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Abstract 

Aim  Patients with advanced gastrointestinal stromal tumors (GISTs) exhibiting an imatinib plasma trough concen-
tration (IM Cmin) under 1100 ng/ml may show a reduced drug response rate, leading to the suggestion of monitor-
ing for IM Cmin. Consequently, the objective of this research was to create a customized IM Cmin classification model 
for patients with advanced GISTs from China.

Methods  Initial data and laboratory indicators from patients with advanced GISTs were gathered, and the above 
information was segmented into a training set, validation set, and testing set in a 6:2:2 ratio. Key variables associ-
ated with IM Cmin were identified to construct the classification model using the least absolute shrinkage and selec-
tion operator (LASSO) regression and forward stepwise binary logistic regression. Within the training and valida-
tion sets, nine ML classification models were constructed via the resampling method and underwent comparison 
through the Brier scores, the areas under the receiver-operating characteristic curve (AUROC), the decision curve, 
and the precision-recall (AUPR) curve to determine the most suitable model for this dataset. Two methods of internal 
validation were used to assess the most suitable model’s classification performance: tenfold cross-validation and ran-
dom split-sample validation (test set), and the value of the test set AUROC was used to evaluate the model’s classifica-
tion performance.

Results  Six key variables (gender, daily IM dose, metastatic site, red blood cell count, platelet count, and percentage 
of neutrophils) were ultimately selected to construct the classification model. In the validation set, it is found by com-
parison that the Extreme Gradient Boosting (XGBoost) model has the largest AUROC, the lowest Brier score, the larg-
est area under the decision curve, and the largest AUPR value. Furthermore, as evaluated via internal verification, it 
also performed well in the test set (AUROC = 0.725).

Conclusion  For patients with advanced GISTs who receive IM, initial data and laboratory indicators could be used 
to accurately estimate whether the IM Cmin is below 1100 ng/ml. The XGBoost model may stand a chance to assist 
clinicians in directing the administration of IM.
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Introduction
Gastrointestinal stromal tumors (GISTs) are the most 
common mesenchymal tumors of the digestive tract [1]. 
Acquired functional mutations in the tyrosine-protein 
kinase growth factor receptor proto-oncogene (KIT) 
and platelet-derived growth factor-alpha gene lead to 
increased tyrosine kinase activity, which is considered a 
key factor in the pathogenesis of GIST [1–3]. Imatinib 
(IM), a tyrosine kinase inhibitor (TKI), blocks KIT recep-
tor activity and has become the conventional first-line 
therapy for patients with advanced GISTs [4], which 
inhibits proliferation and promotes apoptosis of GIST 
cells [4–6]. Therefore, the IM plasma trough concentra-
tion (Cmin) is intimately linked to the effectiveness of 
treatment [7].

The IM Cmin of patients with advanced GISTs below 
1100  ng/mL showed a shorter time to progression, 
according to a prior study by Demetri et  al. [8]. Mean-
while, marked inter-individual variability in IM pharma-
cokinetics between subjects has been observed [9–11], 
leading to the suggestion of monitoring for IM Cmin [12]. 
However, the absence of a therapeutic drug monitoring 
(TDM) platform in certain hospitals is due to restricted 
health conditions, making the sampling and examination 
of TDM for IM expensive both temporally and financially. 
Thus, there is a need for more convenient concentration 
classification tools than TDM, such as rapidly developing 
machine learning (ML) methods [13, 14], which can pro-
vide a reference for clinicians to make clinical decisions, 
thus reducing the cost of time and money for patients.

ML has an irreplaceable position in data analysis and 
can help promote data-driven estimation when predict-
ing from multiple variables and capturing non-linear 
variable relations to construct a model with high classifi-
cation performance [15, 16]. Therefore, this study aimed 
to streamline the process of IM Cmin monitoring using 
the ML model based on patients’  initial data (demo-
graphic, treatment, and clinical information) and labora-
tory indicators.

Materials and methods
Patients and data
Demographic information of patients with advanced 
GISTs who were followed up at the First Affiliated Hos-
pital of Chongqing Medical University (CMU) between 
January 2000 and August 2023 was gathered retrospec-
tively. Meanwhile, IM Cmin data, treatment information, 
clinical information, and laboratory indicators were col-
lected in the same patient with advanced GIST from 
April 2017 to August 2023. For patients with advanced 
GISTs, our team generally recommends that patients 
go to the GIST specialist clinic for follow-up every 3 
or 6  months or so for an abdomen ultrasound or CT 

examination, to observe the tumor situation and monitor 
the IM Cmin simultaneously. It is worth noting that blood 
samples were collected and separated for routine blood, 
liver, and kidney function examinations from patients 
with GISTs on the same day the venous blood samples 
were collected to determine IM Cmin. The inclusion cri-
teria were as follows: (1) verification of GIST through 
biopsy or postoperative pathology, (2) age over 18 years, 
(3) good medication adherence with IM, (4) less than 8% 
missing data, and (5) had been taking IM ≥ 1 month. The 
exclusion criteria were as follows: (1) patients with GISTs 
who had undergone complete tumor resection and had 
no recurrence of the tumor at the end of follow-up, (2) 
history or existence of other malignancies, (3) patients 
with missing IM Cmin data, and (4) patients lost to follow-
up. The case screening flowchart and the schematic rep-
resentation of the study design are displayed in Fig. 1.

We established a database called “Weinichangzai”, 
which included initial data for each patient, and all 
patients’ initial data was obtained through the GIST spe-
cialist outpatient clinic, telephone calls, WeChat, and 
other interaction tools. Initial data included demographic 
information (including age at diagnosis, age at blood 
sampling, gender, and residence); treatment information 
(including surgical procedures (1, gastrectomy; 2, non-
gastric operation) [17, 18] and daily IM dose); and clini-
cal information (including expression of DOG-1/CD117/
CD34, metastatic site (1, liver; 2, non-liver) [17, 18], and 
primary tumor site).

Determination of IM Cmin
All patients with advanced GISTs were advised to take 
IM at lunchtime, and a 3  ml venous blood sample was 
collected in a heparinized vial on the second day (gen-
erally 24 ± 3  h following the previous dose) before tak-
ing an IM dose. Blood samples were centrifuged at room 
temperature for 5 min at 3000 g. A protocol was estab-
lished for determining IM Cmin according to the method 
described by Tan et al. [19] and Roth et al. [20]. Plasma 
samples were pretreated by protein precipitation. We 
added 100 μl of acetonitrile and 50 μl (50%) of perchlo-
ric acid successively to plasma (0.5 ml), swirled the solu-
tion for 20 s, and centrifuged it at 10,800 rpm for 15 min. 
We added 50 μl of neutralizing solution (containing 1.4 g 
potassium carbonate and 0.65 g potassium chloride dis-
solved in 5 ml of purified water) to 400 μl of the super-
natant, and the mixture was vortexed thoroughly before 
submerging for 30 min at 4  °C. Thirty microliters of the 
supernatant was injected into a high-performance liquid 
chromatography system. The lower limit of quantification 
was set at 50 ng/ml.
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Laboratory indicators
Blood samples were collected from patients with 
advanced GISTs, and separated for routine blood, 
liver, and kidney function examinations. Routine blood 
examinations included the white blood cell count 
(WBC), platelet count (PLT), percentage of neutrophils 
(NEU%), red blood cell count (RBC), hemoglobin (HB), 

and percentage of lymphocytes (LYM%). Liver func-
tion examinations included alanine aminotransferase 
(ALT), aspartate aminotransferase (AST), total biliru-
bin (TBIL), direct bilirubin (DBIL), indirect bilirubin 
(IBIL), gamma-glutamyl transpeptidase (GGT), and 
alkaline phosphatase (AKP). Kidney function exami-
nations included creatinine (Cr), urea nitrogen (BUN), 
and the estimated glomerular filtration rate (eGFR).

Fig. 1  The case screening flowchart and the schematic representation of the study design. A This figure showed how the data were gathered 
from the “Weinichangzai” database of the First Affiliated Hospital of CMU, and all variables included demographic information, treatment 
information, clinical information, and laboratory indicators. There were 26 feature variables collected, and 6 key variables related to IM Cmin were 
screened using the LASSO regression and binary logistic regression. Moreover, the study used the 6 key variables to establish a classification model. 
B The flowchart of study design. Abbreviations: GIST, gastrointestinal stromal tumor; CMU, Chongqing Medical University; IM, imatinib; Cmin, plasma 
trough concentration; LASSO, least absolute shrinkage and selection operator.
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Method of feature selection
We collected 26 candidates from demographic infor-
mation, treatment information, clinical information, 
and laboratory indicators. To obtain the best predictive 
performance, the variable selection was performed on 
26 candidates using the LASSO (least absolute shrink-
age and selection operator) regression with tenfold 
cross-validation, which could compress the variable 
coefficients to prevent overfitting and solve severe col-
linearity problems [21, 22]. LASSO regression analyses 
were performed using “Extreme Smart Analysis” (www.​
xsmar​tanal​ysis.​com). To further control the influence 
of confounding factors, variables selected by LASSO 
regression were analyzed by forward stepwise binary 
logistic regression (LR) to obtain key variables. LR 
analyses were performed using SPSS version 27.0 (IBM 
Corp, Armonk, NY, USA).

Selection method of ML algorithm
In this study, we randomly divided the dataset into three 
sets: the training (60%) and validation sets (20%) for 
ML model development and the test set (20%) for per-
formance evaluation. The randomization’s success was 
determined by comparing baseline characteristics in each 
group. Nine types of ML algorithms were used to con-
struct the classification models in this study: Extreme 
Gradient Boosting (XGBoost), Light Gradient Boosting 
Machine (LightGBM), Random Forest (RF), Gaussian 
Naive Bayes (GNB), Complement Naive Bayes (CNB), 
Multilayer Perceptron (MLP), Support Vector Machine 
(SVM), K-Nearest Neighbour (KNN), and Adaptive 
Boost (AdaBoost). All analyses were performed using 
“Extreme Smart Analysis”, which can also select the 
best-performing hyper-parameters using the grid-search 
method.

Within the training and validation sets, nine ML clas-
sification models were constructed via the resampling 
method and underwent comparison through the Brier 
scores, the areas under the receiver-operating character-
istic curve (AUROC), the decision curve, and the preci-
sion-recall (AUPR) curve to determine the most suitable 
model for this dataset, which were important indicators 
that can be used to evaluate classification models. Two 
methods of internal validation were used to assess the 
most suitable model’s classification performance: tenfold 
cross-validation and random split-sample validation (test 
set). To explain the model predictions, we used Shapley 
Additive Explanations (SHAP) of “Extreme Smart Analy-
sis” to calculate the Shapley values of the test set. SHAP 
values are based on Shapley values in cooperative game 
theory to proceed with the best explanation of the output 
of our machine-learning model [23].

Statistical analysis
Continuous variables (non-normal distribution) are 
described using median and interquartile range (IQR) 
values, and categorical variables are presented as fre-
quencies (percentages). The Mann–Whitney U-test 
(non-normal distribution) was used to assess the dif-
ferences in continuous variables between the training, 
validation, and test sets. Categorical variables were com-
pared between the training, validation, and test sets using 
the Pearson chi-square test, and Fisher exact test. Statis-
tical significance was set at p < 0.05. All P values were cal-
culated as two-tailed. All analyses were performed using 
SPSS version 27.0 (IBM Corp, Armonk, NY, USA).

Results
Baseline characteristics
In total, 212 patients with advanced GISTs, based on the 
inclusion and exclusion criteria, were included, of whom 
890 IM Cmin data were collected. Missing data were filled 
by imputing the data via the RF algorithm [24]. The mean 
value of IM Cmin, the label variable, was 1469.59 ng/mL, 
with a standard deviation (SD) value of 755.71 ng/ml. In 
this dataset, 31.24% of IM Cmin values were < 1100  ng/
ml. More than half were males (59.10%). The mean age 
at diagnosis was 56  years, and 18.54% of this dataset 
underwent gastrectomy. The daily IM dose in this data-
set (76.29%) was 400 mg/day. The comparison of baseline 
characteristics between the test set (20%) and training 
and validation sets (80%) is shown in Table  1, without 
any statistically significant differences in the variables 
between the two groups (p > 0.05). The comparison of 
baseline characteristics between “IM Cmin ≤ 1100 ng/ml” 
and “IM Cmin > 1100  ng/ml” was shown in Table  2, sig-
nificant differences were observed between the groups 
according to age at diagnosis, age at blood sampling, 
gender, daily IM dose, metastatic site, NEU%, RBC, 
HB, LYM%, ALT, TBIL, IBIL, GGT, Cr, BUN, and eGFR 
(p < 0.05).

Key variables
In the training and validation sets, the 26 candidates 
underwent a tenfold cross-validation LASSO regres-
sion analysis (Fig. 2A and B). The results showed that the 
optimal parameter λ (λ = 0.018) in the LASSO regres-
sion analysis with the smallest mean square error, which 
reduced the 26 candidates to 9 feature variables, includ-
ing daily IM dose, Metastatic site, Gender, PLT, NEU%, 
RBC, HB, LYM%, and age at diagnosis. To address 
potential confounding factors, the binary LR was used 
to analyze the above 9 feature variables via the forward-
stepwise method. Finally, only daily IM dose, Metastatic 
site, Gender, PLT, NEU%, and RBC were determined as 
key variables (p < 0.05), as shown in Table 3.

http://www.xsmartanalysis.com
http://www.xsmartanalysis.com
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Table 1  Baseline characteristics of 890 IM Cmin data from 212 patients with advanced GISTs

Categories Variables All Training and 
Validation Sets
(80%)

Test Set P

(20%)

(n = 890) (n = 712) (n = 178)

Demographic information Age at diagnosis (years) 56 (49–65) 56 (49–65) 58 (50–65) 0.430a

Age at blood sampling (years) 61 (53–68) 61 (53–68) 61 (53–67) 0.805a

Gender 0.708b

Male 526 (59.10%) 423 (59.41%) 103 (57.87%)

Female 364 (40.90%) 289 (40.59%) 75 (42.13%)

Treatment information Surgical procedure 0.666b

Gastrectomy 165 (18.54%) 130 (18.26%) 35 (19.66%)

Non-gastric operation 725 (81.46%) 582 (81.74%) 143 (80.34%)

Daily IM dose 0.324b

 ≤ 200mg/d 28 (3.15%) 19 (2.67%) 9 (5.06%)

300mg/d 89 (10.00%) 73 (10.25%) 16 (8.99%)

400mg/d 679 (76.29%) 546 (76.69%) 133 (74.72%)

500mg/d 54 (6.07%) 45 (6.32%) 9 (5.06%)

 ≥ 600mg/d 40 (4.49%) 29 (4.07%) 11 (6.18%)

Clinical information DOG-1 0.144b

Positive 859 (96.52%) 684 (96.07%) 175 (98.31%)

Negative 31 (3.48%) 28 (3.93%) 3 (1.69%)

CD117 0.771b

Positive 878 (98.65%) 702 (98.60%) 176 (98.88%)

Negative 12 (1.35%) 10 (1.40%) 2 (1.12%)

CD34 1.000b

Positive 795 (89.33%) 636 (89.33%) 159 (89.33%)

Negative 95 (10.67%) 76 (10.67%) 19 (10.67%)

Primary tumor site 0.617b

Stomach 293 (32.92%) 239 (33.57%) 54 (30.34%)

Small intestine 352 (39.55%) 276 (38.76%) 76 (42.70%)

Colorectum 74 (8.31%) 62 (8.71%) 12 (6.74%)

Other 171 (19.21%) 135 (18.96%) 36 (20.22%)

Metastatic site 1.000b

Liver 405 (45.51%) 324 (45.51%) 81 (45.51%)

Non-liver 485 (54.49%) 388 (54.49%) 97 (54.49%)

Laboratory indicators WBC (*109/L) 4.32 (3.47–5.39) 4.33 (3.48–5.37) 4.30 (3.46–5.53) 0.852a

PLT (*109/L) 173 (136–220) 173 (135–217) 178 (137–223) 0.484a

NEU% 61.25 (53.30–68.90) 61.40 (53.43–69.25) 60.65 (52.05–68.63) 0.422a

RBC (*1012/L) 3.65 (3.27–4.04) 3.64 (3.26–4.02) 3.68 (3.34–4.08) 0.325a

HB (g/L) 115 (103–126) 115 (102–126) 116 (104–127) 0.387a

LYM% 27.30 (20.38–35.10) 27.20 (20.33–35.10) 28.35 (20.45–35.73) 0.439a

ALT (U/L) 16 (12–22) 16 (12–22) 16 (13–24) 0.203a

AST (U/L) 23 (19–28) 23 (19–28) 23 (19–27) 0.726a

TBIL (umol/L) 8.70 (6.60–11.70) 8.60 (6.60–11.70) 8.85 (6.48–11.60) 0.624a

DBIL (umol/L) 3.95 (3.20–5.10) 3.90 (3.20–5.10) 4.00 (3.10–5.20) 0.884a

IBIL (umol/L) 4.60 (3.20–6.40) 4.50 (3.20–6.40) 4.90 (3.30–6.33) 0.528a

GGT (U/L) 17 (12–27) 17 (12–27) 17 (12–31) 0.682a

AKP (U/L) 69 (57–85) 70 (57–85) 69 (58–85) 0.984a

Cr (umol/L) 82 (71–97) 82 (71–98) 81 (69–95) 0.138a

BUN (mmol/L) 5.40 (4.40–6.40) 5.40 (4.40–6.50) 5.40 (4.20–6.30) 0.254a

eGFR (ml/min) 85.35 (69.40–96.15) 85.40 (68.80–96.70) 85.30 (73.98–95.13) 0.490a

Abbreviations: GIST Gastrointestinal stromal tumor, IM Imatinib, WBC White blood cell, PLT Platelet count, NEU% Percentage of neutrophils, RBC Red blood cell count, 
HB Hemoglobin, LYM% Percentage of lymphocytes, ALT Alanine aminotransferase, AST Aspartate aminotransferase, TBIL Total bilirubin, DBIL Direct bilirubin, IBIL 
Indirect bilirubin, GGT​ Gamma-glutamyl transpeptidase, AKP Alkaline phosphatase, Cr Creatinine, BUN Urea nitrogen, eGFR Estimated glomerular filtration rate, DOG-1 
Gastrointestinal stromal tumor protein 1, CD117 Cluster of differentiation 117, CD34 Cell differentiation factor 34
a Mann–Whitney U-test; bPearson chi-square test; We calculated all P values as two-tailed; “Age at diagnosis” referred to the age at diagnosis of primary localized GIST; 
“Age at blood sampling” referred to the age at primary localized GIST patients took IM; Percentages might not always add up to exactly 100% as a result of rounding
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Table 2  Comparison of baseline characteristics between “IM Cmin ≤ 1100 ng/ml” and “IM Cmin > 1100 ng/ml”

Abbreviations: GIST Gastrointestinal stromal tumor, IM Imatinib, WBC White blood cell, PLT Platelet count, NEU% Percentage of neutrophils, RBC Red blood cell count, 
HB Hemoglobin, LYM% Percentage of lymphocytes, ALT Alanine aminotransferase, AST Aspartate aminotransferase, TBIL Total bilirubin, DBIL Direct bilirubin, IBIL 
Indirect bilirubin, GGT Gamma-glutamyl transpeptidase, AKP Alkaline phosphatase, Cr Creatinine, BUN Urea nitrogen, eGFR Estimated glomerular filtration rate, 
DOG-1 Gastrointestinal stromal tumor protein 1, CD117 Cluster of differentiation 117, CD34 Cell differentiation factor 34
a Mann–Whitney U-test; bPearson chi-square test; We calculated all P values as two-tailed; “Age at diagnosis” referred to the age at diagnosis of primary localized GIST; 
“Age at blood sampling” referred to the age at primary localized GIST patients took IM; Percentages might not always add up to exactly 100% as a result of rounding

Categories Variables All IM Cmin
 ≤ 1100ng/ml

IM Cmin
 > 1100ng/ml

P

(n = 890) (n = 278) (n = 612)

Demographic information Age at diagnosis (years) 56 (49–65) 55 (49–62) 58 (50–66) 0.006a

Age at blood sampling (years) 61 (53–68) 59 (53–67) 62 (54–68) 0.004a

Gender  < 0.001b

Male 526 (59.10%) 212 (76.26%) 314 (51.31%)

Female 364 (40.90%) 66 (23.74%) 298 (48.69%)

Treatment information Surgical procedure 0.786b

Gastrectomy 165 (18.54%) 53 (19.06%) 112 (18.30%)

Non-gastric operation 725 (81.46%) 225 (80.94%) 500 (81.70%)

Daily IM dose 0.010b

 ≤ 200mg/d 28 (3.15%) 17 (6.12%) 11 (1.80%)

300mg/d 89 (10.00%) 27 (9.71%) 62 (10.13%)

400mg/d 679 (76.29%) 204 (73.38%) 475 (77.61%)

500mg/d 54 (6.07%) 20 (7.19%) 34 (5.56%)

 ≥ 600mg/d 40 (4.49%) 10 (3.60%) 30 (4.90%)

Clinical information DOG-1 0.788b

Positive 859 (96.52%) 269 (96.76%) 590 (96.41%)

Negative 31 (3.48%) 9 (3.24%) 22 (3.59%)

CD117 0.639b

Positive 878 (98.65%) 275 (98.92%) 603 (98.53%)

Negative 12 (1.35%) 3 (1.08%) 9 (1.47%)

CD34 0.138b

Positive 795 (89.33%) 242 (87.05%) 553 (90.36%)

Negative 95 (10.67%) 36 (12.95%) 59 (9.64%)

Primary tumor site 0.163b

Stomach 293 (32.92%) 91 (32.73%) 202 (33.01%)

Small intestine 352 (39.55%) 121 (43.53%) 231 (37.75%)

Colorectum 74 (8.31%) 16 (5.76%) 58 (9.48%)

Other 171 (19.21%) 50 (17.99%) 121 (19.77%)

Metastatic site 0.024b

Liver 405 (45.51%) 142 (51.08%) 263 (42.97%)

Non-liver 485 (54.49%) 136 (48.92%) 349 (57.03%)

Laboratory indicators WBC (*109/L) 4.32 (3.47–5.39) 4.33 (3.45–5.44) 4.31 (3.47–5.38) 0.812a

PLT (*109/L) 173 (136–220) 171 (129–217) 176 (137–220) 0.355a

NEU% 61.25 (53.30–68.90) 59.75 (51.73–66.70) 62.30 (54.00–70.18)  < 0.001a

RBC (*1012/L) 3.65 (3.27–4.04) 3.86 (3.52–4.30) 3.54 (3.18–3.91)  < 0.001a

HB (g/L) 115 (103–126) 121 (109–134) 112 (101–123)  < 0.001a

LYM% 27.30 (20.38–35.10) 29.65 (22.23–37.03) 26.50 (19.60–34.50)  < 0.001a

ALT (U/L) 16 (12–22) 18 (13–26) 15 (12–21)  < 0.001a

AST (U/L) 23 (19–28) 24 (19–29) 23 (19–27) 0.051a

TBIL (umol/L) 8.70 (6.60–11.70) 8.90 (6.88–12.13) 8.50 (6.40–11.30) 0.026a

DBIL (umol/L) 3.95 (3.20–5.10) 4.00 (3.30–5.40) 3.90 (3.10–5.00) 0.065a

IBIL (umol/L) 4.60 (3.20–6.40) 4.65 (3.58–6.73) 4.50 (3.10–6.30) 0.026a

GGT (U/L) 17 (12–27) 19 (14–31) 16 (11–25)  < 0.001a

AKP (U/L) 69 (57–85) 70 (57–87) 69 (57–84) 0.774a

Cr (umol/L) 82 (71–97) 85 (75–96) 81 (69–98) 0.038a

BUN (mmol/L) 5.40 (4.40–6.40) 5.60 (4.50–6.60) 5.30 (4.20–6.30) 0.010a

eGFR (ml/min) 85.35 (69.40–96.15) 86.55 (73.55–98.40) 85.00 (68.20–95.35) 0.033a
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The best model building
Following the identification of these six key variables, 
XGBoost, LightGBM, RF, GNB, CNB, MLP, SVM, 
KNN, and AdaBoost were trained and applied the 
resampling method by resampling 10 times. As shown 
in Fig.  3A and B, RF and KNN (ranked according to 
AUROC) had the best performance in the training 
set, but XGBoost (ranked according to AUROC) had 
the largest AUROC and shortest SD in the validation 
set, indicating the best stability of this model. When 

the Brier scores for the nine aforementioned ML mod-
els were compared, that of XGBoost was the lowest, 
indicating that its prediction calibration was the best 
(Brier scores = 0.193, Fig. 3C). XGBoost model reveals 
the largest area under the decision curve, indicating a 
better clinical utility than other models (Fig. 3D). The 
PR curve is sensitive to data imbalance, and it changes 
dramatically as the ratio of positive to negative samples 
changes [25]. As we know, the larger the AUPR, the 
higher the average precision of the model. Although in 

Fig. 2  The processes of LASSO regression for screening variables. A The use of tenfold cross-validation to draw vertical lines at selected feature 
values. B The coefficient profiles of 26 feature variables were obtained from the log (λ) sequence in the LASSO model. Vertical dotted lines are 
placed at the minimal mean square error (λ = 0.018) and the standard error of the minimum distance (λ = 0.045). Abbreviations: LASSO, least 
absolute shrinkage and selection operator

Table 3  Forward stepwise binary logistic regression analysis

Through forward stepwise binary logistic regression analysis, variables such as HB, LYM%, and age at diagnosis are excluded

Abbreviations: NEU% Percentage of neutrophils, HB Hemoglobin, RBC Red blood cell count, LYM% Percentage of lymphocytes, PLT Platelet count, R Regression 
coefficient, SE Standard error, OR Odds ratio

Variable R SE OR (95% CI) p

RBC (*1012/L) -1.148 0.174 0.317 (0.226–0.446)  < 0.001

NEU% 0.026 0.008 1.027 (1.010–1.043) 0.001

PLT 0.003 0.001 1.003 (1.000–1.006) 0.029

Gender (“Female” for reference) -0.691 0.207 0.501 (0.334–0.752)  < 0.001

Metastatic site (“Liver” for reference) 0.407 0.181 1.502 (1.054–2.140) 0.024

Daily IM dose (“ ≤ 200mg/d” for reference) 0.007

  300mg/d 1.158 0.596 3.185 (0.991–10.235)

  400mg/d 1.779 0.546 5.923 (2.030–17.281)

  500mg/d 1.556 0.631 4.740 (1.375–16.341)

   ≥ 600mg/d 2.014 0.732 7.490 (1.784–31.445)
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the training set, RF and KNN had the largest value of 
AUPR (Fig. 3E), in the validation set, the PR curve area 
of the XGBoost model was the largest (AUPR = 0.842) 
(Fig.  3F). Based on the above results, the XGBoost 
model may be the optimal model choice for this data-
set, rather than the RF and KNN models, which may 
overfit data.

The best model evaluation
The XGBoost ML algorithm analysis and tenfold cross-
validation were performed on the dataset. According to 
the findings, the training set’s average AUROC was 0.881 
(0.873–0.890, Fig. 4A), the validation set’s average AUROC 
was 0.699 (0.614–0.782, Fig.  4B), and the testing set’s 
AUROC was 0.725 (Fig. 4C). If the validation set’s AUROC 

Fig. 3  In training and validation sets, multiple ML classification models are integrated for analysis. A ROC curves evaluated the classification 
accuracy of the 9 models in the train set: XGBoost (AUROC = 0.902), LightGBM (AUROC = 0.631), RF (AUROC = 1.000), AdaBoost (AUROC = 0.803), 
GNB (AUROC = 0.723), CNB (AUROC = 0.587), MLP (AUROC = 0.510), SVM (AUROC = 0.507), and KNN (AUROC = 1.000). B ROC curves evaluated 
the classification accuracy of the 9 models in the validation set: XGBoost (AUROC = 0.717), LightGBM (AUROC = 0.576), RF (AUROC = 0.693), 
AdaBoost (AUROC = 0.707), GNB (AUROC = 0.709), CNB (AUROC = 0.565), MLP (AUROC = 0.500), SVM (AUROC = 0.548), and KNN (AUROC = 0.581). 
C The calibration curve for different models in the validation set, the abscissa represents the average prediction probability, the ordinate 
represents the actual probability of the event, the dashed diagonal is the reference line, and the other smooth solid lines represent the different 
model fitting lines. Brier scores evaluated the calibration of the 9 models: XGBoost (Brier score = 0.193), LightGBM (Brier score = 0.211), RF (Brier 
score = 0.194), AdaBoost (Brier score = 0.234), GNB (Brier score = 0.198), CNB (Brier score = 0.265), MLP (Brier score = 0.222), SVM (Brier score = 0.217), 
and KNN (Brier score = 0.252). D The decision curve for different models in the validation set. The solid lines represent different models. E The 
AUPR curve for different models in the training set, the y‐axis is precision and the x‐axis is recall. AUPR evaluated the overall performance of the 9 
models in the train set: XGBoost (AUPR = 0.953), LightGBM (AUPR = 0.753), RF (AUPR = 1.000), AdaBoost (AUPR = 0.901), GNB (AUPR = 0.858), 
CNB (AUPR = 0.752), MLP (AUPR = 0.706), SVM (AUPR = 0.712), and KNN (AUPR = 1.000). F The AUPR curve for different models in the validation 
set, the y‐axis is precision and the x‐axis is recall. AUPR evaluated the overall performance of the 9 models in the validation set: XGBoost 
(AUPR = 0.842), LightGBM (AUPR = 0.734), RF (AUPR = 0.831), AdaBoost (AUPR = 0.835), GNB (AUPR = 0.836), CNB (AUPR = 0.750), MLP (AUPR = 0.699), 
SVM (AUPR = 0.732), and KNN (AUPR = 0.721). Abbreviations: XGBoost, Extreme Gradient Boosting; LightGBM, Light Gradient Boosting Machine; 
RF, Random Forest; GNB, Gaussian Naive Bayes; CNB, Complement Naive Bayes; MLP, Multilayer Perceptron; SVM, Support Vector Machine; 
KNN, K-Nearest Neighbour; AdaBoost, Adaptive Boost; AUROC, area under the receiver-operating characteristic curve; ROC, receiver operating 
characteristic; AUPR, area under the precision-recall curve; PR, precision-recall curve; AUC, area under curve
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is lower than the test set’s, the model fitting could be con-
sidered successful, indicating that the model has good 
generalization [26]. Meanwhile, as shown in Fig.  4D, the 
learning curve revealed that the training and validation sets 
were well-fitting and stable [26–28]. As a result, the above 
results revealed that the XGBoost algorithm might be 
employed for this dataset’s classification modeling purpose.

The SHAP analyzes the entire test set, visually explain-
ing the impact of six key variables on the XGBoost model. 
Furthermore, in the SHAP analysis of the XGBoost 
model, the color represents the value of the variable, red 
pixels symbolize positive SHAP values enhancing class 
likelihood, while blue pixels denote negative SHAP val-
ues reducing class probability (Fig.  5A). The bar chart 

Fig. 4  The performance of the XGBoost model was evaluated by tenfold cross‐validation in the training set and internal validation in the test 
set. A The mean AUROC for the XGBoost model in the training set (AUROC = 0.881). B The mean AUROC for the XGBoost model in the validation 
set (AUROC = 0.699). C The AUROC for the XGBoost model in the test set (AUROC = 0.725). D In the learning curve, the red dashed line represents 
the training set and the blue dashed line represents the validation set. Abbreviations: XGBoost, Extreme Gradient Boosting; AUROC, area 
under the receiver-operating characteristic curve; ROC, receiver operating characteristic; AUC, area under curve
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shows the relationship between the magnitude of the fea-
ture value and the predicted impact (Fig. 5B).

Discussion
Demetri et  al. [8] previously reported that advanced 
GIST patients with IM Cmin < 1100 ng/mL had a shorter 
progression-free time in 2009. Although there is still 
controversy about the optimal cut-off value for IM Cmin, 
in clinical practice, "1100  ng /ml" has become a com-
mon reference value for monitoring IM Cmin in out-
patients. In this study, we thus used 1100  ng/ml as the 
cutoff value and converted IM Cmin, a continuous vari-
able, into a binary variable. We compared nine common 
ML algorithms. The optimal ML model was selected 
using AUROC, DCA, Brier Scores, and AUPR. Finally, 
the XGBoost model was selected as the best model for 
analysis, internally validated, and proved to have good 
classification.

The relationships between the label variable (IM 
Cmin) and feature variables were assessed using LASSO 

regression and LR. Six key variables (daily IM dose, 
metastatic site, gender, PLT, NEU%, and RBC) were 
screened out, which were easy to obtain, and also 
were the key variables in constructing the XGBoost 
model in this study. Interestingly, except for PLT, these 
key variables reached also statistical significance in 
Table 2. Some studies believe that IM is mainly metab-
olized in the liver [29, 30]. Therefore, before our data 
analysis, Laboratory indicators related to liver func-
tion examination were expected to be key and impor-
tant features in constructing the classification model. 
However, to our surprise, the features that were finally 
screened by parameters did not include laboratory 
indicators related to liver function examination. We 
consider that the reason for this phenomenon may 
be that our outcome variables are binary, whereas the 
outcome variable in the previous study was continu-
ous. This difference may lead to the exclusion of labo-
ratory indicators related to liver function examination 
in the final selection of variables.

Fig. 5  SHAP summary graph of the XGboost model. A This diagram describes the dot estimation on the model output of the XGBoost model. 
Each dot represents an individual patient from the dataset. The colors represent the feature value, red represents the higher SHAP value of specific 
features, and blue represents the lower SHAP value of specific features. B Average absolute impact of variables on the output value of the XGBoost 
model (ranked in descending order of feature importance). Abbreviations: XGBoost, Extreme Gradient Boosting; SHAP, Shapley Additive 
Explanations; RBC, red blood cell count; NEU%, percentage of neutrophils; PLT, platelet count
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IM Cmin was shown to be higher in females than in 
males in several studies, and researchers believed the dif-
ference could be attributable to differences in body weight 
or medication adherence between genders [31, 32]. The 
existence of liver metastases may result in more changes 
and increased exposure to IM, which may cause higher 
in IM Cmin [33]. A previous study (Eechoute, 2012) found 
that IM clearance was expected to decrease by 3.8% for 
every 100 cm3 increase in liver metastatic volume [29]. 
Previous studies had reported the relationship between 
daily IM dose and IM Cmin [17, 18, 34], the TDM for IM 
provided a reference for the adjustment of IM dosage, 
which added to the utility of TDM in the management of 
patients with GISTs [12]. It is worth noting that no for-
eign studies have previously reported the effect of RBC on 
imatinib clearance, but a recent domestic study confirmed 
that RBC had a significant effect on the clearance of IM 
[35], which may be due to ethnic differences between 
domestic and foreign study populations. Thrombocytope-
nia and neutropenia are common side effects of IM-tar-
geted therapy [36], which may be why PLT and NEU% are 
key variables in constructing the model.

IM is an anti-cancer drug administered primarily to 
outpatients because blood samples are not always avail-
able at the end of the administration interval. Thus, IM 
Cmin is the most widely used pharmacokinetic proxy for 
predicting clinical outcomes [7, 37], and Cmin is naturally 
used as a focus for TDM [38]. TDM for IM may reassure 
patients and physicians about full exposure to the drug and 
improve long-term adherence to this chronic treatment, 
which may be a promising approach for fine-tuning the IM 
dosage for better tolerability and optimal clinical outcomes 
in patients with GISTs [7, 37]. It is widely known that high 
IM Cmin increases the risk of adverse effects and toxicity, 
which can reduce medication adherence rates and quality 
of life. Therefore, it is crucial for patients with GISTs to fre-
quently undergo TDM of IM [34]. However, most hospitals 
are unable to monitor IM Cmin because they do not have 
the equipment to do so, which makes the IM Cmin classifi-
cation model valuable for clinical application.

Precision therapy stands as a primary use of ML, offering 
patients customized medical services including individual-
ized dosage modification, plasma concentration predic-
tion, and prediction of negative drug reactions [13, 39, 40]. 
In clinical practice, 1100 ng/mL is often used as the refer-
ence value, combined with the patient’s drug tolerance and 
the change in CT tumor lesions, to evaluate the drug effi-
cacy and adjust the drug dosage [41]. For example, patients 
with IM Cmin less than 1100 ng/ml (which is predicted by 
the XGBoost model), where tumor progression is defined 
by imaging and/or symptomatic progression, could be 
encouraged to appropriately increase the doses. By the 
same token, patients with IM Cmin greater than 1100 ng/

ml, as predicted by the XGBoost model, would experience 
serious adverse drug reactions and could be encouraged 
to appropriately reduce their doses. Using the above two 
examples, we know that using machine-learning methods 
to detect blood drug concentrations could help some hos-
pitals without the TDM platform reduce their healthcare 
burden. For some hospitals with the TDM platform, some-
times, the ML model is more often used to streamline IM 
Cmin monitoring rather than completely replace TDM.

A model developed by Gotta in 2012 showed that the 
Bayesian MAP-ρ method, which considered the correla-
tion between pharmacokinetic parameters, could predict 
IM Cmin with an unbiased accuracy of ± 30.7% [42]. 

The difference between this study and the above study 
mainly lies in the study population, study design, and 
study variables. First, IM Cmin measured in the adju-
vant setting is excluded. Second, the classification model 
includes six feature variables that are easily accessi-
ble during usual treatment. This advantage enables the 
model to be generalized and applied well. Finally, to our 
knowledge, this is the first study to develop and internally 
validate a classification model for IM Cmin that has high 
predictive performance, which, combines with Demetri’s 
study [8], may aid in prognostic prediction in patients 
with advanced GISTs. Therefore, in the future, we plan 
to further establish a web application that is easy to use 
based on the presented XGBoost classification model, 
which could then be used as a real-time clinical decision 
support tool through self-learning and optimization and 
aid in personalized IM dose adjustment.

Although the new model has good predictive perfor-
mance, there are still some considerable limitations to 
this study. First, the limited number of samples avail-
able may reduce the performance of the XGBoost model. 
Second, given its nature as a retrospective, single-center 
research with an extended duration, it faces all the con-
straints typical of retrospective studies. For instance, the 
lack of pharmacokinetic parameters and body surface 
area data, incomplete laboratory indicators, and fluctua-
tions in blood collection time points may all affect IM 
Cmin. Therefore, in this study, the classification prediction 
of IM Cmin is the next best thing, rather than the specific 
value prediction, which is continuous. For this reason, 
our current model is more of a reference than a complete 
replacement for TDM. Third, while our classification 
model has been internally validated, additional prospec-
tive validation should be performed in future studies, or 
a wholly external dataset should be employed for exter-
nal validation to improve the generalization ability of this 
model. Finally, as several works of literature suggest poly-
morphism effects on exposure and drug-drug interaction 
via CYP3A [30, 43–45], changes in Cmin estimation could 
be suspected, but those indicators are not included in this 
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research. In future work and research, we will make efforts 
to make up for the above deficiencies and establish a new 
model, and the result variable of this model is a continuous 
value, to help some hospitals without the TDM platform 
reduce their healthcare burden, or even replace TDM.

Conclusion
We developed and validated ML models for individual-
ized classification of IM Cmin tailored to patients with 
advanced GISTs from China by utilizing readily available 
baseline information and assay indices, which were easy 
to obtain. This XGBoost model showed good classifica-
tion performance and had good clinical application value.
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