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Abstract

Background: Lymph node (LN) status is the most important prognostic variable used to guide ER positive (+)
breast cancer treatment. While a positive nodal status is traditionally associated with a poor prognosis, a subset of
these patients respond well to treatment and achieve long-term survival. Several gene signatures have been
established as a means of predicting outcome of breast cancer patients, but the development and indication
for use of these assays varies. Here we compare the capacity of two approved gene signatures and a third
novel signature to predict outcome in distinct LN negative (-) and LN+ populations. We also examine biological
differences between tumours associated with LN- and LN+ disease.

Methods: Gene expression data from publically available data sets was used to compare the ability of Oncotype DX
and Prosigna to predict Distant Metastasis Free Survival (DMFS) using an in silico platform. A novel gene signature
(Ellen) was developed by including patients with both LN- and LN+ disease and using Prediction Analysis of
Microarrays (PAM) software. Gene Set Enrichment Analysis (GSEA) was used to determine biological pathways
associated with patient outcome in both LN- and LN+ tumors.

Results: The Oncotype DX gene signature, which only used LN- patients during development, significantly
predicted outcome in LN- patients, but not LN+ patients. The Prosigna gene signature, which included both
LN- and LN+ patients during development, predicted outcome in both LN- and LN+ patient groups. Ellen was
also able to predict outcome in both LN- and LN+ patient groups. GSEA suggested that epigenetic modification may be
related to poor outcome in LN- disease, whereas immune response may be related to good outcome in LN+ disease.

Conclusions: We demonstrate the importance of incorporating lymph node status during the development of
prognostic gene signatures. Ellen may be a useful tool to predict outcome of patients regardless of lymph node
status, or for those with unknown lymph node status. Finally we present candidate biological processes, unique
to LN- and LN+ disease, that may indicate risk of relapse.
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Background
Axillary lymph node (LN) status is the most important
prognostic variable in the management of patients with
primary estrogen receptor positive (ER+) breast cancer,
which accounts for the majority of diagnosed cases.
Node positive breast cancer patients have been shown
to have a worse prognosis than those with node nega-
tive disease. These observations have led, in part, to the
development of a Tumour Nodal Metastases (TNM)
staging system that incorporates tumour size, nodal in-
volvement, including the absolute number of involved
nodes, and the presence or absence of systemic metas-
tases into an incremental staging system [1, 2]. Each
stage of disease has specific survival characteristics and
is thought to represent the natural progression of a
tumour, from its origins in the breast to its metastasis
through the lymphatic system to regional lymph nodes
and ultimately through the circulatory system to distant
sites. Clinicians use the TNM staging system to guide
the management of breast cancer patients. Most breast
cancer patients with involved axillary lymph nodes, in
the absence of significant co-morbidities, are currently
offered adjuvant systemic chemotherapy [3, 4].
However, the biological significance of nodal metasta-

ses is poorly understood. It is hypothesised that involve-
ment of axillary lymph nodes is an indicator of tumour
chronology such that the longer a tumour has been
growing in the breast the more likely it is to metastasize
to regional axillary nodes. Furthermore, it is thought that
breast cancers first metastasize to these nodes and then
secondarily to other sites [5, 6]. In support of this hy-
pothesis, there is an established correlation between lar-
ger tumour size and lymph node involvement; indeed
more timely intervention and resection of smaller pri-
mary tumours is associated with a reduced incidence of
spread to regional lymph nodes [7]. More importantly,
the absence of lymph node involvement is significantly
associated with a better prognosis.
An alternative hypothesis suggests that some meta-

static tumours avoid the lymphatic system, and instead
spread primarily through the circulatory system [8, 9].
The evidence for this theory stems from the knowledge
that 30 % of patients who are lymph node negative
(LN-) at diagnosis will eventually succumb to meta-
static breast disease, even after optimal treatment [10].
Conversely, there is a subset of patients who present
with lymph node positive (LN+) disease that never de-
velop distant recurrence, even in the absence of adju-
vant treatment [9, 11]. It is likely that the biology of a
primary tumour at diagnosis contributes to whether it
remains at the primary site, spreads to regional lymph
nodes, or metastasizes to distant sites via lymph node
spread or through the vascular circulation. It is increas-
ingly recognised that clinical pathological factors alone

are limited in their ability to predict who will develop
recurrent cancer or respond to treatment. To this end,
a number of genomic signatures have been developed
which have shown to be both prognostic (predict risk
of distant recurrence) and predictive (predict response
to chemotherapy) [12, 13]. It is thought that these signa-
tures detect biological differences in primary tumours in-
dicative of whether a tumour is likely to metastasize.
Here, we explore the relationship between stage and

tumour biology to outcome in ER+ breast cancer, in the
context of prognostic gene signatures, namely Oncotype
DX and Prosigna [14–17]. Specifically, we compared the
capacity of Oncotype DX, developed exclusively on and
for LN negative (LN-) ER+ patients [17], and Prosigna,
developed on all clinical subtypes of breast cancer in-
cluding those with and without lymph involvement
[18], for their capacity to predict outcome in patients
with ER+/LN- and ER+/LN+ tumours. Furthermore, we
examine the biological pathways represented in patient
tumours with and without LN involvement that have
good survival versus those that have developed systemic
metastases. Finally, using this knowledge, a novel prog-
nostic gene signature, called ‘Ellen’ was developed in
silico for both LN+ and LN- ER+ breast cancer.

Methods
Patients and samples
All data was publicly available and downloaded from
the Gene Expression Omnibus (GEO), NCBI [19]
(http://ncbi.nlm.nih.gov/geo). Three independent ex-
perimental cohorts, GSE17705 [20] and GSE6532 [21]
(which comprises 2 separate cohorts), were used for
discovery and training and are briefly described in
Table 1. Patients in all three cohorts were known to
have ER+ tumours, were treated with surgical excision
of the primary tumour and axillary dissection followed
by 5 years of adjuvant tamoxifen. Limited pathological
information is available for each sample, but ER and
LN status is provided. The development of distant metasta-
ses was recorded over 10-years of clinical follow-up and
reported as distant metastases free survival (DMFS). DMFS
rates for LN- and LN+ patient subgroups were also re-
ported. Patients with HER2 positive tumours were re-
moved from all cohorts, as HER2 is known to be a poor
prognostic variable for both LN+ and LN- tumours.
Furthermore, in clinical practice patients with HER2+ ER
+ tumours of 1 cm or more commonly receive adjuvant
chemotherapy and Herceptin. A tumour was considered
HER2 positive if either of the two HER2 probes on the
Affymetrix chip were overexpressed as calculated using
previously published methods [22].
GSE17705 was used as a training cohort for feature

discovery in the generation of the Ellen signature and
comprises Affymetrix U133A chip microarray expression
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data from 230 ER+/HER2- primary breast cancers,
~40 % of which were LN+. Two additional independent
cohorts, GSE6532-A and GSE6532-2, were combined
(GSE6532-C) and used to examine the Oncotype DX
and Prosigna assays, and to validate the Ellen signature
derived from the training cohort. The GSE6532-C co-
hort contained Affymetrix U133A and U133 Plus 2.0
microarray expression data from 132 ER+/HER2- primary
tumours, ~67 % of the patients were lymph node positive.
Specific demographic information for GSE17705 and
GSE6532 can be found on the GEO website and in previ-
ously published reports [19, 20].

Data preparation
To extract the data from these cohorts, the raw inten-
sity files (.CEL) comprising each dataset were down-
loaded and normalized using the Robust Multichip
Algorithm (RMA) [23, 24] to generate a single inten-
sity value for each probeset, using GenePattern (Broad
Institute, Cambridge, Massachusetts). This preprocess-
ing method has also been shown to yield concordance
with qRT-PCR values and has been used in similar
studies [24, 25]. Intensity was standardized using a Z
score, where probe intensity was averaged among all
samples and subtracted from the probe intensity from
a single sample, which was then divided by the stand-
ard deviation of the probe intensities. Several other
peer reviewed articles refer to a similar method to
mimic qRT-PCR based assays using microarray gene
expression data [25].

Oncotype DX analysis
To simulate the Oncotype DX assay, only probesets
corresponding to the prognostic genes comprising the
Oncotype DX gene list were selected. The Oncotype
DX recurrence score (RS) is calculated by taking a
modified weighted average for each functionally distinct
group of genes, which were then combined [17]. The
use of ACTB, GAPDH, and TFRC transcripts was ex-
cluded as data had been initially normalized using
RMA. It is important to note that the range of recur-
rence scores differs between qRT-PCR (quantitative
Real Time-Polymerase Chain Reaction) (RS are greater
than 0) and expression microarray platforms (RS nor-
mally distributed around zero), as qRT-PCR data distri-
bution is cumulative and microarray data is continuous.

Prosigna analysis
To simulate the Prosigna assay, expression values from
only the available (n = 45) Affymetrix probe sets corre-
sponding to the 50 Prosigna genes were used. Six genes
(ANLN, CDCA1, CXXC5, FOXC1, TMEM45B, UBE2T)
from the Prosigna assay, representing both pro- and
anti-tumour functions were excluded from the analysis
because probesets representing these genes were not
represented on the Affymetrix chips. Standardized ex-
pression microarray values were used, in place of Nano-
string nCounter expression data. The risk of recurrence
(ROR) score was calculated using the Spearman correl-
ation of prognostic gene expression to predetermined
coefficients relating to the expected expression of each
gene based on the intrinsic molecular subtypes as de-
scribed [18].

Signature performance
Cox Proportional Hazards Regression analysis was used
to determine the non-parametric association of con-
tinuous signature scores to patient outcome over time.
The Cox PH package in R (R Foundation for Statistical
Computing, Vienna, Austria) was used to calculate
Concordance (C), hazard ratio (HR), p values, and con-
fidence intervals (CI) for each signature. Analysis of sig-
natures was simultaneously performed using all eligible
tumours irrespective of patient outcome. Signature per-
formance was compared using statistical variables alone
and in the absence of prior knowledge to signature per-
formance in the test cohort. Significant differences be-
tween outcome groups were determined by statistical
alpha values being less than or equal to 0.05 for each test
or the CI range excluding 1, as appropriate. Kaplan-Meier
survival curves were generated using the median cut-point
for each signature scores to visually represent outcome of
patients at high versus low risk of distant metastasis.

Table 1 Summary of GEO cohort characteristics

GSE17705 GSE6532-C

n 230 132

LN Positive 91
59 % DMFS at 10 years

89
70 % DMFS at 10 years

LN Negative 139
85 % DMFS at 10 years

43
75 % DMFS at 10 years

Age NR 61

Age Range NR 40–88

Distant Metastasis
at 10 years (n)

62 33

Overall 10 year
DMFS

58.7 % 71.1 %

Location MD Anderson, US Guy’s Hosptial, UK,
John Radcliffe Hospital,
UK & Uppsala University
Hospital, Sweden

Submission Group Hatzis, Nuvera
Biosciences, Woburn
Mass

Loi et al., Institut Jules
Bordet, Belgium

Affymetrix Chip U133.A U133.A & U133.2

NR-Not Reported
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Gene set enrichment analysis
Gene set enrichment analysis (GSEA) from Gene Pat-
tern (Broad Institute, Cambridge, Massachusetts), was
used to evaluate the biological mechanisms represented
by sets of genes associated with distant metastasis free
survival (DMFS) in patients with ER+ breast cancer, as
previously described [26, 27]. Briefly, LN- and LN+
patient groups were classed by outcome (presence or
absence of metastases) and associated Affymetrix data
was used to enrich for gene sets. The GSEA algorithm
ranks all genes by expression level in either class of
samples. It then compares the pattern and frequency of
gene expression in each class to previously published
gene lists using an iterative approach to find the most
related gene sets. An enrichment score (ES) is calculated
for each gene set in each cohort, which can then be ex-
trapolated to biological significance. Reported functions of
individual genes are from the Gene Ontology Consortium
(Release date April 2016, http://geneontology.org) [28].

Development and validation of the Ellen signature
Identification of prognostic genes
Prediction Analysis of Microarrays (PAM) [29] was used
for feature selection and 10-fold cross-validation was
used to estimate the optimal number of features (genes)
to comprise the gene signature. DMFS was used as the
clinical end-point.

Validation of gene signature
To calculate a final prognostic index, gene Z scores were
averaged by outcome association and then subtracted
such that the average of poor outcome probesets was
subtracted from the average of good outcome probesets,
resulting in positive correlation to DMFS. Again, 10 year
DMFS was used as the clinical endpoint and Cox PH
Regression, C, and HRs were used to evaluate signature
performance.

Results
In silico validation
We independently verified the ability of Oncotype DX to
predict recurrence in LN- patients in the training cohort
using microarray expression data to ensure the validity
of our in silico strategy (p <1.2x102, HR: 3.58) (Table 2).
Similar in silico approaches have previously been used to
replicate gene signatures, including Oncotype DX and
Prosigna [30–32].

Signature comparison
We examined the performance of the Oncotype DX
and Prosigna gene signatures on transcript profiles of
breast cancer patients with either LN- or LN+ disease.
To do so, the Oncotype DX algorithm was replicated
in silico using Affymetrix gene expression data as de-
scribed above. We subsequently tested the prognostic
ability of the simulated algorithm on ER+ tumours
from LN + and LN- patients. As expected, the simu-
lated Oncotype DX algorithm was able to significantly
predict outcome for ER+ LN- patients (p <1.26x104,
HR: 0.36, C:0.78) (Fig. 1 and Table 3) which confirms
its prognostic capacity in this group of patients. We
also used the modified Oncotype DX algorithm, to
predict outcome of ER+ LN+ patients. Oncotype DX
was unable to predict risk of recurrence for ER+ LN+
patients from GSE6532-C (p > 0.30) (Fig. 1 & Table 3).
We subsequently simulated the Prosigna gene assay in

silico using Affymetrix gene expression data, as described
in the methods. As expected, the simulated Prosigna sig-
nature was able to significantly predict outcome for ER+
LN- patients (p <8.07x104, HR: 0.48, C:0.79) (Fig. 1 and
Table 3), as well as in ER+ LN+ patients (p <1.34x102, HR:
0.65, C: 0.62) (Fig. 1 and Table 3).
We then developed an independent signature, known

as “Ellen”, using both LN- and LN+ patients from the
training cohort, and demonstrated that it was able to
more significantly predict outcome of LN- and LN+
cohorts than either the Oncotype DX or Prosigna gene
signatures. For LN- patients, Ellen scores were associ-
ated with the ability to predict risk of relapse with a
concordance of 0.85 and hazard ratio of 0.20 (p <1.27 ×
106) (Fig. 1 and Table 3). Similarly, for LN+ patients
Ellen score was able to predict risk of distant metasta-
sis with a concordance of 0.71 and hazard ratio of 0.50
(p <1.74 × 104).
The Ellen gene signature comprises 57 genes; expres-

sion of 33 of these genes is associated with a low risk of
distant metastasis whereas expression of 24 is associated
with high risk (Table 4). The biological processes of the
genes present in all three signatures (Ellen, Oncotype
DX and Prosigna) were functionally annotated using the
Gene Ontology Consortium (Fig. 2 and Table 4). All
three signatures included genes with functions related to
gene expression, proliferation, immune response, cell
migration, cell cycle, and post translational modification
(PTM) and trafficking. Ellen and Prosigna each con-
tained genes that represented unique biological pro-
cesses; namely epigenetic and angiogenic processes for
Ellen and DNA repair and replication processes for Pro-
signa (Table 5). Direct comparison of gene lists showed
that there are 11 overlapping genes between Oncotype
DX and Prosigna (BAG1, BCL2, BIRC5, CCNB1, ERBB2,
ESR1, GRB7, MKI67, MMP11, MYBL2, PGR) and no

Table 2 Oncotype DX validation on GSE17705

HR p value CI upper CI lower

Combined Patients 1.74 5.5E-02 0.99 3.07

LN- Patients 3.58 1.2E-02 1.38 9.27

LN+ Patients 1.16 6.8E-01 0.57 2.34
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additional overlapping genes between Ellen and either of
the other two signatures.

Biological differences between LN status and outcome
Gene Set Enrichment Analysis (GSEA) was used to
identify biological processes potentially related to out-
come in ER+ tumours with and without lymph node
involvement. The GSEA algorithm was performed inde-
pendently on LN+ and LN- samples, using systemic
recurrence as the phenotypic class variable. Based on
these findings, biological pathways that are related to out-
come in LN- (Table 6) and LN+ (Table 7) patients groups
were identified. Additional information pertaining to spe-
cific overlapping genes and statistical parameters is avail-
able in the Additional file 1. A number of cancer-related
pathways were enriched in each subgroup of patient sam-
ples, including proliferation, epithelial-mesenchymal
transition (EMT), epigenetic modification, and im-
munity [33]. Poor outcome LN- patient tumours were

enriched for proliferation, growth factor signalling and
epigenetic modification gene sets (Table 6). Whereas,
poor outcome LN+ patient tumours were enriched for
gene sets associated with EMT, migration, differenti-
ation, and apoptosis. The tumours from patients with
good survival, both LN- and LN+, were enriched for
immune response gene sets. This was particularly
evident for patients with LN+ disease where 6 of the
top 10 gene sets, associated with good outcome were
comprised of 649 immune response related genes
(Table 7).

Discussion
Lymph node status is the most prognostic variable for
determining outcome in patients with ER+ breast can-
cer. However, it is unknown whether lymph node in-
volvement is simply an indication of tumour progression
over time or whether a primary tumour’s ability to
metastasize is pre-determined by tumour biology. Gene
signatures are an attractive option to predict outcome
and several have been validated for use on ER+ breast
cancer patients. Oncotype DX is a prognostic (and pre-
dictive) gene signature developed and validated using
ER+ LN- tumours exclusively, whereas the development
of the Prosigna gene signature included LN+ tumour
samples. We wanted to examine the performance of
Oncotype DX and Prosigna on LN+ patients and hy-
pothesized that if lymph node involvement is merely a

Fig. 1 Performance of Gene Signatures. Comparison of hazard ratios (HR) with 95 % confidence intervals from Oncotype DX, Prosigna, and Ellen.
Signature performance on LN- patients (a) and LN+ patients (b) exclusively. Cumulative survival (Cum Survival) over 10 years of follow-up is
demonstrated using Kaplan-Meier survival curves. Individual curves represent median cut-points of Oncotype DX (c and d), Prosigna (e and f),
and Ellen (g and h) signatures that are shown for by LN- (c, e, and g) and LN+ (d, f, and h) patients respectively. The curves represent patients at high
or low risk of metastasis

Table 3 Oncotype DX, Prosigna, and Ellen performance

LN- Patients LN+ Patients

p value Concordance p value Concordance

Oncotype DX 1.26E-04 0.78 3.06E-01 0.58

Prosigna 8.07E-04 0.79 1.34E-02 0.62

Ellen 1.27E-06 0.85 1.74E-04 0.71
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function of tumour progression, then the signatures de-
veloped using LN- patient samples (Oncotype DX)
should similarly be able to predict outcome for LN +
patients.
The Oncotype DX signature was developed using

weighted averages of 16 genes (excluding housekeeping
genes) known to be associated with outcome in ER+
LN- breast cancer using a qRT-PCR platform [17]. This

21 gene signature has been validated and FDA approved
for its ability to predict outcome in an independent
cohort of ER+ LN- breast cancer patients [34, 35]. We
simulated the Oncotype DX algorithm in silico using
Affymetrix gene expression data and tested the prognos-
tic ability of the simulated algorithm on ER+ tumours
from LN+ and LN- patients. As expected, the simulated
Oncotype DX algorithm was able to significantly predict
outcome for ER+ LN- patients, confirming its prognos-
tic capacity in this group of patients and supporting
the validity of our in silico approach to assess Onco-
type DX performance. Furthermore, the in silico ap-
proach we utilized has been used by others to compare
gene expression data from different platforms including
qRT-PCR and expression microarrays and to simulate
gene signatures such as Oncotype DX and Prosigna
[24, 29–31, 33–35].
In our in silico study, Oncotype DX was unable to

significantly predict risk of recurrence for ER+ LN+ pa-
tients (Fig. 1 and Table 3), suggesting that a signature
such as Oncotype DX, developed and validated on ER+
LN- patients, is not optimal for predicting outcome in
ER+ LN+ patients. We cannot exclude the possibility
that there is a subset of LN+ patients for whom Onco-
type DX might be an appropriate prognostic assay, but
further exploration in this area is needed. As such,
there are several ongoing clinical trials, including
SWOG S1007 and RxPONDER aimed at validating the
prognostic utility of Oncotype DX for ER+ breast can-
cer patients with limited LN+ disease, the results from
these studies are eagerly awaited [36, 37].
Prosigna was approved as a prognostic assay for dis-

tant metastasis-free survival for patients with ER+ dis-
ease with 0–3 positive lymph nodes. The 50 disease
associated-genes comprising the Prosigna assay were
derived from the intrinsic molecular subtype signatures

Table 4 Number of Ellen genes associated with different
biological pathways

Low Risk of Metastasis
Genes

High Risk of
Metastasis Genes

Total

Gene
Expression

13 2 15

EGR1, FOS, JUN, NAT10,
RPL11, ZFP36, EEF2, LITAF,
POLR2E, POLR3E, RPLP2,
RPS15, RPS23

RPL38, RPS11

Proliferation 5 6 11

KIDINS220, PIK3R1, ZFP36L2,
CDIPT, CXCL12

JTB, SERPINB3,
NUCKS1, SNRPE,
SPDEF, TXN

Immune
Response

5 3 8

FOS, CXCL12, HLA-DPA1,
JAK1, PCBP2

FKBP4, MTDH,
NUCKS1

Cell Migration 3 4 7

SPTBN1, CYFIP1, CXCL12 S100P, ARF6,
CSTA, NUCKS1

Apoptosis 6 1 7

JUN, SGK1, LITAF, TNFRSF10B,
GLTSCR2, ITM2B

S100G(-)

Stress
Response

5 0 5

DUSP1, ABAT, CIRBP,
GLTSCR2, GPX4

Metabolism 1 4 5

GPX4 FLOT1, SQLE,
COX5B, GPR172A

Epigenetics 2 2 4

NCOR1, SMARCA2 NAT10, H3F3A

Angiogenesis 0 2 2

ACTC1, MB

Differentiation 2 0 2

DPYSL2, RAI2

Cell Cycle 0 1 1

SFN

PTM and
Trafficking

1 0 1

DUSP1

Cytoskeleton 0 1 1

KRT10

Fig. 2 Biological pathways. Graphical distribution of biological
pathways represented within the Ellen gene signature, as determined
by number of genes associated with each pathway
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discovered in 2000 [18, 38]; both LN- and LN+ breast
cancer samples were used to develop and validate the
Prosigna assay ([39], TransATAC and ABCSG8 clinical
trials). The simulated Prosigna signature, described
here was able to significantly predict outcome for ER+
LN- and LN+ patients separately. This suggests that in-
cluding LN+ patient samples in signature development
will improve signature performance when applied to
LN+ patient tumour samples.
The Ellen signature, which was developed using both

LN- and LN+ patients, was able to more significantly
predict outcome of LN- and LN+ cohorts than either
the Oncotype DX or Prosigna gene signatures. It is pos-
sible that the increased significance, concordance, and
hazard ratios derived from the Ellen signature are re-
lated to it being both trained and validated using Affy-
metrix data and we recognize that our results need to
be validated using an independent cohort of patients.
Alternatively, the increased significance of Ellen could
be reflective of the importance of the biological pro-
cesses, represented by the signature genes, to outcome
in ER+ breast cancer. As detailed in Table 5, Ellen,
Oncotype DX, and Prosigna signatures each represent
common biological processes including: gene expres-
sion, proliferation, immune response, cell migration,
cell cycle, and PTM and Trafficking. However, genes

Table 5 Comparison of biological processes associated with
each gene signature

Signature

Biological Pathway Ellen Oncotype DX Prosigna

Common Gene expression 15 2 5

Proliferation 11 4 15

Immune response 8 3 1

Cell migration 7 4 9

Cell cycle 1 4 12

PTM and trafficking 1 2 4

Unique Epigenetics 4 0 0

Angiogenesis 2 0 0

DNA repair 0 0 4

DNA replication 0 0 3

Other Apoptosis 7 0 1

Metabolism 5 0 2

Stress response 5 0 2

Differentiation 2 0 2

Cytoskeleton 1 0 5

Intracellular signalling 0 3 6

Survival 0 2 2

Drug metabolism 0 1 1

Table 6 Gene sets enriched in lymph node negative patients

LN- Gene Set Name Inferred Biological
Activity

Genes
Represented

ES

Long Term
Remission

SHEN_SMARCA2_TARGETS_UP Epigenetic 347 0.65

SCHUETZ_BREAST_CANCER_DUCTAL_INVASIVE_UP 321 0.60

BOQUEST_STEM_CELL_UP Stemness 239 0.57

ANASTASSIOU_CANCER_MESENCHYMAL_TRANSITION_SIGNATURE EMT 60 0.71

SMID_BREAST_CANCER_LUMINAL_A_UP 78 0.67

PICCALUGA_ANGIOIMMUNOBLASTIC_LYMPHOMA_UP Immune 171 0.58

TURASHVILI_BREAST_DUCTAL_CARCINOMA_VS_LOBULAR_NORMAL_DN 52 0.71

DACOSTA_UV_RESPONSE_VIA_ERCC3_COMMON_DN Radiation 409 0.52

FLECHNER_BIOPSY_KIDNEY_TRANSPLANT_OK_VS_DONOR_UP Immune 480 0.51

REN_ALVEOLAR_RHABDOMYOSARCOMA_DN PAX3-FOXO1 down 386 0.52

Distant Metastasis SHEN_SMARCA2_TARGETS_DN Epigenetic 312 −0.54

RICKMAN_HEAD_AND_NECK_CANCER_F 47 −0.72

SOTIRIOU_BREAST_CANCER_GRADE_1_VS_3_UP 130 −0.54

ROSTY_CERVICAL_CANCER_PROLIFERATION_CLUSTER Proliferation 124 −0.51

KEGG_OLFACTORY_TRANSDUCTION Signalling 66 −0.58

REACTOME_STRIATED_MUSCLE_CONTRACTION 27 −0.70

KUNINGER_IGF1_VS_PDGFB_TARGETS_UP IGF 58 −0.58

XU_HGF_TARGETS_REPRESSED_BY_AKT1_DN AKT/HGF 81 −0.51

MIKKELSEN_MEF_ICP_WITH_H3K27ME3 Epigenetic 118 −0.48

MIKKELSEN_MCV6_LCP_WITH_H3K27ME3 Epigenetic 15 −0.76
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related to angiogenesis and epigenetics are unique to
Ellen. Both of these processes have been demon-
strated to be important for outcome in ER+ breast
cancer [6, 14, 33, 40–43]. Additional multivariable
studies are being conducted, using an independent
cohort of patients, to assess the relationship between
these biological features and other clinical variables,
including tumour size, grade, and histological sub-
type to validate the prognostic potential of Ellen.
Given that the three signatures examined performed

with various levels of accuracy in LN+ and LN- patient
populations, we were interested in exploring the bio-
logical processes that might be related to outcome in
ER+ LN+ and LN- tumours separately, using GSEA.
Patients with good outcome (irrespective of their ori-
ginal LN status) had tumours with expression profiles
enriched for immune related genes (Tables 6 and 7).
This was particularly striking for LN+ tumours where 6
of the 10 gene sets associated with good outcome were
immune related. This enrichment of immune related
gene sets may be indicative of immune cell infiltration
in some tumours and suggests that a subset of ER+
breast cancer patients have a robust anti-tumour im-
mune response and that this in turn may be associated
with improved survival [39, 44, 45].

We examined the ontology of genes comprising the
Ellen signature to determine whether their functions
overlap with those identified using the GSEA and found
that 11 % of the Ellen genes are related to immune re-
sponse. This further supports an important role for im-
mune response in ER+ tumours and the utility of the
signature. For example, we found that CXCL12 and
JAK1 are both more highly expressed in low risk tu-
mours. It has been reported that increased expression of
CXCL12 is a strong positive prognostic factor that corre-
lates with disease free and overall survival in both ER+
and ER- tumours [46, 47]. JAK1 is a protein tyrosine
kinase involved in the response to interferons; recently
the closely related JAK2 family member was found to be
associated with improved outcome in breast cancer [48].
In addition, the expression of HLA-DPA1, which is nor-
mally expressed on antigen presenting cells, may indi-
cate the presence of immune infiltrate [49]. Overall, the
presence of these immune related genes in low risk tu-
mours indicates that immune response is an important
factor in the progression of breast cancer.
Patients with poor outcome showed enrichment for dif-

ferent gene sets depending on whether their tumour was
LN+ or LN- at diagnosis. For example, poor outcome LN-
patient tumours were enriched for proliferation, growth

Table 7 Gene Sets enriched in lymph node positive patients

LN+ Gene Set Name Inferred Biological
Activity

Genes
Represented

ES

Long Term
Remission

SMID_BREAST_CANCER_NORMAL_LIKE_UP 420 0.65

WIELAND_UP_BY_HBV_INFECTION Immune 91 0.77

WALLACE_PROSTATE_CANCER_RACE_UP Increased Risk 259 0.66

MCLACHLAN_DENTAL_CARIES_UP Immune 225 0.59

KIM_LRRC3B_TARGETS Immune 28 0.85

FLECHNER_BIOPSY_KIDNEY_TRANSPLANT_REJECTED_VS_OK_UP Immune 78 0.67

VANTVEER_BREAST_CANCER_ESR1_DN ER down 197 0.59

TURASHVILI_BREAST_DUCTAL_CARCINOMA_VS_DUCTAL_NORMAL_DN 144 0.60

ICHIBA_GRAFT_VERSUS_HOST_DISEASE_D7_UP Immune 89 0.66

LEE_DIFFERENTIATING_T_LYMPHOCYTE Immune 138 0.61

Distant Metastasis NIKOLSKY_BREAST_CANCER_8Q12_Q22_AMPLICON 86 −0.68

NIKOLSKY_BREAST_CANCER_8Q23_Q24_AMPLICON 83 −0.66

ANASTASSIOU_CANCER_MESENCHYMAL_TRANSITION_SIGNATURE EMT 60 −0.70

TURASHVILI_BREAST_DUCTAL_CARCINOMA_VS_DUCTAL_NORMAL_UP 28 −0.65

FARMER_BREAST_CANCER_CLUSTER_5 18 −0.74

TURASHVILI_BREAST_LOBULAR_CARCINOMA_VS_DUCTAL_NORMAL_UP 52 −0.55

MILI_PSEUDOPODIA_HAPTOTAXIS_UP Migration 348 −0.41

DING_LUNG_CANCER_EXPRESSION_BY_COPY_NUMBER CNVs 81 −0.49

IIZUKA_LIVER_CANCER_PROGRESSION_G2_G3_UP Differentiation 24 −0.64

HAMAI_APOPTOSIS_VIA_TRAIL_UP Apoptosis 463 −0.38
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factor signalling, and epigenetic modification gene sets,
also represented by individual genes comprising the Ellen
signature (Table 6). Proliferation in ER+ breast cancer is a
poor prognostic factor and correlates with the Luminal B
subtype [39]. Epigenetic modification is thought to have
some role in tumour progression, as global hyperme-
thylation of the tumour genome has been associated
with poor outcome [50–52]. In addition there are sev-
eral studies reporting that HDAC inhibitor usage may
be useful as adjuvant chemotherapeutics in this high
risk group [53, 54]. Whereas, patients with LN+ dis-
ease and poor outcome had tumours enriched for
EMT and migration suggesting a migratory phenotype
[9, 55].
Taken together, the different biological processes

highlighted for LN- and LN+ groups may explain why
gene signatures developed for one group would not ne-
cessarily be predictive of outcome in the other.

Conclusion
In summary, we have shown that by comparing Onco-
type DX and Prosigna with a novel gene signature, it is
important to include patients with both LN+ and LN-
status when developing prognostic gene signatures.
Furthermore, we have identified candidate biological
processes that imply how tumour biology can be related
to outcome. This is particularly evident for LN+ tumours
with good outcome, where there is enrichment in immune
response gene expression, and for LN- tumours with poor
outcome, where there is an enrichment for genes involved
in epigenetic modification. We developed and character-
ized Ellen, a gene signature that is designed to be predict-
ive of outcome for all patients with ER+ breast cancer
without distant spread, using an unbiased gene selection
process. The genes represented in this signature are simi-
lar to those whose pathways were found to be enriched
using GSEA, further suggesting that Ellen would be suit-
able for use in a variety of biologically unique ER+ breast
tumours. Work is currently underway to validate the per-
formance of Ellen using an alternate platform and with
additional independent cohorts. Further, the clinical infor-
mation available for the training and validation cohorts
was limited, so it is difficult to know whether there are
other confounding variables. Ultimately, this study shows
that gene expression of primary tumours can be inform-
ative about metastatic potential and can be distinguished
between LN- and LN+ patients. In addition Ellen, once
validated, would be able to provide prognostic informa-
tion for patients with tumours accompanied by small
lymph node metastasis, such as isolated tumour cells or
micrometastases, those with incomplete lymph node
dissections (ie sentinel node only), or those who have
no lymph node information.
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