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Abstract

Background: There is an unmet clinical need for better prognostic and diagnostic tools for renal cell carcinoma (RCC).

Methods: Human Protein Atlas data resources, including the transcriptomes and proteomes of normal and malignant
human tissues, were searched for RCC-specific proteins and cubilin (CUBN) identified as a candidate. Patient tissue
representing various cancer types was constructed into a tissue microarray (n = 940) and immunohistochemistry used
to investigate the specificity of CUBN expression in RCC as compared to other cancers. Two independent RCC cohorts
(n = 181; n = 114) were analyzed to further establish the sensitivity of CUBN as RCC-specific marker and to explore if the
fraction of RCCs lacking CUBN expression could predict differences in patient survival.

Results: CUBN was identified as highly RCC-specific protein with 58% of all primary RCCs staining positive for CUBN
using immunohistochemistry. In venous tumor thrombi and metastatic lesions, the frequency of CUBN expression
was increasingly lost. Clear cell RCC (ccRCC) patients with CUBN positive tumors had a significantly better prognosis
compared to patients with CUBN negative tumors, independent of T-stage, Fuhrman grade and nodal status
(HR 0.382, CI 0.203–0.719, P = 0.003).

Conclusions: CUBN expression is highly specific to RCC and loss of the protein is significantly and independently
associated with poor prognosis. CUBN expression in ccRCC provides a promising positive prognostic indicator for
patients with ccRCC. The high specificity of CUBN expression in RCC also suggests a role as a new diagnostic marker in
clinical cancer differential diagnostics to confirm or rule out RCC.
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Background
The Human Protein Atlas project has generated a com-
prehensive map of global gene expression patterns in nor-
mal tissues [1]. Through integration of antibody-based,
spatial proteomics and quantitative transcriptomics, ex-
pression and localization of more than 90% of all human
protein-coding genes have been analyzed. Whereas the
majority of proteins show a widespread expression profile,
subsets of tissue-enriched proteins have been defined [2],

including proteins with enriched expression in the kidney
[3]. To facilitate screening and discovery efforts for
cancer-relevant proteins, the Human Protein Atlas also
contains immunohistochemistry-based protein expression
profiles for the 20 most common forms of cancer [4].
Renal cell carcinoma (RCC) is the most common type

of cancer affecting the kidney. Several histological sub-
types of RCC have been defined, the most frequent being
clear cell RCC (ccRCC) [5]. Diagnosis and subtyping of
RCC are achieved through the morphological analysis of
tumor sections. The application of immunohistochemistry
(IHC) can reveal important additional clues during the
diagnostic work-up. A variety of antibodies have been
described to guide pathologists during the diagnosis of

* Correspondence: fredrik.ponten@igp.uu.se
1Department of Immunology, Genetics and Pathology, Science for Life
Laboratory, Uppsala University, Uppsala, Sweden
9Department of Immunology, Genetics and Pathology, Rudbeck Laboratory,
Dag Hammarskjölds Väg 20, SE-751 85 Uppsala, Sweden
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Gremel et al. BMC Cancer  (2017) 17:9 
DOI 10.1186/s12885-016-3030-6

http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-016-3030-6&domain=pdf
mailto:fredrik.ponten@igp.uu.se
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


distant metastases from the kidney, to distinguish primary
RCCs from benign mimics, and to differentiate RCC from
malignancies derived from other retroperitoneal structures
[6]. Most recently, PAX8 and PAX2 have shown improved
RCC-specificity over the traditionally used RCC markers
CD10 and RCC monoclonal antibody, although several
female genital tract and thyroid tumors stain positive for
both markers [7, 8].
The clinical risk stratification of RCC patients relies

heavily on the assessment of histopathological parame-
ters. Clear cell histology is significantly associated with a
more aggressive disease progression and reduced overall
survival [5]. For the prediction of recurrence in patients
with localized ccRCC, algorithms were developed by
teams at Memorial Sloan-Kettering Cancer Center
(based on tumor stage, nuclear grade, tumor size, necrosis,
vascular invasion and clinical presentation) [9] or the
Mayo Clinic (based on tumor stage, tumor size, nuclear
grade and histological tumor necrosis) [10]. More re-
cently, gene expression signatures have been proposed to
add prognostic value to conventional algorithms [11, 12].
The aim of this study was to utilize the vast data re-

sources generated by the Human Protein Atlas project
to identify novel biomarkers of clinical relevance for pa-
tients with RCC. Cubilin (CUBN) was identified and val-
idated as a marker with the potential to classify RCC
patients into low- and high-risk groups, as loss of CUBN
expression was significantly and independently associ-
ated with less favorable patient outcome. In addition,
CUBN expression appears highly specific for RCC com-
pared to other types of cancer, rendering CUBN a pos-
sible clinical role in cancer differential diagnostics.

Methods
Human Protein Atlas database searches
Global mRNA expression data for 27 normal human tis-
sues [1] was searched for genes specifically expressed in
normal kidney and a maximum of six additional tissues.
Genes with >5-fold higher fragments per kilobase of
transcript per million mapped reads (FPKM) levels in
normal human kidney compared to all other tissues and
genes with 5-fold higher average FPKM level within a
group of 2–7 tissues, including normal human kidney,
were investigated further. Corresponding IHC-based ex-
pression data within the Human Protein Atlas database
(www.proteinatlas.org and unpublished data) was evalu-
ated manually.
Similarly, proteome-wide IHC-based expression data

for 83 normal human cell types, corresponding to 44
normal tissues, was searched for proteins expressed in
renal tubules or glomeruli and a maximum of nine
additional cell types. Retention of protein expression in
RCC was evaluated manually. IHC-based expression data
for 216 cancer tissues, including up to 12 cases of RCC,

were systematically queried for antibodies yielding posi-
tive IHC-staining primarily in RCC. Database searches
were conducted using varying positive/negative defini-
tions (e.g. negative or weak staining as cut-off ) and vari-
ous levels of specificity (e.g. staining in 50% or 75% of
RCC cases and less than 10% or 25% of any other cancer
type, respectively).

Patient cohorts
Initially, a tissue microarray (TMA) containing tumor ma-
terial from 39 patients with available, corresponding tran-
scriptomics data and protein lysates was used (Additional
file 1: Table S1). In addition, three independent TMA
cohorts were used. Cohort 1 was a multi-cancer cohort
including 940 tumor samples, representing 22 different
tumor sites (Additional file 2: Table S2, [13]). Formalin-
fixed, paraffin-embedded (FFPE) tumor specimens were
identified from the archives of Uppsala University
Hospital, Falun Hospital and Lund University Hospital,
where all cases were originally diagnosed between 1984
and 2011. A large fraction of samples (502 tumors) repre-
sented material from metastatic sites. For RCC, 20 pri-
mary tumors and 20 metastases were included. Cohort 2
included 167 primary, 103 venous tumor thrombi and 96
metastatic tumors from 183 RCC patients following
radical nephrectomy at the Department of Urology,
Edinburgh, between 1983 and 2010 (Additional file 3:
Table S3, [14]). Written consent was obtained from study
participants from cohort 2. Cohort 3 was assembled from
114 primary ccRCC samples (Additional file 3: Table S3)
from patients diagnosed with metastatic RCC between
2006 and 2010 at one of seven Swedish medical centers
(Uppsala, Göteborg, Örebro, Västerås, Gävle, Falun,
Karlstad). All patients within this cohort had undergone a
radical nephrectomy. Written consent was obtained from
study participants from cohort 3.

Tissue microarray construction, immunohistochemistry
and annotation
TMAs were constructed as described previously [14, 15].
Two antibodies targeting CUBN were tested (HPA043854
and HPA004133, Atlas Antibodies AB, Stockholm,
Sweden). Automated IHC was performed as described
previously [15]. IHC staining intensities and fractions of
stained tumor cells were manually evaluated and each
core annotated by two independent observers. Due to the
large number of annotations this task was shared within a
group of three observers (TP, NK, GG). Cases with diver-
gent scores were reviewed by a third observer (DD) and
consensus reached. Total cellular staining (including cyto-
plasm and cell membrane) was annotated. Cases were
considered positive for CUBN if the fraction of stained
cells was greater than 10% and the staining intensity
showed at least moderate intensity.
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RNA expression and Western blot analysis
RNA expression analyses were performed as described
previously [2]. Western blot analysis was performed ac-
cording to standard protocols.

Statistical analysis
For the calculation of sensitivity, specificity and positive
predictive value (PPV) standard formulas were applied
[16]. Kaplan–Meier survival curves were generated to
evaluate the correlation between CUBN expression and
patient survival. The log-rank test was used to compare
patient survival in groups stratified according to CUBN
expression. Cox proportional-hazards regression was ap-
plied to estimate hazard ratios in univariate and multi-
variate models. The χ2 test and Fisher’s exact test were
used to calculate the significance of associations between
CUBN expression and clinicopathological parameters.

Calculations were carried out using SPSS Statistics
Version 22 (IBM, Armonk, NY).

Results
Target identification and antibody validation
The initial focus of this study was to identify kidney-
specific proteins whose expression was partly or
completely retained in RCC, a prerequisite for an RCC
biomarker with prognostic and/or diagnostic value.
Following searches within the Human Protein Atlas
database, 15 proteins with preferential expression in
RCC compared to all other included cancer types were
identified (Additional file 4: Table S4). Following system-
atic antibody validation and immunohistochemical ana-
lysis of various TMA cohorts, CUBN was determined as
the protein with the highest level of selective expression
in RCC (Fig. 1).

Fig. 1 CUBN discovery pipeline and the standard Human Protein Atlas cancer test set. a The Human Protein Atlas database (www.proteinatlas.org and
unpublished data) was systematically searched for cancer type-specific proteins using automated and manual searches. Staining patterns were
reviewed and 15 proteins with RCC-enriched expression chosen for further antibody validation. Following extensive antibody validation and exclusion
of antibodies with overlapping staining patterns, three antibodies were selected for validation of RCC-specific staining on multi-cancer TMA cohort 1.
Two of these biomarkers were validated further on independent RCC-specific cohorts (cohort 2 and 3) and CUBN identified as highly RCC-specific
protein. b CUBN staining on routine Human Protein Atlas cancer test set. Two antibodies, HPA004133 and HPA043854, targeting different epitopes
on the same protein generated similar staining patterns. Red, orange and yellow coloring indicates cases with strong, moderate and weak staining,
respectively. Grey corresponds to CUBN negative cases
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Two antibodies targeting CUBN underwent rigorous
quality control measures. A comparison of mRNA and
IHC-based expression levels in normal human tissues
confirmed the specific expression of CUBN in kidney
and small intestine (Additional file 5: Figure S1, [17]).
Both antibodies specifically stained the proximal tubules
of the kidney (Fig. 2a, [18]). Within the test TMA cohort
IHC staining intensities correlated well with mRNA ex-
pression levels in the same tissues (Fig. 2a and b) and
both antibodies produced a Western blot signal at ap-
proximately 460 kDa, the molecular weight of CUBN,
which was only detected in IHC and RNA positive tis-
sues (Fig. 2c). Additional signals at lower molecular
weight were observed for both antibodies in samples
with confirmed CUBN expression. These signals were
regarded as products of protein degradation. Overall,
both antibodies targeting CUBN showed high detection
specificity and clone HPA043854 was used for further
analyses.

CUBN as RCC-specific protein
A multi-cancer TMA cohort (cohort 1) was used to sub-
stantiate the RCC-specific expression of CUBN. CUBN
staining was almost exclusively observed in RCC
(Table 1) where 22 out of 39 cases (56%) were annotated
as positive. Only one additional case of head and neck
cancer (of 20 cases) stained positive for CUBN. This
translated to a detection specificity of 100% and PPV of
96% for CUBN in RCC within this cohort.

Approximately half of the included RCC samples in
cohort 1 were of metastatic origin (20 out of 39 samples)
and the expression of CUBN was well maintained in this
setting (Additional file 6: Table S5). To further investi-
gate the expression of CUBN during RCC progression,
cohort 2 was analyzed. In primary tumors, a similar rate
of CUBN positivity (58%) was observed, compared to
cohort 1 (Additional file 6: Table S5). However, the
number of CUBN positive cases significantly (P < 0.001)
decreased from venous tumor thrombi with 39% CUBN
positivity to metastatic samples with a positivity rate of
29%. Cohort 3 consisted of primary RCC material only
with 60% of cases staining positive for CUBN (Additional
file 6: Table S5).

CUBN as marker for good prognosis in ccRCC
Next, we investigated the prognostic relevance of CUBN
in RCC. Patient survival information was available for two
RCC cohorts (cohorts 2 and 3). Since all cases in cohort 3
and the majority of cases in cohort 2 were ccRCCs, we fo-
cused our analyses on this subtype. In cohort 2, stratifica-
tion of patients according to CUBN positivity showed
significant benefit for patients with CUBN positive tumors
regarding both, overall survival (P < 0.001, Fig. 3a) and
ccRCC-specific survival (P < 0.001, Fig. 3b). A similar ef-
fect was seen in cohort 3, where CUBN positive patient
samples were linked to significantly longer overall survival
(P < 0.001, Fig. 3c). For cohort 3, ccRCC-specific survival
information was not available. Instead, the metastasis-free

Fig. 2 CUBN antibody validation. a Two antibodies targeting the CUBN protein at different epitopes (HPA043854 and HPA004133) were tested
using immunohistochemistry on a range of normal and malignant tissue. Included in this figure are staining examples from normal human
kidney (K) and two renal cell carcinoma cases (RCC1 and RCC2). As chromogen 3,3’-Diaminobenzidine (DAB) was used. b RNA-seq expression data
from normal human kidney (K) and the renal cell carcinoma cases (RCC1 and RCC2). Expression levels are indicated as fragments per kilobase of
exon model per million mapped reads (FPKM). c Western blot analysis of CUBN expression in protein extracts from normal human kidney and the
renal cell carcinoma cases RCC1 and RCC2 using HPA043854 and HPA004133
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survival of patients initially presenting with localized
disease was queried. There was no significant association
of metastasis-free survival and CUBN expression overall
(P = 0.226, Fig. 3d). However, CUBN positive ccRCC pa-
tients experienced a significant short-term metastasis-free
survival benefit with P = 0.01 at 1-year follow-up and
P = 0.048 at 5-years follow-up (Fig. 4).

Association of CUBN positivity with clinicopathological
parameters and multivariate survival analysis in ccRCC
In cohort 3, positive CUBN staining was significantly
associated with localized disease (Table 2, P = 0.009). A
similar analysis in cohort 2 was not significant (P = 0.317).
However, this may be due to the small number of patients
that presented with distant metastases at diagnosis within
this cohort. In cohort 2, the expression of CUBN was

related to various other clinicopathological parameters
(Table 2). A significant correlation was observed between
positive CUBN expression and lower Fuhrman grade
(P = 0.006) and negative nodal status (P = 0.006). No
significant association between CUBN expression and
T-stage was seen. For cohort 3 similar clinicopatho-
logical data were not available.
Univariate Cox regression analysis confirmed the rele-

vance of CUBN as good prognostic marker for overall sur-
vival (Table 3, HR 0.411, 95% CI 0.263–0.641, P < 0.001),
and ccRCC-specific survival (Additional file 7: Table S6,
HR 0.334, 95% CI 0.199–0.569, P < 0.001). The association
remained significant in multivariate analysis following
adjustment for T-stage, Fuhrman grade and nodal status
for both, overall survival (Table 3, HR 0.382, 95% CI
0.203–0.719, P = 0.003) and ccRCC-specific survival
(Additional file 7: Table S6, HR 0.297, 95% CI 0.142–0.620,
P = 0.001).

Discussion
We utilized the Human Protein Atlas resources to iden-
tify in an unbiased fashion, novel targets to improve and
supplement currently used tools for the prognostication
and differential diagnosis of RCC. Following state-of-
the-art validation of antibodies targeting CUBN [19], we
analyzed the expression of CUBN in normal human
tissues, a large variety of cancers and two RCC-specific
cohorts. We found that loss of CUBN expression in
ccRCC patients was significantly associated with poor
prognosis. Importantly, this observation was inde-
pendent of T-stage, Fuhrman grade and nodal status,
implying added clinical value of routine CUBN testing. In
addition, we found the expression of CUBN to be highly
specific to RCC, suggesting a potential use of CUBN in
clinical cancer differential diagnostics as a complement to
other diagnostic antibodies in cases where RCC needs to
be confirmed.
CUBN is an endocytic receptor that is specifically

expressed on epithelial cells in the proximal tubules of
the kidney and in glandular cells of the small intestine
[20]. In the kidney, CUBN mediates the reabsorption of
filtered proteins such as albumin and transferrin [18],
whereas in the small intestine, CUBN is primarily in-
volved in the uptake of intrinsic factor-vitamin B12 com-
plex [21]. Even though the role of CUBN in normal
kidney and small intestine has been well characterized
and CUBN has been used as a marker for renal cell dif-
ferentiation [22], the role of CUBN during RCC develop-
ment and progression is largely unknown.
Although IHC is not quantitative, results from vali-

dated antibodies provide protein expression data at cel-
lular resolution and can readily be translated to a clinical
setting. The applied TMA methodology also appears
well suited to simulate small tissue biopsies, which are

Table 1 CUBN positivity rates on multi-cancer TMA cohort
(Cohort 1)

Cancer origin N (912 total) CUBN positive
N (%a)

Prostate 57 0 (0)

Colon 59 0 (0)

Breast 60 0 (0)

Stomach 59 0 (0)

Lung 105 0 (0)

Ovary 60 0 (0)

Endometrium 59 0 (0)

Cervix 59 0 (0)

Hepatocellular 28 0 (0)

Neuroendocrine 30 0 (0)

Sarcoma 60 0 (0)

Urothelial 20 0 (0)

Renal cell carc. 39 22 (56)

- ccRCC 30 18 (60)

- other 9 4 (44)

Lymphoma 20 0 (0)

Melanoma 20 0 (0)

Testis 18 0 (0)

Oesophagus 22 0 (0)

Thyroid 18 0 (0)

Head and Neck 20 1 (5)

Pancreas 51 0 (0)

Cholangiocarc. 41 0 (0)

Gall bladder carc. 7 0 (0)

CUBN specificityb 100%

CUBN PPVb 96%

N number of patients, ccRCC clear cell renal cell carcinoma
aPercentage of positive cases within tumor type
bFor RCC compared to all other cases; PPV, positive predictive value
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Fig. 3 Kaplan-Meier survival analysis of ccRCC patients, stratified according to CUBN expression. a Overall survival and b ccRCC-specific survival of
patients in cohort 2. c Overall survival and d metastasis-free survival of patients in cohort 3

Fig. 4 Kaplan-Meier survival analysis of ccRCC patients, stratified according to CUBN expression. a One-year metastasis-free survival and b five-year
metastasis-free survival of patients in cohort 3
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exceedingly relevant in the clinical practice. The specifi-
city and sensitivity of IHC staining for CUBN in cohorts
of tumor tissue has provided an example of a novel diag-
nostic biomarker for RCC. Although extended studies
regarding the expression pattern in additional tumors of
relevance for differential diagnostics, e.g. adrenal gland
tumors and other forms of clear cell cancer, are required
to establish the usefulness of CUBN staining in clinical
routine, the presented results indicate that this marker
could be used for difficult cases where a diagnosis of
RCC needs to be confirmed.
There is an unmet need for better tools for risk strati-

fication of ccRCC patients. Several prognostic algorithms
based on clinicopathological parameters have been pro-
posed. For example, algorithms developed at Memorial
Sloan-Kettering Cancer Center [9] or the Mayo Clinic
[10] are used for the prediction of recurrence in patients
with localized ccRCC. More recently, molecular pheno-
typing of RCC has shown promise in adding prognostic
value to standard clinicopathological parameters. With
ClearCode34, a 34-gene expression signature for the
prognostic stratification of localized ccRCC patients was

introduced and a combination of molecular and clinical
parameters shown to provide better risk prediction than
clinical variables alone [11]. Unlike mRNA-based assays,
the immunohistochemical detection of CUBN can easily
be implemented in routine pathology laboratories. An
application of CUBN as marker for early disease spread
and the added value of CUBN as a prognostic marker
over clinical stage, grade and nodal status are promising
and additional validation is highly desirable.
Functional studies to understand the mechanism linking

the expression of a protein involved in re-absorption of
proteins in proximal tubules and aggressiveness of RCC
are needed. Previous studies showing that TGF beta re-
duces CUBN expression [23] and contributes to RCC
aggressiveness [24] could provide one starting point to ex-
plore the biological background for the correlation be-
tween CUBN expression in RCC and prognosis. Extended
functional studies regarding malignancy grade and also
larger studies on well-defined cohorts with high quality
clinical data from RCC patients will be needed to further
explore the role of CUBN in RCC and to establish the
clinical utility of this promising RCC biomarker.

Table 2 Association of CUBN positivity with clinicopathological parameters in ccRCC

Variable Cohort 2 Cohort 3

N CUBN negative
N (%)

CUBN positive
N (%)

P-value N CUBN negative
N (%)

CUBN positive
N (%)

P-value

Spread at diagnosis 131 114

Local 50 (96) 72 (91) 15 (33) 39 (57)

Metastatic 2 (4) 7 (9) 0.317b 31 (67) 29 (43) 0.009a

T-Stage 123

T1-T2 5 (10) 14 (19) n.a.

T3-T4 45 (90) 59 (81) 0.167a

Fuhrman Grade 95

1–2 8 (23) 31 (52) n.a.

3–4 27 (77) 29 (48) 0.006a

Nodal Status 131

Negative 39 (75) 73 (92) n.a.

Positive 13 (25) 6 (8) 0.006a

N number of patients
aχ2 test
bFisher’s exact test; n.a., not available

Table 3 Cox regression analysis of overall survival (Cohort 2)

Prognostic factor Univariate Multivariatea

HR (95% CI) P-value HR (95% CI) P-value

CUBN (pos. vs. neg., ref) 0.411 0.263–0.641 <0.001 0.382 0.203–0.719 0.003

T-Stage (T3-T4 vs. T1-T2, ref) 1.897 1.002–3.593 0.049 1.689 0.746–3.825 0.209

Fuhrman Grade (3–4 vs. 1–2, ref) 1.822 1.059–3.136 0.030 1.217 0.665–2.226 0.524

Nodal Status (pos. vs. neg., ref) 4.208 2.397–7.386 <0.001 4.041 1.840–8.874 0.001

HR hazard ratio, CI confidence interval
aAdjusted for all other variables; pos., positive; neg., negative; ref, referent group
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Conclusions
In a quest to identify novel biomarkers for RCC, we have
applied a systematic search strategy to exploit the
extensive data resources of the Human Protein Atlas
(www.proteinatlas.org). We identified CUBN as a marker
for risk stratification of patients with RCC. Lack of
CUBN expression was significantly associated with early
disease progression and poor patient outcome, inde-
pendent of T-stage, Fuhrman grade and nodal status.
Owing to a highly RCC-specific expression profile,
CUBN expression also has a potential role in clinical
cancer differential diagnostics.
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