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Abstract 

Purpose  Rectal tumor segmentation on post neoadjuvant chemoradiotherapy (nCRT) magnetic resonance imaging 
(MRI) has great significance for tumor measurement, radiomics analysis, treatment planning, and operative strategy. In 
this study, we developed and evaluated segmentation potential exclusively on post-chemoradiation T2-weighted MRI 
using convolutional neural networks, with the aim of reducing the detection workload for radiologists and clinicians.

Methods  A total of 372 consecutive patients with LARC were retrospectively enrolled from October 2015 to Decem‑
ber 2017. The standard-of-care neoadjuvant process included 22-fraction intensity-modulated radiation therapy 
and oral capecitabine. Further, 243 patients (3061 slices) were grouped into training and validation datasets 
with a random 80:20 split, and 41 patients (408 slices) were used as the test dataset. A symmetric eight-layer deep 
network was developed using the nnU-Net Framework, which outputs the segmentation result with the same size. 
The trained deep learning (DL) network was examined using fivefold cross-validation and tumor lesions with different 
TRGs.

Results  At the stage of testing, the Dice similarity coefficient (DSC), 95% Hausdorff distance (HD95), and mean sur‑
face distance (MSD) were applied to quantitatively evaluate the performance of generalization. Considering the test 
dataset (41 patients, 408 slices), the average DSC, HD95, and MSD were 0.700 (95% CI: 0.680–0.720), 17.73 mm (95% 
CI: 16.08–19.39), and 3.11 mm (95% CI: 2.67–3.56), respectively. Eighty-two percent of the MSD values were less than 5 
mm, and fifty-five percent were less than 2 mm (median 1.62 mm, minimum 0.07 mm).

Conclusions  The experimental results indicated that the constructed pipeline could achieve relatively high accuracy. 
Future work will focus on assessing the performances with multicentre external validation.
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Introduction
Colorectal cancer is the fourth most common can-
cer worldwide, with an annual incidence of more than 
700,000 cases and the third-highest mortality rate [1]. 
According to the main international clinical guidelines 
[2, 3], the recommended treatment for locally advanced 
rectal cancer (LARC) is neoadjuvant chemoradiotherapy 
(nCRT), followed by total mesorectal excision (TME). 
In recent years, the watch-and-wait strategy appears to 
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be a safer option in patients who have achieved patho-
logic complete response (pCR) after nCRT [4], while 
local excision, including transanal excision, transanal 
endoscopic microsurgery, and transanal minimally inva-
sive surgery may be suitable for good response [5, 6]. At 
the same time, patients may also have the possibility of 
liver and pulmonary metastases [7, 8]. Therefore, accu-
rate response prediction is essential in planning optimal 
treatment strategies [9–11].

As recommended by the guidelines, response assess-
ment should be performed with the combination of 
restaging magnetic resonance imaging (MRI), digital 
rectal examination, and endoscopy, in which MRI plays 
an important role [12, 13]. However, the basic step for 
prediction is to accurately identify the residual tumor 
region or the tumor bed [14]. In general, the procedure is 
delineated manually by the radiologists on medical soft-
ware, which is labor intensive and time-consuming [15]. 
As the essential modality of rectal cancer, T2-weighted 
imaging (T2WI) can display anatomical information with 
a clearer tumor boundary by high spatial resolution [16, 
17]. Theoretically, patients accept MRI scanning before 
and after therapy to obtain baseline MRI (pre-nCRT 
MRI) and post-nCRT MRI [18]. Although pre-nCRT MRI 
is an important reference, its availability and accessibil-
ity is limited in real clinical practice. When conducting 
detection tasks only based on post-nCRT MRI images, 
the nCRT-induced submucosal edema, fibrosis, and/or 
mucin production make it difficult to distinguish changes 
after treatment from the residual tumor [19]. Meanwhile, 
the pathological changes induced by nCRT make the 
tumor appearance different from the primary counter-
part in different tumor regression grades (TRGs) [20].

Some unsatisfactory and inaccurate results for restag-
ing using standard manual MRI protocols [21] led to the 
need for a separate evaluation system for post-nCRT 
imaging. Currently, only a few of studies have used post-
nCRT MRI for segmentation and prediction [22–24], but 
most are not based on the direct segmentation of lesions. 
The semantic segmentation for rectal cancer using the 
nnUNet framework [25–27] and post-nCRT single MRI 
modality has never been reported. The most commonly 
used medical image modality in former research is colon 
images scanned by computed tomography (CT) [28–30].

In this study, we explored and examined the segmen-
tation potential for LARC exclusively on post-chemo-
radiation T2-weighted MRI using state-of-the-art deep 
learning (DL) architectures, with the aim to provide clini-
cal auto-delineation tools for subsequent measurement 
and analysis [31–33]. Meanwhile, the generalization per-
formance was further validated on tumor lesions with dif-
ferent TRGs. The quantitative metrics [34, 35], including 
Dice similarity coefficient (DSC), 95% Hausdorff distance 

(HD95), and mean surface distance (MSD), confirmed 
the practical implications of reducing workload whether 
for colorectal cancer physicians or radiologists.

Methods
Patients and dataset
The retrospective study enrolled 372 consecutive patients 
with LARC from October 2015 to December 2017. The 
inclusion criteria were as follows: (1) All candidates were 
pathologically confirmed with locally advanced rectal 
adenocarcinoma (excluding mucinous adenocarcinoma). 
(2) All candidates received a complete and standard 
nCRT process, which included 22-fraction intensity-
modulated radiation therapy and oral capecitabine of 825 
mg/m2 twice per day. (3) All candidates were scanned 
by T2-weighted MRI within 1 week before nCRT. (4) All 
candidates were scanned by T2-weighted MRI within 1 
week before TME surgery. (5) All candidates were clini-
cally confirmed to be in T3, T4, or N+ stage using base-
line MRI. The clinical protocol was approved by the 
medical ethics committee of Beijing Cancer Hospital. 
Executing the process shown in Fig. 1, the overall dataset 
was produced containing rectal cancer images from 284 
patients. Then, it was artificially grouped into training 
and validation dataset (N = 243), as well as test dataset 
(N = 41).

MRI scan, image acquisition, and data preprocessing
All the post-nCRT MRI images were obtained with a 
3.0-T MRI scanner (Discovery MR750; GE Healthcare, 
WI, USA). To minimize colonic motility for each patient, 
20 mg of scopolamine butylbromide was administered 
intramuscularly 30 minutes before the MRI scan. A con-
ventional rectal MRI protocol was applied to all patients, 
the standard process mainly included high-resolution 
T2WI from axial, coronal, and sagittal position, with dif-
fusion-weighted imaging (DWI) as an auxiliary reference 
for subsequent delineation. And the main  scan  param-
eters are as follows: (1) High-resolution T2WI sequence: 
Repetition time (TR) =5,694 ms, repetition time (TE) 
=110 ms, field of view (FOV) = 180 × 180 mm, echo 
train length = 24, matrix = 288×256, thickness = 3.0 mm, 
and gap= 0.3 mm. (2) DWI sequence: Single-shot echo-
planar imaging with 2 b-factors (0 and 1,000 s/mm2), TR 
= 2,800 ms, TE = 70 ms, FOV = 340 × 340 mm, matrix 
=256 × 256, thickness = 4.0 mm, and gap = 1.0 mm.

For the preprocessing steps, each volume was initially 
resampled to a consistent spatial resolution of 0.3516 × 
0.3516 × 3.3 mm3 to ensure a uniform physical distance 
interpretation across acquired 3D images. The layers of 
each patient ranged from 18 to 40, with the same image 
size of 512 × 512 pixels. Then a total of 284 3D images 
were converted into 2D images using the SimpleITK 
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package, and 3469 slices containing tumor lesions were 
screened to create the whole dataset. Each finished slice 
was stored in the NIfTI format (ie .nii.gz extension). To 
attain a standard normal distribution of image intensi-
ties, z-scores were utilized for the normalization (μ ± σ) 
of all the generated slices. At the final stage, 3061 slices 
were split to train the model with a random 20% inter-
nal validation set. Further, 408 slices were not involved 
in the model-building process for independent external 
validation.

ROI delineation and manual annotation
The regions of interest (ROIs) on post-nCRT T2-weighted 
images were independently delineated by two experienced 
radiologists with 8 and 10 years of experience in abdomi-
nal radiology. And the ROIs were defined as all the resid-
ual tumors and suspected fibrotic areas. The lesion area 
on each slice was drawn along the tumor contour using 
ITK-SNAP v3.8.0 software. All the controversial images 
were reviewed by a third radiologist, and an agreement 
was reached if inconsistency existed in the judgment of 
tumor boundary details. The ROIs were created manu-
ally on T2-weighted images, the readers also referred to 
DWI images to avoid false positives or false negatives in 
the highest degree.

After complete nCRT treatment and TME, surgically 
resected specimens were evaluated by two experienced 
pathologists with 10 and 15 years of experience in gastro-
intestinal disease, respectively. The annotations of TRG 

were  referenced to the National Comprehensive Cancer 
Network and American Joint Committee on Cancer TRG 
system [36]. As shown in Fig. 2, the TRG indicator was 
defined into four levels (TRG0, TRG1, TRG2, and TRG3), 
and patients on TRG1, TRG2, and TRG3 were consid-
ered during model training and testing.

Model construction: nnUNet framework for rectal tumor 
segmentation
nnUNet (https://​github.​com/​MIC-​DKFZ/​nnUNet) is a 
general adaptive segmentation framework proven to have 
strong performance on 10 public datasets in international 
biomedical segmentation competitions (Liver Tumor, 
Brain Tumor, Hippocampus, Lung Tumor, Prostate, Car-
diac, Pancreas Tumor, Colon Cancer, Hepatic Vessels, 
and Spleen) [25]. Merely regarding colorectal cancer seg-
mentation, 190 CT images of colon cancer [37] were used 
in Medical Segmentation Decathlon (Memorial Sloan 
Kettering Cancer Center). However, the framework has 
not been widely applied to MRI images of rectal tumors 
yet. As demonstrated in Fig. 3, the overview of the seg-
mentation pipeline comprised four major stages, includ-
ing preprocessing, data augmentation, model training, 
and post-processing, which was capable of automatic 
network configuration.

In more detail, the overall segmentation network 
structure was symmetrically composed of eight layers, 
as shown in Fig. 4, extracting and reassembling features 
through network structure and parameter configuration. 

Fig. 1  Flowchart showing the inclusion criteria for patients and the process of the overall dataset

https://github.com/MIC-DKFZ/nnUNet
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A typical block was operated twice at every layer, which 
comprised a 3 × 3 convolution [stride = (1, 1), padding= 
(1, 1)], instance norm (eps = 1e-05, momentum = 0.1) 
and Leaky ReLu (negative slope = 0.01). The origin slice 
(1, 512, 512) passed through the convolution block, and 
the dimensions were converted into (32, 256, 256), (64, 
128, 128), (128, 64, 64), and (256, 32, 32) from the first 
to the fourth layer, sequentially. Afterward, the width and 
height were continuously squeezed by the max pooling 
layer, but the number of channels no longer changed and 
remained at 480 in the last three layers. In the opposite 
direction, the feature dimensions of the decoding side 

Fig. 2  T2-weighted MRI images on pre-nCRT and post-nCRT. a pCR. b TRG1. c TRG2. d TRG3

Fig. 3  Overview of the deep learning modeling and evaluation flow. a Training and validation dataset (n = 243, slices = 3061, training 
slices:validation slices = 4:1). b Ground truth delineated by two radiologists. c Process of nnUNet Framework. d Prediction results using the trained 
DL model. e Evaluation metrics. f Test dataset (n = 41, slices = 408), TRG1 = 18, TRG2 = 19, and TRG3 = 4

changed similarly, and the feature fusion was performed 
with the skip layers. At the end, a 1 × 1 convolution and a 
softmax layer were implemented to the network, generat-
ing the predicted ROI results. Our source code is avail-
able via GitHub (https://​github.​com/​Post-​nCRT/​Segme​
ntati​on-​of-​rectal-​cancer) and can be coordinated with 
the nnUNet code.

Evaluation
We calculated the most commonly used metrics based 
on prediction results and the gold standard of doctors 
to quantitatively evaluate the performance of the DL 

https://github.com/Post-nCRT/Segmentation-of-rectal-cancer
https://github.com/Post-nCRT/Segmentation-of-rectal-cancer
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model. DSC, Jaccard, Recall, Precision, and F1-score 
were used to measure the performance in the training 
stage, and DSC, HD95, and MSD were applied as the 
main indexes to examine the test dataset [38]. All the 
formulas were expressed as follows:

① DSC (Dice similarity coefficient): DSC is usually 
used to calculate the volume overlap between two sets 
with a value range of [0,1], where M ∩ N  represents 
the intersection of the ground truth (N) and predic-
tion (M), and | | represents the number of elements.

② Jaccard (Jaccard similarity coefficient): Given 
two sets M and N  , the Jaccard coefficient is defined 
as the ratio of the intersection of M and N  to the 
union of M and N .

③ Recall (R): Recall is defined as the proportion of 
true-positive samples detected in all positive sam-
ples. Its value is equivalent to sensitivity.

④ Precision (P): Precision essentially measures the 
proportion of the true-positive samples among all 
samples predicted to be positive.

(1)DSC =
2|M ∩ N |

|M| + |N |

(2)Jaccard =
|M ∩ N |

|M| + |N | − |M ∩ N |

(3)Recall =
TP

TP + FN
=

|M ∩ N |

|N |

⑤ F1-score: The Fβ − score considers precision and 
recall together, and the F1-score is the harmonic 
mean of precision and recall, which can be expressed 
as Eq. 6.

⑥ HD95 (95% Hausdorff distance): HD95 mainly 
measures the maximum distance between the ground 
truth (N) and prediction (M), where hd(M,N ) and 
hd(N ,M) are the unidirectional Hausdorff distances 
from set A to set B and from set B to set A, respec-
tively. And K95% represents the 95th percentile.

⑦ MSD (Mean surface distance): MSD mainly meas-
ures the mean distance between the two surfaces, 
where d(v, S(K )) denotes the shortest distance of an 
arbitrary volume v to S(K ).

(4)Precision =
TP

TP + FP

(5)Fβ − score = 1+ β2 PR

(β2P + R)

(6)F1 − score =
2PR

P + R

(7)HD95(M,N ) = K95%(max(hd(M,N ), hd(N ,M)))

(8)hd(M,N ) = max
m∈M

min
n∈N

||m− n||

(9)hd(N ,M) = min
n∈N

max
m∈M

||n−m||

Fig. 4  Deep convolutional network architecture
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⑧ ICC (Intraclass correlation coefficient): ICC is 
applied to evaluate the reliability between multiple 
measurements of the same object, where MSgroup 
and MSerror respectively represent the mean squares 
of group and error, U is defined as the number of 
measurements.

Results
Clinical characteristics of patients with LARC​
A total of 372 patients with LARC were selected as pre-
liminary candidates, and 284 patients (243 in the train-
ing cohort, mean age 56.37 ± 9.83 years; 41 in the test 
cohort, mean age 55.59 ± 11.66 years) were eventually 
enrolled in the study. The clinical characteristics of 
patients in the training and test cohorts, including num-
ber of MRI slices, age, sex, and TRG levels, are summa-
rized in Table 1.

(10)
MSD(M,N ) =

1

2





1

|S(M)|

�

sM∈S(M)

d(sM , S(N ))+
1

|S(N )|

�

sN∈S(N )

d(sN , S(M))





(11)d(v, S(K )) = min
sk∈S(K )

||v − sK ||

(12)ICC =
(MSgroup −MSerror)/U

(MSgroup −MSerror)/U +MSerror

Model training and evaluation
The network architecture was developed and trained on a 
workstation with two GeForce RTX 2080 GPUs (Python 
3.7, PyTorch 1.7.1, Linux system, ubuntu 16.04 server). 
The total training epochs were set to 500, and the initial 
learning rate was set to 1e-3, optimized by stochastic 
gradient descent. The five common evaluation metrics 
- DSC, Jaccard, Precision, Recall, and F1-score of five-
fold cross-validation are summarized in Table 2. By cal-
culating with the gold standard of doctors in each fold 
(20% used for validation), the developed model achieved 
a mean DSC, Jaccard, Precision, Recall, and F1-score of 
0.881 (95% CI: 0.879–0.884), 0.798 (95% CI: 0.795–0.802), 
0.880 (95% CI: 0.876–0.884), 0.899 (95% CI: 0.898–0.900), 
and 0.881 (95% CI: 0.879–0.884), respectively.

The learning curves of the first fold to fifth fold 
are depicted in Fig. 5. The changes in training and valida-
tion losses were measured using the scale of the left axis, 
and DSC values on the validation dataset were visualized 
using the right axis. From 0 to 200 epochs, the DSC val-
ues smoothly increased and then gradually stabilized at 
0.88 after 200 epochs.

Model performance in the test dataset
The trained DL model was examined on 408 slices with 
LARC. And the results are demonstrated in Table 3. The 
mean DSC, mean HD95, and mean MSD were 0.700(95% 
CI: 0.680–0.720), 17.73 mm (95% CI: 16.08–19.39), and 
3.11 mm (95% CI: 2.67–3.56), respectively. Considering 
for HD95, 122 slices (30%) were less than 5 mm, and 225 
slices (55%) were less than 15 mm. Simultaneously, the 
MSD values of 334 slices (82%) were less than 5 mm, of 
which 224 slices (55%) were less than 2 mm.

The examples of segmentation results were compared 
with the original images and segmention output, as 

Table 1  Clinical records of patients with LARC​

Characteristics Training dataset Test dataset

Number of patients 243 41

Number of slices 3061 408

Sex (female/male) 101/142 15/ 26

Mean age (years) 56.37 ± 9.83 55.59 ± 11.66

TRG (TRG1/TRG2/TRG3) 107/131/5 18/19/4

Table 2  Evaluation metrics (DSC, Jaccard, Precision, Recall, and F1-score) with fivefold cross-validation

Fold DSC Jaccard Precision Recall F1-score

0 0.878 (0.871–0.886) 0.794 (0.784–0.805) 0.875 (0.865–0.885) 0.898 (0.891–0.906) 0.878 (0.871–0.886)

1 0.885 (0.878–0.893) 0.804 (0.795–0.814) 0.886 (0.876–0.895) 0.900 (0.894–0.906) 0.885 (0.878–0.893)

2 0.882 (0.875–0.889) 0.798 (0.789–0.808) 0.882 (0.873–0.891) 0.897 (0.890–0.904) 0.882 (0.875–0.889)

3 0.879 (0.871–0.887) 0.796 (0.786–0.806) 0.878 (0.868–0.887) 0.899 (0.891–0.906) 0.879 (0.871–0.887)

4 0.881 (0.874–0.889) 0.799 (0.789–0.809) 0.880 (0.870–0.890) 0.899 (0.892–0.906) 0.881 (0.874–0.889)

Mean 0.881 (0.879–0.884) 0.798 (0.795–0.802) 0.880 (0.876–0.884) 0.899 (0.898–0.900) 0.881 (0.879–0.884)
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shown in Fig.  6, in which the red areas represent ROIs. 
(a–g) are original images, (h–n) are ground truth annota-
tions by radiologists, and (o–u) are prediction results by 
the deep convolutional network.

To evaluate the segmentation performance of tumors 
with various changes on post-nCRT, the quantitative 
evaluation results for patients on different TRGs were 
also independently calculated, as shown in Table  3. The 
average values of DSC, HD95, and MSD were (0.670 [95% 

CI: 0.640–0.700], 19.73 mm [95% CI: 17.33–22.13], and 
2.32 mm [95% CI: 1.83–2.80]), (0.720 [95% CI: 0.690–
0.750], 15.41 mm [95% CI: 13.03–17.79], and 3.02 mm 
[95% CI: 2.23–3.81]), and (0.690 [95% CI: 0.620–0.760], 
21.08 mm [95% CI: 14.67–27.50], and 3.45 mm [95% CI: 
2.18, 4.72]), respectively. When further assessing the test 
results for each TRG type, the model exhibited consistent 
DSC values within the range of 70% ± 3%, and demon-
strated the stability of the pixel-level overlaps of inference 

Fig. 5  Learning curves of fivefold cross-validation: (1) a-e Loss graphs and evaluation metrics (DSC) from first fold to fifth fold. (2) Left axis: changes 
in losses on training and validation dataset from 0 to 499 epochs. (3) Right axis: DSC values on the validation dataset from 0 to 499 epochs
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Table 3  Evaluation metrics (DSC, HD95, and MSD) for the test dataset on different TRGs

TRG grade Slices Statistics DSC HD95 (mm) MSD (mm)

TOTAL 408 Mean 0.700 (0.680–0.720) 17.73 (16.08–19.39) 3.11 (2.67–3.56)

Median 0.750 12.98 1.62

Maximum 0.960 85.38 52.11

Minimum 0.000 0.00 0.07

TRG1 175 Mean 0.670 (0.640–0.700) 19.73 (17.33–22.13) 2.32 (1.83–2.80)

Median 0.690 16.12 2.20

Maximum 0.930 75.80 19.29

Minimum 0.140 1.00 0.13

TRG2 199 Mean 0.720 (0.690–0.750) 15.41 (13.03–17.79) 3.02 (2.23–3.81)

Median 0.790 8.98 1.11

Maximum 0.960 85.38 52.11

Minimum 0.00 0.00 0.07

TRG3 34 Mean 0.690 (0.620–0.760) 21.08 (14.67–27.50) 3.45 (2.18–4.72)

Median 0.760 12.35 1.43

Maximum 0.930 55.07 13.82

Minimum 0.270 1.00 0.12

Fig. 6  Examples of comparison between segmentation results of the DL model and the annotations from radiologists: a–g original images; 
h–n ground truth; and o–u prediction results. The red areas represent ROIs

Fig. 7  Segmentation examples of tumor lesions with different TRGs. a–d TRG1; e–h TRG2; and i–l TRG3. The red areas represent ROIs



Page 9 of 12Xia et al. BMC Cancer          (2024) 24:315 	

results and ground truth on different TRG levels. And it 
was evident that the values of HD95 and MSD basically 
increased from TRG1 to TRG3, disregarding the poten-
tial decrease in HD95 caused by a higher training and 
testing slices of TRG2. The rise of the two metrics indi-
cated that the segmentation of tumor surface boundaries 
became more challenging as the degree of tumor regres-
sion increased after nCRT, which was also aligned with 
the practical experience on manual delineation. Fig. 7(a–
l) visually shows the segmentation examples of tumor 
lesions, each TRG level is illustrated with two cases, 
with the comparison of both the prediction results of DL 
model and the ground truth from radiologists.

Furthermore, statistical analyses were conducted to 
provide more adequate comparability of DSC. The intra-
class correlation coefficient (ICC) of the representative 
radiomics feature, the maximum diameter, was computed 
by pyradiomics 3.0.1 and SPSS Statistics 27.0 (IBM offi-
cial version). In Table 4, the ICC between expert readers, 
the ICC between expert readers and deep learning model, 
and the ICC mentioned by previous  literature [24], are 
summarized together to provide quantitative explana-
tions for the difficulty of rectal tumor segmentation on 
post-nCRT. The ICC of the same lesion areas delineated 
by radiologists and predicted by deep learning model was 
0.669 (95%CI: 0.612, 0.719), comparing the interreader 
agreement on T2 images between the two human radiolo-
gists with the value of 0.739 (95% CI: 0.515, 0.865).

Discussion
The automatic segmentation of rectal tumors on post-
nCRT MRI makes a positive contribution to the evalua-
tion of the nCRT effect, which is also the footstone of the 
subsequent processes, including tumor measurement, 
radiomics analysis, surgical plan decision, and so forth. 
When only post-nCRT MRI images are available, it is 
particularly critical to ensure the reliability and accuracy 
of segmentation results. A high probability exists that 
confounding factors would be introduced if the images 
of patients with pCR (theoretically accounting for 20%) 
were directly sent to the segmentation model for training 
[11]. The clinicians could neither delineate the ROI nor 

equate it with a completely tumor-free region. Thus, the 
patients with pCR were first excluded, and only patients 
without pCR (243 with 3061 slices) were used to con-
struct the segmentation model.

In this study, we mainly focused on post-nCRT MRI 
alone and developed a fully automatic pipeline using the 
state-of-the-art framework, nnUNet. The experimental 
results of the DL model showed a high segmentation accu-
racy in 5-fold cross-validation, with a mean DSC, Jaccard, 
Precision, Recall, and F1-score of 0.881 (95% CI: 0.879–
0.884), 0.798 (95% CI: 0.795–0.802), 0.880 (95% CI: 0.876–
0.884), 0.899 (95% CI: 0.898–0.900), and 0.881 (95% CI: 
0.879–0.884), respectively. The mean DSC value was main-
tained at 70% on the test dataset (41 patients, 408 slices).

The tumors generally shrink after chemoradiother-
apy and lesion areas are usually accompanied by vary-
ing degrees of fibrosis, and hence the segmentation on 
post-nCRT is more challenging than the segmentation 
on baseline MRI. TRG is mainly graded according to the 
residual tumor components and the proportion of fibro-
sis. Thus, the therapeutic effects of chemotherapy and 
targeted drugs on tumors can be quantitatively analyzed. 
We calculated the metrics of the DL model at different 
TRG levels (TRG1, TRG2, and TRG3) to further evaluate 
the generalization performance. The mean DSC, mean 
HD95, and mean MSD were 0.670 (95% CI: 0.640–0.700), 
19.73 mm (95% CI: 17.33–22.13), and 5.98 mm (95% CI: 
5.00– 6.96); 0.720 (95% CI: 0.690–0.750), 15.41 mm (95% 
CI: 13.03, 17.79), and 4.74 mm (95% CI: 3.54–5.94); and 
0.690 (95% CI: 0.620–0.760), 21.08 mm (95% CI: 14.67, 
27.50), and 6.47 mm (95% CI: 3.89, 9.05), respectively.

Previous studies included cases only related to post-
nCRT MRI images involving segmentation of the rec-
tal wall or suspicious areas on post-nCRT [22–24]. Still, 
they were not directly related to the segmentation of 
tumor areas. Thomas et  al. [22] trained a fully convo-
luted network for the segmentation of the rectal wall on 
post-chemoradiation T2-weighted MRI, and the median 
DSC reached 0.680. Pang et al. [23] employed both U-Net 
and 4-channel U-Net on “suspicious region” segmenta-
tion for follow-up radiomics analysis, achieving DSC 
values of 0.656 (95% CI: 0.630–0.683) and 0.660 (95% 

Table 4  ICCs for assessment of task difficulty: the ICC between expert readers, the ICC between expert readers and deep learning 
model, and the ICC mentioned by previous literature [24]

Two objects Post-nCRT ICC

Two human radiologists (T2WI) 0.739 (95% CI: 0.515, 0.865)

DL model and human radiologists (T2WI) 0.669 (95%CI: 0.612, 0.719)

Two human radiologists [24] (DWI) 0.750 (95%CI: 0.630, 0.830)

Automated segmentation using the software [24] (DWI) 0.530–0.660

Semiautomated segmentation using the software [24] (DWI) 0.610–0.750
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CI: 0.628–0.691), respectively. Meanwhile, compared 
with the manual method, the trained DL model showed 
better performance than either automated or semiau-
tomated segmentation using the software with DSC of 
0.420 ± 0.230 (ICC: 0.530~0.660) and 0.410 ± 0.220 (ICC: 
0.610~0.750) [24], respectively.

Although relatively stable results were obtained in this 
study, it still has some limitations for future improvement 
and optimization. From the perspective of the dataset, we 
could recruit patients on each TRG grade as much as pos-
sible to ensure a more balanced sample distribution from 
different TRGs. Additionally, the DL model trained on the 
retrospective dataset could be further validated on a pro-
spective multicenter dataset. In light of the diminishing 
likelihood of obtaining validation through anatomopatho-
logical reports due to the increasing use of the watch-and-
wait protocol and the option of local excision [39, 40], 
next endeavors will be laid on exploring weakly super-
vised or unsupervised artificial intelligence approaches in 
the scenario of few pathological labels [41–43]. And tissue 
specimens from appropriate patients with local excision 
can also be obtained for pathologic study, with less differ-
ences from the patients that undergo TME surgery.

Deducing the growth sorely from model promotion 
and imaging technology, it is considered that introducing 
multi-stage segmentation steps or attention mechanisms 
may increase the segmentation accuracy. Furthermore, 
the developing application of the suitable integration of 
2D and 3D models [44, 45] in diverse clinical scenes will 
be the desired research direction. As post-nCRT imaging 
techniques for rectal cancer continue to advance, investi-
gating the automated segmentation performance through 
multimodal imaging technologies such as PET/CT or 
PET/MRI also represents a promising avenue [16, 46].

Conclusions
In this study, we developed an automatic segmenta-
tion pipeline for LARC exclusively based on post-nCRT 
T2-weighted MRI. It was the first attempt to evaluate and 
validate the application potential of nnUNet framework 
for rectal cancer on post-nCRT MRI imaging, differing 
from CT slices in previous studies. The experimental 
results indicated a relatively high accuracy (DSC, HD95, 
and MSD). Moreover, the robustness of the network was 
also verified by analyzing the segmented tumor lesions 
on diverse TRGs. The model is expected to be not only 
an auxiliary tool for manual labeling but also a potential 
practical tool for subsequent tumor measurement, radi-
omics analysis, treatment planning, and operative strat-
egy with further multicentre external validation. Future 
studies will focus on exploring effective methods to com-
bine 2D models with 3D models and further apply them 
to clinical populations.
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