (57.7) 86 (47.8) 10 (62.5) 91 (47.9)
 2 8 (18.2) 13 (8.0) 3 (11.5) 18 (10.0) 1 (6.2) 20 (10.5)
Smoking history b

 Never 8 (18.2) 47 (29.0) 0.212 6 (23.1) 49 (27.2) 0.834 4 (25.0) 51 (26.8) 1.000
 Current/ex 36 (81.8) 115 (71.0) 20 (76.9) 131 (72.8) 12 (75.0) 139 (73.2)
Clinical stage b

 III 9 (20.5) 32 (19.8) 1.000 5 (19.2) 36 (20.0) 1.000 2 (12.5) 39 (20.5) 0.655
 IV 35 (79.5) 130 (80.2) 21 (80.8) 144 (80.0) 14 (87.5) 151 (79.5)
Histology b

 Non-squamous 21 (47.7) 106 (65.4) 0.049 8 (30.8) 119 (66.1) 0.001 5 (31.2) 122 (64.2) 0.019
 Squamous 23 (52.3) 56 (34.6) 18 (69.2) 61 (33.9) 11 (68.8) 68 (35.8)
Prior thoracic radiation therapy b

 No 30 (68.2) 130 (80.2) 0.134 20 (76.9) 140 (77.8) 1.000 14 (87.5) 146 (76.8) 0.502
 Yes 14 (31.8) 32 (19.8) 6 (23.1) 40 (22.2) 2 (12.5) 44 (23.2)
ICI drug target b

 PD-L1 6 (13.6) 10 (6.2) 0.186 3 (11.5) 13 (7.2) 0.706 2 (12.5) 14 (7.4) 0.802
 PD-1 38 (86.4) 152 (93.8) 23 (88.5) 167 (92.8) 14 (87.5) 176 (92.6)
Treatment mode b

 Combined therapy 28 (63.6) 111 (68.5) 0.666 17 (65.4) 122 (67.8) 0.984 11 (68.8) 128 (67.4) 1.000
 Monotherapy 16 (36.4) 51 (31.5) 9 (34.6) 58 (32.2) 5 (31.2) 62 (32.6)
Number of ICI cycles a 12 [22] 8.00 [4, 14] 0.013 11 [5, 27] 9 [17] 0.258 8 [4, 15] 9 [4, 18] 0.55
Best tumor response b

 PR 15 (34.1) 72 (44.4) 0.466 11 (42.3) 76 (42.2) 0.397 7 (43.8) 80 (42.1) 0.595
 SD 23 (52.3) 72 (44.4) 10 (38.5) 85 (47.2) 6 (37.5) 89 (46.8)
 PD 6 (13.6) 18 (11.1) 5 (19.2) 19 (10.6) 3 (18.8) 21 (11.1)
Line of ICI therapy b

 1 15 (34.1) 67 (41.4) 0.055 11 (42.3) 71 (40.3) 0.152 5 (31.2) 77 (40.5) 0.331
 2 22 (50.0) 62 (38.3) 12 (46.2) 72 (40.9) 10 (62.5) 74 (39.0)
 ≥ 3 6 (13.6) 29 (17.9) 2 (7.7) 33(18.8) 1 (6.3) 34 (17.9)
 Missing data 1 (2.3) 4 (2.4) 1 (3.8) 4 (2.4) 0 5 (2.6)
PD-L1 expression b(n = 88) 0.793 0.730 0.422
 < 1% 11 (57.9) 43 (62.3) 11 (57.9) 43 (62.3) 3 (42.9) 51 (63.0)
 ≥ 1% 8 (42.1) 26 (37.7) 4 (44.4) 30 (38.0) 4 (57.1) 30 (37.0)
EGFR mutation or ALK fusion b(n = 78)
 No 15 (93.8) 52 (83.9) 0.444 7 (87.5) 60 (85.7) 0.891 5 (83.3) 62 (86.1) 0.851
 Yes 1 (6.3) 10 (16.1) 1 (12.5) 10 (14.3) 1 (16.7) 10 (13.9)
ILA b †

 Without ILA 23 (52.3) 114 (70.4) 0.081 14 (53.8) 123 (68.3) 0.173 10 (62.4) 127 (66.8) 0.926
 Equivocal ILA 10 (22.7) 22 (13.6) 4 (15.4) 28 (15.6) 3 (18.8) 29 (15.3)
 With ILA 11 (25.0) 26 (16.0) 8 (30.8) 29 (16.1) 3 (18.8) 34 (17.9)
Fibrosis percentage in:
Whole lung c 1.25 (3.43) 0.62 (1.62) 0.081 1.69 (4.41) 0.62 (1.55) 0.016 1.88 (5.55) 0.66 (1.55) 0.028
LUL c 1.43 (5.58) 0.47 (1.53) 0.053 0.88 (1.55) 0.54 (1.76) 0.347 2.53 (9.13) 0.52 (1.52) 0.008
LLL c 1.43 (3.85) 1.76 (7.22) 0.774 1.92 (7.17) 0.49 (1.52) 0.020 0.84 (3.01) 1.76 (6.85) 0.596
RUL c 1.14 (2.72) 1.00 (2.58) 0.755 1.11 (2.90) 1.02 (2.57) 0.866 1.15 (3.39) 1.02 (2.54) 0.849
RML c 0.14 (0.33) 0.20 (0.66) 0.551 0.12 (0.34) 0.20 (0.64) 0.561 0.00 (0.00) 0.20 (0.63) 0.197

Table 1 Baseline characteristics of training cohort patients between outcome groups
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predictors of the existence of high-grade CIP. Compared 
with patients without high-grade CIP, patients with high-
grade CIP were more likely to have a larger GGO extent 
in the right lower lung before ICI treatment. Fig. 2 shows 
typical cases. To enhance the clinical interpretability of 
the results, we evaluated the GGO extent as both a con-
tinuous and categorical variable, as shown in Table S3. 
As the findings from the analyses based on binary and 

continuous variables were consistent and more read-
ily interpretable, binary GGO extent was employed in 
constructing both Model 1 and Model 2 in subsequent 
analyses. The optimal cutoff value for GGO extent was 
determined to be 1.01% after adjusting for histology and 
age, while the optimal cutoff value for preexisting GGO 
extent in the right lower lung was found to be 2.55% after 
adjusting for histology.

Variables CIP Grade 2–4 CIP Grade 3–4 CIP
+(n = 44) -(n = 162) P value * +(n = 26) -(n = 180) P value * +(n = 16) -(n = 190) P value *

RLL c 1.02 (2.29) 0.79 (4.28) 0.731 1.30 (2.81) 0.77 (4.07) 0.527 0.68 (1.62) 0.85 (4.07) 0.863
Lobes involved Fibrosis b

 0 14 (31.8) 59 (36.4) 0.041 10 (38.5) 63 (35.0) 0.127 9 (56.2) 64 (33.7) 0.120
 1 4 (9.1) 35 (21.6) 2 (7.7) 37 (20.6) 1 (6.2) 38 (20.0)
 2 13 (29.5) 22 (13.6) 8 (30.8) 27 (15.0) 4 (25.0) 31 (16.3)
 ≥ 3 13 (29.5) 46 (28.4) 6 (23.1) 53 (29.4) 2 (12.5) 57 (30.0)
GGO percentage in:
 Whole lung c 1.08 (3.38) 0.17 (0.68) 0.002 1.70 (4.31) 0.18 (0.65) < 0.001 1.63 (3.83) 0.26 (1.35) 0.002
 LUL c 1.13 (6.19) 0.17 (1.62) 0.077 1.19 (3.50) 0.21 (0.92) 0.021 0.24 (0.90) 0.39 (3.32) 0.865
 LLL c 0.06 (0.20) 0.13 (0.97) 0.650 1.73 (8.00) 0.18 (1.57) 0.572 0.00 (0.00) 0.13 (0.90) 0.580
 RUL c 0.34 (1.20) 0.13 (0.72) 0.137 0.27 (1.32) 0.16 (0.76) 0.539 0.44 (1.68) 0.15 (0.74) 0.193
 RML c 0.15 (0.71) 0.63 (4.79) 0.504 0.25 (0.92) 0.57 (4.55) 0.720 0.40 (1.16) 0.54 (4.42) 0.903
 RLL c 1.99 (8.09) 0.20 (1.90) 0.010 3.25 (10.41) 0.20 (1.81) < 0.001 5.27 (13.01) 0.19 (1.76) < 0.001
Lobes involved GGO b

 0 23 (52.3) 114 (70.4) 0.048 14 (53.8) 123 (68.3) 0.123 11 (68.8) 126 (66.3) 0.831
 1 14 (31.8) 31 (19.1) 8 (30.8) 37 (20.6) 4 (25.0) 41 (21.6)
 2 6 (13.6) 9 (5.6) 4 (15.4) 11 (6.1) 1 (6.2) 14 (7.4)
 ≥ 3 1 (2.3) 8 (4.9) 0 (0.0) 9 (5.0) 0 (0.0) 9 (4.7)
Consolidation percentage in:
 Whole lung c 2.40 (3.10) 2.05 (3.50) 0.557 2.27 (3.30) 2.11 (3.44) 0.821 2.04 (2.86) 2.13 (3.46) 0.913
 LUL c 2.05 (4.95) 3.28 (9.86) 0.426 2.67 (6.92) 2.57 (5.21) 0.933 2.02 (5.03) 3.10 (9.31) 0.649
 LLL c 2.15 (6.00) 1.66 (5.56) 0.615 2.53 (5.74) 3.09 (9.44) 0.769 1.41 (4.23) 1.80 (5.75) 0.795
 RUL c 4.48 (10.63) 3.66 (9.68) 0.627 3.06 (8.60) 3.95 (10.05) 0.668 2.31 (6.02) 3.96 (10.12) 0.521
 RML c 2.16 (5.85) 1.37 (5.32) 0.390 2.68 (7.08) 1.37 (5.16) 0.251 2.45 (5.62) 1.46 (5.42) 0.489
 RLL c 3.79 (9.37) 3.76 (10.17) 0.986 3.06 (7.25) 3.87 (10.33) 0.699 2.90 (4.74) 3.84 (10.30) 0.716
Lobes involved consolidation b

 0 6 (13.6) 19 (11.7) 0.667 5 (19.2) 20 (11.1) 0.547 3 (18.8) 22 (11.6) 0.644
 1 12 (27.3) 53 (32.7) 6 (23.1) 59 (32.8) 4 (25.0) 61 (32.1)
 2 13 (29.5) 35 (21.6) 7 (26.9) 41 (22.8) 5 (31.2) 43 (22.6)
 ≥ 3 13 (29.5) 55 (34.0) 8 (30.8) 60 (33.3) 4 (25.0) 64 (33.7)
WBC (109/L) c 6.95 (2.14) 6.89 (2.58) 0.902 6.81 (2.11) 6.92 (2.54) 0.847 6.87 (2.39) 6.91 (2.50) 0.960
NEU (109/L) c 4.65 (1.71) 5.72 (7.90) 0.392 4.48 (1.65) 5.64 (7.51) 0.446 4.79 (1.63) 5.55 (7.33) 0.680
LYM (109/L) c 1.50 (0.68) 1.81 (3.15) 0.526 1.55 (0.72) 1.77 (2.99) 0.704 1.38 (0.70) 1.78 (2.91) 0.585
PLT (109/L) c 249.90 (87.56) 246.19 (93.93) 0.821 241.92 (89.88) 247.82 (92.96) 0.767 259.62 (100.60) 245.82 (91.73) 0.569
MONO (109/L) c 0.62 (0.23) 0.57 (0.27) 0.390 0.62 (0.26) 0.58 (0.26) 0.483 0.59 (0.23) 0.58 (0.27) 0.909
AEC (109/L) c 0.15 (0.12) 0.19 (0.31) 0.440 0.14 (0.12) 0.19 (0.29) 0.441 0.15 (0.11) 0.19 (0.29) 0.574
Hb (g/L) c 129.02 (18.65) 128.97 (20.59) 0.987 127.56 (20.38) 129.20 (20.14) 0.706 127.50 (24.58) 129.12 (19.73) 0.759
ALB (g/L) c 41.00 (4.58) 40.77 (4.81) 0.786 41.19 (4.88) 40.76 (4.74) 0.671 41.95 (4.55) 40.72 (4.77) 0.320
a Values are given in median [interquartile range]
b Values are given in number (%)
c Values are given in mean (standard deviation)
* Significant P values < 0.05 are in bold
† ILA according to the radiologists

Table 1 (continued) 
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Table S3 shows the models that can be used to compute 
the probability of grade ≥ 2 CIP (Model 1) and high-grade 
CIP (Model 2). Fig. 3A, B presents the probability cutoff 
values for Model 1 and Model 2, along with their corre-
sponding sensitivity, specificity, PPV, and NPV, as well as 
the confusion matrix plots, with probability thresholds of 
0.18 and 0.10 chosen for Model 1 and Model 2, respec-
tively. Nomograms based on Model 1 and Model 2 were 
developed to allow clinicians to calculate the risk that a 
patient with ICI treatment will develop CIP requiring 
clinical management by knowing the values of the vari-
ables in the models (Fig. 3C, D).

Performance of the models
The AUCs of Model 1 and Model 2 were 0.775 (95% 
CI: 0.692-0.800) and 0.735 (95% CI: 0.637–0.750), 
respectively, indicating quite good discriminatory abil-
ity. Fig.  4A, B shows the receiver operating charac-
teristic curves of both models. By internal bootstrap 
validation, the mean AUC based on data from the train-
ing cohort was 0.783 for Model 1 and 0.731 for Model 
2. Both H-L goodness-of-fit tests were nonsignificant 
(chi-squared = 10.411, P = 0.237 and chi-squared = 4.316, 
P = 0.828, Table S4). Both models showed good calibra-
tion, as indicated by calibration plots showing good 
agreement between the actual and predicted probabilities 
(Fig.  4E, F). DCA plots for the logistic regression mod-
els predicting the risk of CIP showed that the models had 

Fig. 3 Confusion matrix plots (A) Model 1 and (B) Model 2. Classification tables showing the actual and predicted number of patients with or without 
different grades of CIP and their corresponding sensitivity, specificity, PPV and NPV, using (A) Model 1 (probability threshold 0.18) and (B) Model 2 (prob-
ability threshold 0.10). Nomograms of (C) Model 1 and (D) Model 2. Abbreviations: CIP: checkpoint inhibitor pneumonitis, TP: true positive, FP: false posi-
tive, FN: false negative, TN: true negative, PPV: positive predictive value, NPV: negative predictive value. GGO: ground-glass opacity; RLL: right lower lobe
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clinical utility in guiding treatment decisions across a 
range of threshold probabilities (Fig. 4G, H).

The validation cohort included 111 patients, 20 (18.0%) 
of whom developed CIP, 6 (5.4%) of whom developed 

grade ≥ 3 CIP. The AUCs of Model 1 and Model 2 for 
patients in the validation cohort were 0.732 (95% CI, 
0.615–0.796) and 0.795 (95% CI, 0.667–0.962), respec-
tively (Fig. 4C, D). The accuracy of Model 1 and Model 2 

Fig. 4 Receiver operating characteristic curve of (A) Model 1 and (B) Model 2 in training cohort, and (C) Model 1 and (D) Model 2 in validation cohort. 
Calibration plots with the observed probability of grade ≥ 2 CIP by predicted probability of (E) Model 1, and calibration plots with the observed probability 
of grade ≥ 3 CIP by predicted probability of (F) Model 2. The DCA curve of (G) Model 1 and (H) Model 2 in training cohort. Abbreviations: GGO: ground-
glass opacity; GGO_cat: extent of ground-glass opacity in categorical variable; RLL: right lower lobe
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in the validation cohort was similar to that in the training 
cohort.

Exploration of baseline CT findings in predicting the 
efficacy of ICI therapy
Fig.  5 shows Kaplan-Meier curves comparing PFS 
between groups. The existence of ILA according to radi-
ologists was not a predictor of PFS (P = 0.270, Fig.  5A), 
whereas patients with preexisting ILA according to AI 
evaluation showed a trend toward poor PFS (P = 0.054, 
Fig. 5B). GGOs (P = 0.023, Fig. 5C) but not fibrosis lesions 
(P = 0.470, Fig. 5D) involving more than one lobe at base-
line CT were a risk factor for PFS. Univariable and multi-
variable Cox regression analysis results for each factor to 
predict PFS are shown in Table S5: neither fibrosis extent 
nor GGO extent could predict PFS. After adjusting for 
ICI drug and peripheral blood lymphocyte count, GGOs 
involving more than one lobe remained associated with 
poorer PFS (hazard ratio (HR), 2.098; 95% CI: 1.178–
3.725; P = 0.012).

Discussion
In this study, we developed and validated two prediction 
models that can be used to predict the probability of CIP 
during ICI therapy for patients with advanced non-small 
cell lung cancer. The first model predicted a patient’s 
probability of grade ≥ 2 CIP and held 3 predictors con-
stant, including GGO percentage in whole lung, age and 
histology. The second model predicted the probability 
of grade ≥ 3 CIP and had 2 predictors, including GGO 
percentage in the right lower lung and histology. Both 
models showed good discriminative ability and accurate 
prediction, with Model 1 performing better.

To our knowledge, this is the first study to quantita-
tively report the baseline CT findings, including the ILA 
component, extent and distribution, as risk factors for 
CIP. We found that determining the quantitative GGO 
extent with a deep learning algorithm was useful for eval-
uating the existence of CIP, especially symptomatic CIP 
at pretreatment CT, and for risk stratification of patients 
with ICI-treated NSCLC. Our study sought to examine 

Fig. 5 Kaplan-Meier curves of progression-free survival. (A) Comparison between three groups on the basis of ILA according to the radiologists; (B) Com-
parison between two groups on the basis of ILA according to the AI evaluation; (C) Comparison between two groups on the basis of lobes involved GGO; 
(D) Comparison between two groups on the basis of the number of involved lung lobes. Abbreviations: ILA: interstitial lung abnormalities; AI: artificial 
intelligence; GGO: ground-glass opacity
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the potential of identifying GGO regions on baseline 
chest CT images as a means of predicting the develop-
ment of CIP, and to evaluate the utility of quantitative 
analysis for classifying these regions as high-risk or low-
risk. The optimal cutoff values identified for GGO extent 
in the whole lung (1.01%) and preexisting GGO extent in 
the right lower lung (2.55%) might inform clinical deci-
sion-making and management strategies for patients. 
And the predictive models could be readily applied in 
clinical settings, whether via similar computer-aided 
detection software or rough assessments conducted by 
radiologists or oncologists. This holds notable clinical 
significance, as it enables the estimation of CIP risk in a 
more accessible and streamlined manner.

Previous studies have shown that ILA in cancer 
patients increases the risk of developing severe pneumo-
nitis as a side effect of systemic chemotherapy, radiation 
therapy and immune checkpoint inhibitors [25, 32–34]. 
One of the challenges in developing a suitable prediction 
model of CIP was the lack of objectivity in ILA evalua-
tion. First, visually evaluating the extent of ILAs may not 
be an easy task for radiologists. Second, the distinction 
between fibrotic and nonfibrotic ILAs is challenging. 
In the field of medical imaging, advances in the field of 
artificial intelligence and machine learning seem to offer 
incredible opportunities [35, 36]. Quantitative imag-
ing techniques have been successfully used to evaluate 
ILAs. Iwasawa et al. [37], for instance, observed that the 
volume ratio of fibrosis at preoperative CT, as measured 
by using a computer-aided quantification system, was an 
independent predictor of lower disease-free survival in 
patients with lung cancer. Our study, which included AI 
labeling, quantitative imaging and computational analy-
sis, might improve the objectiveness and reproducibility 
and might be efficiently employed in a prediction model 
of CIP. It is worth mentioning that discrepancies between 
visual and automated assessment in GGOs and fibrotic 
opacities have been described [38]; thus, in this study, we 
used a multitask deep learning algorithm combined with 
manual inspection to overcome this limitation. In addi-
tion, risk factors for developing CIP in previous studies, 
including older age [14] and squamous histology [11], 
were verified in the present study.

In addition, as mentioned above, multivariable regres-
sion analysis showed that CT quantitative assessment of 
baseline lung GGO but not fibrosis percentage was an 
independent risk factor for grade ≥ 2 CIP. These results 
are consistent with those of previous studies [25, 39, 40]. 
Mechanically, GGOs may represent potentially reversible 
inflammation and the infiltration of lymphocytes, while 
the reticular structure and the honeycomb structure tend 
to reflect architectural distortion of the alveola, reflect-
ing fibrosis rather than inflammation. Several studies 
have suggested that T cells are activated and infiltrate the 

lung tissue of CIP patients [41–43]. The development of 
CIP may also be attributed to the excessive activation of 
the immune system induced by inflammatory cytokines, 
which leads to off-target lung destruction by cytotoxic T 
cells [44–46]. These findings may explain why the pres-
ence of GGOs is a more important risk factor for CIP in 
this study and may also explain the conclusions in pre-
vious literature that no association exists between usual 
interstitial pneumonia (UIP) patterns and pneumonitis 
risk [23, 47].

Moreover, we also found that patients with scattered 
GGOs in multiple lobes before treatment tended to have 
poor PFS after immunotherapy. Worse outcomes have 
been reported in patients with advanced lung cancer 
with ILA [32]. ILA also influences disease-free survival in 
patients with resectable NSCLC [37]. However, the quan-
titative evaluation of GGOs in patients with lung cancer 
and their influence on the efficacy of ICI therapy have not 
yet been fully investigated. This study provided a prelimi-
nary clue to the exploration of this question. Our study 
may lead to the development of a noninvasive method 
for capturing the status of the baseline inflammatory/
immune microenvironment of the lungs, which may 
assist in the development of efficacy prediction models 
for immunotherapy in advanced NSCLC patients. Our 
results further reflected the importance of pretreatment 
CT assessment before ICI intervention.

Our research had several limitations. Firstly, it was a 
retrospective study conducted in a single center, result-
ing in a moderate level of evidence. Additionally, despite 
internal validation of the predictive models, external vali-
dation in independent cohorts has not been performed. 
These constraints posed challenges to the generalizabil-
ity of our findings. We will conduct future prospective 
studies, with a specific focus on externally validating the 
robustness and applicability of proposed models across 
multiple medical centers and independent cohorts. This 
will contribute to a comprehensive evaluation of our 
models, potentially laying a foundation for their future 
implementation in clinical practice. Secondly, the wide 
CI of the OR for the variable “GGO percentage in whole 
lung” in Model 2 highlights the importance of consider-
ing the potential sources of variability and uncertainty in 
our findings. The effect of this variable may be influenced 
by other factors that were not included in our analysis. 
Thus, caution should be exercised when interpreting and 
applying the results of our study. Thirdly, the number of 
patients with CIP was relatively small, so the general-
ization of the results was limited. Furthermore, we used 
CT images obtained from a single center and software 
platform, which limited the universality of these results. 
However, the multitask deep learning algorithm is com-
mercialized and has been reported to work effectively on 
different CT scanner manufacturers in many previous 
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studies [48–50]. Further prospective multicenter valida-
tion studies with larger sample sizes are therefore neces-
sary to solve these points.

Conclusions
In summary, we developed and validated predictive mod-
els for symptomatic and severe CIP using a deep learning 
algorithm that accurately detected and quantified GGOs 
in CT images. Our findings highlight the importance 
of monitoring patients with multilobe-involved GGOs 
prior to ICI therapy, as they have a higher risk of CIP 
and poorer outcomes. The resulting models have notable 
clinical significance and can be easily applied in clinical 
settings. Further research can explore generalizability, 
improve sensitivity and specificity, and incorporate addi-
tional data for more personalized medicine.
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