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Abstract
Objective  The risk category of gastric gastrointestinal stromal tumors (GISTs) are closely related to the surgical 
method, the scope of resection, and the need for preoperative chemotherapy. We aimed to develop and validate 
convolutional neural network (CNN) models based on preoperative venous-phase CT images to predict the risk 
category of gastric GISTs.

Method  A total of 425 patients pathologically diagnosed with gastric GISTs at the authors’ medical centers between 
January 2012 and July 2021 were split into a training set (154, 84, and 59 with very low/low, intermediate, and high-
risk, respectively) and a validation set (67, 35, and 26, respectively). Three CNN models were constructed by obtaining 
the upper and lower 1, 4, and 7 layers of the maximum tumour mask slice based on venous-phase CT Images and 
models of CNN_layer3, CNN_layer9, and CNN_layer15 established, respectively. The area under the receiver operating 
characteristics curve (AUROC) and the Obuchowski index were calculated to compare the diagnostic performance of 
the CNN models.

Results  In the validation set, CNN_layer3, CNN_layer9, and CNN_layer15 had AUROCs of 0.89, 0.90, and 0.90, 
respectively, for low-risk gastric GISTs; 0.82, 0.83, and 0.83 for intermediate-risk gastric GISTs; and 0.86, 0.86, and 0.85 for 
high-risk gastric GISTs. In the validation dataset, CNN_layer3 (Obuchowski index, 0.871) provided similar performance 
than CNN_layer9 and CNN_layer15 (Obuchowski index, 0.875 and 0.873, respectively) in prediction of the gastric GIST 
risk category (All P >.05).

Conclusions  The CNN based on preoperative venous-phase CT images showed good performance for predicting 
the risk category of gastric GISTs.
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Introduction
Gastric gastrointestinal stromal tumors (GISTs) account 
for 60–65% of all GISTs, followed by GISTS of the small 
intestine (25–30%) and colorectal region (5%). GISTS 
derive from interstitial cells of Cajal (ICC), and have a 
potential for malignancy [1, 2]. Independent prognos-
tic factors for GISTs based on the National Institutes 
of Health (NIH) risk category criteria include tumor 
size and site, mitotic count, and tumor rupture [3]. Risk 
stratification is essential to identify and better define 
those patients with GISTs who are most likely to benefit 
from adjuvant imatinib therapy [4]. High-risk GISTs are 
considered to require a multidisciplinary approach to 
improve the prognostic outcome, such as one including 
adjuvant therapy and surgery [5, 6]. Therefore, it would 
be helpful to determine a precise preoperative risk rating 
to ensure appropriate adjuvant therapy and treatment for 
individual patients.

Abdominal contrast-enhanced computed tomography 
(CT) is the most commonly applied method for deter-
mining the signs of GISTs, such as calcification, hemor-
rhage, growth pattern, degree of enhancement, necrosis, 
and lymph node involvement [7, 8]. However, the result-
ing subjective interpretations have inevitable limitations 
because of differences in reader experience and understa-
ding in the definitions of imaging features, thereby moti-
vating researchers to seek more objective and reliable 
predictive approaches [9].

Recently, the convolutional neural network (CNN) has 
become the typical algorithm for deep learning, and they 
are now widely used in the fields of diagnostic imaging, 
classification, and prediction in various diseases, includ-
ing gastric cancer, breast cancer, and lung cancer [10–12]. 
With advantages in accuracy, objectivity, and reproduc-
ibility, CNN models applied to imaging data can discern 
important predictive features that may not be detected by 
the naked eye [13, 14]. Although several CNN image data 
models have been applied to endoscopic ultrasonography 
(EUS) imaging of gastrointestinal diseases, there is still a 
lack of research on their application to contrast-enhanced 
CT images of gastric GISTs [11, 15, 16]. We considered 
whether a CNN-based model applied to venous phase 
contrast-enhanced CT would be able to predict the risk 
rating of gastric GISTs, and adopted a newly developed 
CNN called Efficient Net to build and validate predictive 
models for this purpose [17].

Materials and methods
Training and validation datasets
This retrospective study was approved by Ethics Commit-
tee of Tongde Hospital of Zhejiang Province (Approval 
No. 2022-040) and waived the need of informed con-
sent under ethical approval and consent to partici-
pant section under declaration section. Venous-phase 

contrast-enhanced CT images acquired between January 
2012 and July 2021 were retrospectively analyzed from 
4 four centers. Initially, 535 patients clinically suspected 
to have primary gastric GISTs were identified. The inclu-
sion criteria were: (1) postoperative histopathological 
confirmation of gastric GIST; (2) contrast-enhanced CT 
acquired within 4 weeks before resection; (3) complete 
clinicopathologic materials; and (4) no chemotherapy 
previous to operation. The exclusion criteria consisted of 
poor CT image quality or lesion size < 1.0 cm (which may 
influence the segmentation of the target lesion), multiple 
lesions, and lesion manifesting as fully calcified. Details of 
the inclusion and exclusion criteria are demonstrated in 
Fig. 1. After applying these criteria, a total of 425 patients 
with pathologically diagnosed gastric GISTs were classi-
fied into either a training dataset (154, 84, and 59 patients 
with very low/low, intermediate, and high-risk, respec-
tively) or a validation dataset (67, 35, and 26 patients with 
very low/low, intermediate, and high-risk, respectively). 
Clinical data including sex, mean age, and symptoms 
(hematemesis and/or melena) were also collected.

CT examinations
All patients in the training and validation groups under-
went contrast-enhanced CT examinations on one of the 
following CT scanners: SOMATOM Emotion16/64, 
Definition AS/Dual Source (SIEMENS Healthineers), 
and Optima CT680 (GE). All subjects were required to 
intake 500–1000 ml of water over 15 min before the CT 
scanning and to have fasted for at least 4 h. Arterial phase 
and portal venous phase images were acquired with 
delays of 25–30  s and 50–70  s after injection, respec-
tively. All CT imaging was acquired using a tube volt-
age of 120–130  kV, tube current of 200–300  mA, slice 
thickness of 1.5–5.0 mm, and an intravenous injection of 
80–120 ml of contrast medium delivered using an injec-
tion rate of 3–4  ml/s according to the patient’s weight 
(1.0 ~ 1.5 ml/kg). The following quantitative CT features 
of gastric GISTs were analyzed: mean CT value of unen-
hanced image (CTU), mean CT value of arterial phase 
(CTA), mean CT value of portal venous phase (CTV), 
longest dimension (LD), and shortest dimension (SD). 
The enhancement degree in the arterial phase and portal 
venous phase (DEAP and DEPP) referred to the results 
of CTA and CTV minus CTU, respectively. Qualitative CT 
features recorded included location, contour, growth pat-
tern (endophytic, exophytic, and mixed), necrosis, cal-
cification, surface ulceration, lymph node involvement 
(LN), hemorrhage, intratumoral vessel, peritumoral exu-
dation, and necrosis under the tumor wall. Necrosis was 
defined according to an unenhanced CT value from − 20 
HU to 20 HU, and the presence of calcification as a CT 
value above 100 HU. Surface ulceration was defined as 
the endoluminal surface of the lesion displaying localized 
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tissue loss [18].The longest dimension and shortest 
dimension of the lesion were measured on axial images. 
The CT image analysis was retrospectively completed 
by two experienced radiologists (JW and MHS) with 17 
years and 5 years who were blinded to the clinical details 
of the patients, and any inconsistencies were solved by 
consensus.

Image preprocessing and CNN model
The venous-phase CT images were exported to ITK-
SNAP software (open source, www.itk-snap.org) for man-
ual segmentation, which was accomplished by the two 
experts who were blinded to the gastric GIST risk ratings 
when performing the segmentation. All the venous-phase 
CT images were performed with the homogenization 
process, including (1) data integration, (2) data washing 

Fig. 1  Flow chart of patient inclusion and exclusion. GISTs = gastrointestinal stromal tumors
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(hiding patient information), (3) data standardization 
(denoising, unifying window width and window level), 
(4) data normalization, and (5) data label after structur-
ing. The slice thickness of the venous-phase CT images 
was interpolated to 2  mm and the image slice with the 
largest lesion was determined according to the labeled 
tumor mask slice. Subsequently, an array of 512 × 512 × 3 
was obtained from the upper and lower 1, 4, and 7 lay-
ers of the maximum mask slice, which form the models 
of CNN_layer3, CNN_layer9, and CNN_layer15, respec-
tively. Then, the window width and window position 
were set to [40, 300]. Data normalization was performed 
by mapping the values to the range [-1, 1], and the images 
were then input into the network. The EfficientNet_b1, 
comprising of a stem, seven blocks, average polling, and 
full connection, was trained on the image data to estab-
lish the predictive model. The key procedures of the stem 
block consisted of convolution and batch normalization. 
The main operations of the seven blocks involved four 
steps: (1) convolution; (2) subsampling; (3) batch nor-
malization; and (4) bouncing connection. A vector of 
length 1000, which was extracted by efficientnet-b1 from 
venous-phase CT images, was converted to a vector of 
1023 after collecting 23 fields of clinical material. Finally, 
a vector of length three including low/low, intermediate, 
and high-risk three risk categories was output after the 
fully connected layer, and the probability of three catego-
ries were output using a softmax function. The detailed 
structure is shown in Fig. 2.

Statistical analysis
The statistical analyses were performed using Python 
version 3.6 (Python Software Foundation). The predic-
tion performance of the models, including sensitivity, 
specificity, true positives (TP), false negatives (FN), and 
areas under the receiver operating characteristic curves 

(AUROCs), were assessed for both the training and vali-
dation datasets using standard definitions. Along with 
the above indicators, the macro-average receiver oper-
ating characteristic (ROC) and micro-average roc were 
also computed for each class, allowing all classifications 
to be treated equally by individually calculating the index 
of each classification and then taking the average of the 
results. The Obuchowski index was calculated to com-
pare the ROC curves of between these CNN models.

Continuous variables are reported as mean ± standard 
deviation. Differences in continuous variables between 
test and training sets, and among the three risk groups, 
were analyzed using independent samples t tests and 
analysis of variance, respectively. Differences in categori-
cal data between the test and training sets and among 
the three risk groups were analyzed using the χ2 test. All 
tests were unpaired, and a two-tailed P value of < 0.05 
was considered statistically significant.

Results
Patient demographics and CT features in all cohorts
The clinical characteristics and CT features of our six 
datasets are summarized and compared in Table 1. There 
was no significant difference in sex, mean age, symptom, 
risk category, location, calcification, CTU, CTA, CTV, 
DEAP, or DEPP between the very low/low-risk, inter-
mediate-risk, and high-risk groups in either the training 
dataset or validation dataset (all P >.05). The contour, 
growth pattern, necrosis, surface ulceration, LN involve-
ment, hemorrhage, intratumoral vessel, peritumoral exu-
dation, necrosis under the tumor wall, LD, SD, and LD/
SD showed significant differences between the low-risk, 
intermediate-risk, and high-risk groups in both the train-
ing and validation datasets (all P <.05). Tumor location 
distribution between the training dataset and validation 

Fig. 2  Proposed convolutional neural network (CNN) workflow for gastric GISTs risk rating
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Table 1  Clinical characteristics and CT features of 425 patients with GSTs in both training and validation
GSTt0 
(n = 154)

GSTt1
(n = 84)

GSTt2
(n = 59)

P GSTv0
(n = 67)

GSTv1
(n = 35)

GSTv2
(n = 26)

P Pt&v

Sex (Male/Female) 78/76 38/46 31/28 .634a 38/29 16/19 18/8 .186a .201a

Mean age(y) 60.85 ± 0.82 59.31 ± 1.50 58.85 ± 2.13 .399B 60.97 ± 1.61 62.77 ± 3.09 59.04 ± 4.16 .377B .362b

Symptom .075a .191a .642a

  0 51 36 16 24 14 6
  1 86 35 30 33 17 11
  2 17 13 13 10 4 9
Risk category .980a

  0 154 67
  1 84 35
  2 59 26
Location*† 0.967 0.458 0.043
  Cardia 6 3 3 3 2 1
  Fundus 51 27 16 18 6 3
  Body 86 48 37 35 24 19
  Antrum 11 6 3 11 3 3
Contour* <0.001 <0.001 0.726
  Round 66 14 1 35 3 1
  Oval 59 14 8 23 7 1
  Irregular 29 56 50 9 25 24
Growth pattern* <0.001 <0.001 0.934
  Endophytic 77 25 8 34 9 2
  Exophytic 56 44 22 25 20 9
  Mixed 21 15 29 8 6 15
Necrosis* 49 65 51 <0.001 24 26 22 <0.001 0.779
Calcification 22 15 14 0.258 6 9 4 0.087 0.553
Surface ulceration* 14 24 38 <0.001 3 10 15 <0.001 0.937
LN* 4 5 10 0.002 0 2 4 0.005 0.492
Hemorrhage* 0 2 8 <0.001 0 0 2 0.018 0.721
Intratumoral vessel* 12 26 26 <0.001 10 10 16 <0.001 0.143
Peritumoral exudation* 0 2 9 <0.001 0 1 3 0.006 0.992
Necrosis under the tumor wall* 34 45 45 <0.001 14 20 17 <0.001 0.714
CTU (HU) 35.32 ± 0.35 35.79 ± 0.64 34.33 ± 0.92 0.499 34.66 ± 0.95 35.81 ± 1.81 34.25 ± 2.44 0.706 0.642
CTA (HU) 56.93 ± 1.64 59.63 ± 3.00 57.09 ± 4.28 0.430 57.74 ± 4.18 59.36 ± 8.00 56.53 ± 10.77 0.798 0.899
CTV (HU) 69.05 ± 1.81 73.32 ± 3.32 68.92 ± 4.73 0.134 71.55 ± 6.17 74.73 ± 11.81 71.26 ± 15.89 0.717 0.258
DEAP (HU) 21.61 ± 1.44 23.84 ± 2.63 22.76 ± 3.75 0.534 23.09 ± 4.08 23.55 ± 7.81 22.28 ± 10.51 0.956 0.718
DEPP (HU) 33.73 ± 1.87 37.53 ± 3.42 34.59 ± 4.87 0.249 36.90 ± 6.56 38.92 ± 12.56 37.01 ± 16.90 0.890 0.193
LD (mm)* 27.43 ± 4.37 52.29 ± 8.01 88.85 ± 11.41 <0.001 26.40 ± 9.19 55.00 ± 17.60 74.88 ± 23.69 <0.001 0.470
SD (mm)* 22.38 ± 2.03 40.71 ± 3.71 62.72 ± 5.29 <0.001 21.66 ± 4.20 45.63 ± 8.04 56.49 ± 10.82 <0.001 0.905
LD/SD* 1.24 ± 0.001 1.28 ± 0.001 1.44 ± 0.001 <0.001 1.24 ± 0.001 1.24 ± 0.002 1.29 ± 0.001 0.010 0.167
Note.—Except where indicated, data are numbers of tumors. GST = Gastric stromal tumor. GSTt0/1/2 and /GSTv0/1/2 = training or validation data for risk 0/1/2 GS. 
y = years. M ± SD = mean ± standard deviation. Calculated with χ2 test (a), Analysis of variance (B) and independent sample T test (b). Symptom 0/1/2 = asymptomatic/
symptoms without hematemesis, melena/ hematemesis and/or melena. Risk 0/1/2 = very-low and low/ intermediate/high risk groups. LN = Lymph node. 
CTU/CTA/CTV = the CT attenuation value of unenhanced /arterial/venous phase. DEAP/DEPP = CTA - CTU/ CTV - CTU. LD = long dimension. SD = short dimension. 
Analysis of variance (P) and independent sample T test (Pt&v)

*There were significant differences on the same variable in both the training and validation groups

*†There was significant difference on the same variable only validation group
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dataset was significantly different using independent 
sample T test analysis (with P <.05).

Results of the CNN models and comparisons between 
models
The AUROCs, sensitivity, specificity, TP, and FN are 
shown in Table 2; Fig. 3. Moreover, Table 3, and Figs. 3 
and 4 demonstrated the best epoch accuracy (acc), kappa 
coefficient, micro average roc, macro average roc, ROC 

curve of class very low/low, ROC curve of class interme-
diate, and ROC curve class high risk groups in the train-
ing and validation dataset.

In the training dataset, CNN_layer9, and CNN_layer15 
(Obuchowski index: 0.90 and 0.90, respectively) outper-
formed CNN_layer3 (Obuchowski index:0.88) in predic-
tion of the three risk categories of gastric GISTs (P <.05), 
but no significant difference was found between these 
three models in the validation dataset (Table 4).

Table 2  Predictive performance of CNN in both training and validation cohort
CNN_layer3 CNN_layer9 CNN_layer15

Training cohort(297) 0 (154) 1 (84) 2 (59) 0 (154) 1 (84) 2 (59) 0 (154) 1 (84) 2 (59)
Predicted number 148 34 8 146 50 35 137 56 34
AUC 0.90 0.79 0.91 0.91 0.82 0.91 0.91 0.82 0.91
Sensitivity 0.961 0.4047 0.5253 0.948 0.5952 0.5953 0.8896 0.6667 0.5762
Specificity 0.6293 0.9014 0.9579 0.7552 0.9061 0.9537 0.8041 0.8450 0.9015
True positive 0.9610 0.4047 0.5254 0.9480 0.5952 0.5953 0.8896 0.6667 0.5762
False negative 0.0390 0.6953 0.4746 0.0520 0.4048 0.4047 0.1104 0.3333 0.4238
Validation cohort(128) 0 (67) 1 (35) 2 (26) 0 (67) 1 (35) 2 (26) 0 (67) 1 (35) 2 (26)
Predicted number 66 24 11 63 25 13 61 28 12
AUC 0.89 0.82 0.86 0.90 0.83 0.86 0.90 0.83 0.85
Sensitivity 0.985 0.6857 0.423 0.9402 0.7142 0.50 0.9104 0.8 0.4615
Specificity 0.6885 0.9139 1.0 0.7704 0.8817 0.9803 0.8360 0.8279 0.99
True positive 0.9850 0.6857 0.4230 0.9402 0.7142 0.5000 0.9104 0.800 0.4615
False negative 0.0150 0.3143 0.5770 0.0598 0.2858 0.5000 0.0896 0.2000 0.5385
Note.—Except where indicated, data in parentheses are numbers of tumors

Fig. 3  ROC curves of the CNN models. ROC, receiver operating characteristic; CNN, convolutional neural network; class 0/1/2 = very low and low/ inter-
mediate/high risk groups
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Results of the probability distribution in the validation 
dataset
To assess the robustness of our CNN models, a line 
chart was plotted for each test image based on the prob-
ability of a tumor being classified as one of the three risk 
classifications in the validation dataset. Among these 

three risk classifications, the high-risk groups showed 
high probability when being diagnosed (all with prob-
ability > 0.51), which was higher than the very low/low 
and intermediate groups in these three CNN models 
(Fig. 5).

Table 3  Diagnostic performance of CNN in risk tri-rating of GSTs in both training and validation cohorts
Best epoch 
Acc

Kappa 
coefficient

Micro aver-
age roc

Macro aver-
age roc

Roc curve of 
class 0

Roc curve of 
class 1

Roc 
curve of 
class 2

Training cohort (297)
CNN_layer3 0.7864 0.6512 0.88 0.87 0.90 0.79 0.91
CNN_layer9 0.7835 0.7114 0.90 0.88 0.91 0.82 0.91
CNN_layer15 0.7806 0.7171 0.90 0.88 0.91 0.82 0.91
Validation cohort (128)
CNN_layer3 0.7891 0.6398 0.88 0.86 0.89 0.82 0.86
CNN_layer9 0.7891 0.6902 0.89 0.87 0.90 0.83 0.86
CNN_layer15 0.7891 0.7211 0.89 0.86 0.90 0.83 0.85

Table 4  The obuchowski index results of the three models
Cohort Model 1 Model 2 Obuchowski index of Model 1 Obuchowski index of Model 2 P-value
Training cohort CNN_layer3 CNN_layer9 0.8846467 0.9004745 0.001187

CNN_layer3 CNN_layer15 0.8846467 0.9008081 0.006965
CNN_layer9 CNN_layer15 0.9004745 0.9008081 0.878231

Validation cohort CNN_layer3 CNN_layer9 0.8709226 0.8747248 0.644065
CNN_layer3 CNN_layer15 0.8709226 0.8725235 0.861342
CNN_layer9 CNN_layer15 0.8747248 0.8725235 0.583739

Fig. 4  The best epoch acc for different CNN models. p 0/1/2 = possibility of very low and low/ intermediate/high risk
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Discussion
In this study, we present the results of a newly developed 
CNN model called EfficientNet_b1 that uses preopera-
tive venous-phase CT images to predict the risk cate-
gory of gastric GISTs. The findings of our study showed 
that CNN_layer 3/9/15 could accurately predict the risk 
classification of gastric GISTs in both the training data-
set (all with AUROCs > 0.7) and validation dataset (all 
with AUROCs > 0.8), indicating that the CNN extracted 
suitable features for evaluating the risk in patients with 
gastric GISTs. To the best of our knowledge, this is the 
first study to report using a CNN applied to preoperative 
venous-phase CT images to predict the risk category of 
gastric GISTs, and the only study to compare the diag-
nostic efficacy of different CNN models obtaining upper 
and lower 3/9/15 layers of maximum tumor mask slice.

In China, the prognoses for GISTs are commonly strat-
ified according to modified National Institute of Health 
(NIH) criteria, including size (2, 5, or 10  cm), mitotic 
index (< 5, 5–10, or > 10 mitoses per 50 HPFs), tumor 
site (gastric, small intestine, or other), and tumor rup-
ture, because of their simplicity in clinical practice [19].
Once GISTs have intermediate- or high-risk CT features, 
Surgery instead of endoscopy is the preferred treatment 
regardless of tumor size, and the difference in risk grade 
is closely related to the choice of surgical plan, surgical 
method and patient prognosis [20]. Therefore, accurate 
stratified risk assessment has important clinical refer-
ence value for the diagnosis, treatment and prognosis 
of patients [21]. The requirement for a precise risk rat-
ing has become a crucial task owing to emerging adju-
vant systemic treatments. Recent guidelines state that 
only high-risk patients should be considered for adju-
vant treatment, with the suggestion for intermediate-risk 
patients being ‘space for shared decision-making’ [22]. In 
the abovementioned risk classification, high-risk GISTs 
are followed up by CT every 4–6 months, whereas GISTs 
with very low, low, or moderate risks are followed up by 
CT every 6–12 months [23]. Previous studies reported 
on the characteristic CT features of GISTs such as tumor 

size, calcification, ulcer, hemorrhage, intratumoral ves-
sels, growth pattern, degree of enhancement, necrosis, 
and lymph node involvement, which may provide valu-
able information for predicting the risk rating of GISTs 
[7, 24–25]. However, the interpretations of CT findings 
were subjective and relied on radiologists. Our results 
found that tumor contour, growth pattern, necrosis, sur-
face ulceration, LN involvement, hemorrhage, intratu-
moral vessel, peritumoral exudation, necrosis under the 
tumor wall, LD, SD, and LD/SD showed significant differ-
ences between the very low/low-risk, intermediate-risk, 
and high-risk groups in both the training dataset and 
validation dataset. However, it remains difficult for radi-
ologists to predict the risk rating of gastric GISTs using 
these CT features because of their low occurrence rates 
and non-specificity.

The convolutional neural network (CNN), an 
advanced machine learning method, is a neural network 
able to learn complicated functions mapping an input to 
an output with no need for manually extracted charac-
teristics [26–27]. In the field of gastrointestinal diseases, 
CNNs have begun to show promise for tumor detection, 
differential diagnosis, and risk assessment. Zhang et al. 
found that a CNN system based on endoscopic images 
showed better diagnostic performance in the detection 
of early gastric cancer than endoscopists with higher 
accuracy (85.1–91.2%) and stability [11]. Oh et al. and 
Liu et al. developed CNN systems using endoscopic 
ultrasound images that demonstrated higher diagnos-
tic ability for GISTs than human assessments, includ-
ing higher accuracy, sensitivity, and negative predictive 
value [27, 28]. A recent study reported that a deep learn-
ing machine for differentiating three risk levels of GISTs 
(high-risk, intermediate-risk, and low-risk GISTs) 
demonstrated an AUROC of 0.89 in the training data-
set and 0.85 in the external validation dataset, showing 
better performance than a subjective model [14]. In this 
study, we developed CNN models using preoperative 
venous-phase CT images that achieved AUROCs above 
0.7 for differentiating high-risk gastric GISTs from 

Fig. 5  Line chart of probability distribution in validation data set
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intermediate-risk and very low/low-risk gastric GISTs 
in the training dataset, and above 0.8 in the validation 
dataset. Furthermore, the diagnostic effect was obtained 
using the micro average roc and macro average roc, 
which are more credible because of the data imbalance 
in this multi-classification task. The micro average roc 
and macro average roc of the CNN models for differen-
tiating the three risk categories of gastric GISTs were 
above 0.8 in both the training and validation datasets, 
showing high accuracy for the risk rating on venous-
phase CT images. Previous studies using radiomics 
models confirmed that analyses using 3D or 2D-3D 
hybrid CNN models could supply more relevant infor-
mation on lesions than 2D images, which may enhance 
the accuracy of discrimination [29–32]. In this study, we 
hypothesized that the diagnostic performance of CNN 
models could be affected by the tumor volume con-
sists of different layers based on the maximum tumour 
mask slice, which can influence the accuracy of image 
segmentation. In the training dataset, the Obuchowski 
index was significantly higher with the CNN_layer9 
and CNN_layer15 models than with the CNN_layer3 
model (P <.05), providing preliminary evidence that 
more layers based on the maximum slice may improve 
the diagnostic performance of CNN models for predict-
ing gastric GISTs. However, this difference was not con-
firmed in the validation dataset. Further research with 
an increased sample size is required to confirm the pre-
liminary evidence. In our analysis, we showed detailed 
probability distributions for every subject in the valida-
tion dataset being classified as one of the three risk clas-
sifications, and these results manifested the high-risk 
groups showing high probability when being diagnosed 
(with all probability > 0.51), which were higher than 
those of the very low/low and intermediate groups for 
these three CNN models. These results also indicate the 
stability of the CNN models.

Our study is subject to several limitations. First, the 
numbers of patients in the intermediate and high-risk 
groups in both the training and validation datasets 
were lower than in the very low/low risk groups, and all 
venous-phase CT images were retrospectively obtained 
from one of only? four centers. As a result of the small 
number of included patients in intermediate and high-
risk groups,

larger, multicentric trials are required to confirm these 
results. Second, a selective bias exits because the analy-
sis was conducted retrospectively. Third, the tumor seg-
mentation was finished manually, rather than being fully 
automated. The stability of our diagnostic model needs 
to be confirmed when using automatic segmentation. 
Finally, the venous-phase CT images were obtained from 
a variety of CT scanners, which may have resulted in 
potential confounding factors.

In conclusion, we developed and validated CNN 
models using preoperative venous-phase CT images 
to predict the risk categories of gastric GISTs with high 
accuracy and specificity, and these have potential for 
assisting clinical work in the imaging diagnosis of gastric 
GISTs. Although the volume of the lesions in the CNN_
layer3/9/15 models are different, there is no difference in 
the identification of the risk category of gastric GISTs.
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