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Abstract

Background: Endothelin receptor antagonists inhibit the progression of many cancers, but
research into their influence on glioma has been limited.

Methods: We treated glioma cell lines, LN-229 and SW1088, and melanoma cell lines, A375 and
WM35, with two endothelin receptor type B (ETRB)-specific antagonists, A-192621 and BQ788,
and quantified viable cells by the capacity of their intracellular esterases to convert non-fluorescent
calcein AM into green-fluorescent calcein. We assessed cell proliferation by labeling cells with
carboxyfluorescein diacetate succinimidyl ester and quantifying the fluorescence by FACS analysis.
We also examined the cell cycle status using BrdU/propidium iodide double staining and FACS
analysis. We evaluated changes in gene expression by microarray analysis following treatment with
A-192621 in glioma cells. We examined the role of ETRB by reducing its expression level using
small interfering RNA (siRNA).

Results: We report that two ETRB-specific antagonists, A-192621 and BQ788, reduce the number
of viable cells in two glioma cell lines in a dose- and time-dependent manner. We describe similar
results for two melanoma cell lines. The more potent of the two antagonists, A-192621, decreases
the mean number of cell divisions at least in part by inducing a G2/M arrest and apoptosis.
Microarray analysis of the effects of A-192621 treatment reveals up-regulation of several DNA
damage-inducible genes. These results were confirmed by real-time RT-PCR. Importantly, reducing
expression of ETRB with siRNAs does not abrogate the effects of either A-192621 or BQ788 in
glioma or melanoma cells. Furthermore, BQI123, an endothelin receptor type A (ETRA)-specific
antagonist, has no effect on cell viability in any of these cell lines, indicating that the ETRB-
independent effects on cell viability exhibited by A-192621 and BQ788 are not a result of ETRA
inhibition.

Conclusion: While ETRB antagonists reduce the viability of glioma cells in vitro, it appears unlikely
that this effect is mediated by ETRB inhibition or cross-reaction with ETRA. Instead, we present
evidence that A-192621 affects glioma and melanoma viability by activating stress/DNA damage
response pathways, which leads to cell cycle arrest and apoptosis. This is the first evidence linking
ETRB antagonist treatment to enhanced expression of DNA damage-inducible genes.
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Background

The endothelin (ET) family includes three 21-amino acid
peptides, ET-1, ET-2 and ET-3, which bind to two G-pro-
tein-coupled receptors, endothelin receptor type A (ETRA)
and endothelin receptor type B (ETRB). The ETRA binds
ET-1 and ET-2 with equal preference over ET-3, while
ETRB binds all three isoforms with equal affinity [1]. The
ET axis is believed to play a role in various malignancies
including ovarian, prostate, cervical and breast carcino-
mas, melanoma and central nervous system tumors [2].
The influence of the ET family on cancer is multifactorial:
ET-1 induces proliferation [3-7], suppresses apoptosis [8],
enhances angiogenesis [9,10] and promotes invasion [11-
13].

Components of the ET system have been found in many
glioma tumor specimens and cell lines, and ET expression
positively correlates with the degree of malignancy [14-
17]. Two studies demonstrated ETRA expression in the
neovasculature of glioblastoma tumors, while ETRB was
localized to the tumor cells [18,19]. Inhibitors of ET con-
verting enzyme 1, which converts ET-1 into its active form,
block DNA synthesis in glioblastoma cells [20]. ET-1
induces proliferation in glioblastoma through various
pathways including the mitogen-activated protein kinase
(MAPK) pathway, and BQ788, an ETRB-specific receptor
antagonist, blocks the phosphorylation of extracellular
signal-related kinase, a key step in MAPK signaling [21].
This led us to consider whether potential therapeutic can-
didates, the ETRB antagonists, negatively impact glioma
growth.

Our laboratory previously showed that high levels of
BQ788 inhibit melanoma proliferation both in vitro and
in vivo [22]. We are currently investigating the effects of
ETRB antagonists on melanoma and glioma, with partic-
ular interest in two ETRB-specific antagonists, BQ788, a
peptide, and A-192621, an orally bioavailable small mol-
ecule. In the present work we demonstrate that both ETRB
antagonists decrease the number of viable cells in
melanoma and glioma cultures, while an ETRA-specific
antagonist, BQ123, has no effect. In glioma cells, A-
192621 induces cell cycle arrest, apoptosis and expression
of DNA-damage associated genes. Surprisingly, however,
the down-regulation of ETRB levels has no effect on the
reduction in cell number by either ETRB antagonist.

Methods

Cells and cell culture conditions

The human glioma cell lines LN-229 and SW1088 and the
human melanoma cell line A375 (American Type Culture
Collection (ATCC), Manassas, VA, USA) were maintained
in Dulbecco's Modification of Eagle's Medium (DMEM)
(Mediatech, Inc., Herndon, VA, USA) and the human
melanoma cell line WM35 (ATCC) was maintained in
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Eagle's Minimum Essential Medium (MEM) (Mediatech,
Inc.). All cells were supplemented with 10% fetal bovine
serum (FBS) (Gemini Biological Products, Calabasas, CA,
USA), 100 units/mL penicillin and 100 pg/mL streptomy-
cin (Invitrogen, Carlsbad, CA, USA) and cultured in a
humidified incubator with 5% CO, at 37°C. For cell via-
bility assays, 2.5 x 104 cells were plated onto 12-well tis-
sue-culture treated plates (Fisher Scientific, Pittsburgh,
PA, USA) using media supplemented with 1% FBS. A-
192621 (Abbott Laboratories, Abbott Park, IL, USA),
BQ788 (EMD Chemicals Inc., San Diego, CA, USA) and/
or BQ123 (EMD) were added 24 h after plating and viable
cell number was assessed using the Live/Dead Viability/
Cytotoxicity Kit for mammalian cells (Invitrogen) accord-
ing to the manufacturer's instructions. Fluorescent inten-
sity was measured on an FLx800 multi-detection
microplate reader (BioTek, Winooski, VT, USA) and val-
ues represent the mean of a 25-point well scan.

Cell proliferation and cell death

LN-229 and SW1088 cells were plated at 5 x 105 cells per
100 mm dish in DMEM with 1% FBS, and A-192621 was
added 24 h later. Cell cycle analysis was performed with a
BrdU/propidium iodide double stain using the Absolute-
S Cell Proliferation Kit (eBioscience, San Diego, CA, USA)
according to the manufacturer's instructions allowing 40
minutes to pulse-label cells with BrdU. Fluorescent inten-
sity was measured using the BD FACSCalibur System (Bec-
ton Dickinson, Franklin Lakes, NJ, USA). The rate of cell
proliferation was assessed using the CellTrace CFSE Cell
Proliferation Kit (Invitrogen) according to the manufac-
turer's instructions. Cells were labeled with carboxyfluo-
rescein diacetate succinimidyl ester (CFSE) at the time of
plating and fluorescent intensity was analyzed at 9, 24, 48
and 72 h after the addition of A-192621 using the BD
FACSCalibur System. Cell death was quantified by stain-
ing cells with propidium iodide (Invitrogen) following
treatment with A-192621. Fluorescent intensity was ana-
lyzed using the BD FACSCalibur System. All FACS data
was analyzed with FlowJo (Tree Star, Inc., Ashland, OR,
USA). Caspase 3/7 activity was measured using EnzChek
Caspase-3 Assay Kit #2 (Invitrogen) according to the man-
ufacturer's instructions and values adjusted for total cell
number. Fluorescent intensity was measured using the
FLx800 multi-detection microplate reader.

Microarray analysis

LN-229 and SW1088 cells were treated with vehicle, 10
nM or 100 uM A-192621 for 12 h and total RNA was pre-
pared using the RNeasy Plus Mini Kit (Qiagen, Valencia,
CA, USA). The quality of the samples was checked using
the RNA 6000 Nano LabChip kit (Agilent Technologies,
Santa Clara, CA, USA). RNA samples were then processed
according to the Affymetrix Eukaryotic Sample and Array
Processing protocol. Hybridization of the in vitro ampli-
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fied RNA to Affymetrix Human Genome U133Plus 2.0
chips (Affymetrix, Inc., Santa Clara, CA, USA), washing
and scanning of the arrays were performed following
standard Affymetrix protocols using a Hybridization
Oven 640, a Fluidics Station 450, and a GeneChip® Scan-
ner 3000 7G. The raw data (*.cel files) from the Affymetrix
hybridizations were processed and analyzed using
Resolver (Rosetta Biosoftware, Seattle, WA, USA). Genes
were identified using cutoffs of fold-change > 3 and p <
0.0001.

Real-time reverse-transcription PCR

Total RNA was prepared using the RNeasy Plus Mini Kit
(Qiagen, Valencia, CA, USA). The cDNA was prepared
from 1 pg total RNA using the Transcriptor First Strand
cDNA Synthesis Kit (Roche Applied Science, Indianapolis,
IN, USA) according to the manufacturers instructions.
Primer/probe design was accomplished using the Univer-
sal ProbeLibrary (UPL) Assay Design Center (Roche
Applied Science). The primer sets (Integrated DNA Tech-
nologies, Coralville, 1A, USA) were as follows: 5'-GGC
AGA AGCTGA AAG GTCTC-3'and 5'-CAT CGAAGCACT
GTC TCA GAG T-3' (DR5), 5'-GGA GAG CAG AAG ACC
GAA AG-3' and 5'-AGT GAT CGT GCG CTG ACT C-3'
(GADD45A), 5'-GCT TCT GGC AGA CCG AAC-3'and 5'-
GTA GCC TGA TGG GGT GCT T-3' (GADD34), 5 '-ACT
GCG TCT TTG GCA TCA G-3' and 5'-GTA GCA GGC CAC
TGT CIT GA-3' (Sestrin 2), 5'-AAG GCA CTG AGC GTA
TCATGT-3"'and 5'-TGA AGA TAC ACT TCCTTC TTG AAC
AC-3' (GADD153), 5'-TTC ATC CCG TTC AGA AGA CA-3'
and 5'-CCA ATG GCA AGC AGA AAT AGA-3' (ETRB) and
5'-TGA CCT TGA TIT ATT TTG CAT ACC-3' and 5'-CGA
GCA AGA CGT TCA GTC CT-3' (HPRT). The correspond-
ing probes were UPL probe #63 (DR5), #65 (GADD45A),
#28 (GADD34), #17 (Sestrin 2), #21 (GADD153), #83
(ETRB) and #73 (HPRT) (Roche Applied Science). PCR
was performed and analyzed on a LightCycler 480 System
(Roche Applied Science) using LightCycler 480 Probes
Master (Roche Applied Science). The PCR was done under
the following conditions: pre-incubation at 95°C for 5
minutes, 45 cycles of amplification with melting at 95°C
for 8 seconds, annealing at 60°C for 15 seconds and
extension at 72°C for 2 seconds, and 1 cycle of cooling at
40°C for 10 seconds. All gene expression was quantified
relative to HPRT expression.

Small interfering RNA (siRNA)

Following the reverse transfection protocol, Lipo-
fectamine RNAIMAX (Invitrogen) was diluted in Opti-
MEM 1 Medium (Invitrogen) and ON-TARGETplus
SMARTpool ETRB siRNA or ON-TARGETplus siCON-
TROL non-targeting siRNA (Dharmacon, Lafayette, CO,
USA) was diluted in Opti-MEM I Medium without serum.
These solutions were then combined and incubated
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together at room temperature for 10-20 minutes. The
siRNA duplex-Lipofectamine RNAIMAX complexes were
then plated and overlaid with 2.5 x 104 cells per ml in
media with 1% FBS. Media was changed 4-6 h after plat-
ing and cells were treated as described above. ETRB gene
expression was assessed by real-time PCR and was reduced
by 70 - 93%.

Statistical analysis

Values are expressed as mean + SEM. Statistical analysis
was done using one-way ANOVA with Tukey posthoc
unless otherwise noted. P < 0.05 was considered statisti-
cally significant.

Results

Endothelin receptor B antagonist A-192621 reduces the
number of viable glioma and melanoma cells in a dose- and
time-dependent manner

To test the effectiveness of A-192621 in reducing viable
glioma cells we employed two human glioma cell lines,
LN-229 and SW1088. LN-229 was originally derived from
a grade IV glioblastoma and SW1088 was derived from an
anaplastic astrocytoma. Twenty-four hours after plating,
A-192621 was added at concentrations from 1 to 100 uM
to non-confluent cells and incubated for 24 to 72 h. Via-
ble cells were quantified by the capacity of their intracel-
lular esterases to convert non-fluorescent calcein AM into
green-fluorescent calcein. This assay reveals a decrease in
viable cells with increasing A-192621 concentration (Fig.
1A). This decrease is enhanced at longer incubation times
(Fig. 1A). In addition, A-192621 is effective in reducing
viable cells in the human melanoma cell lines A375 and
WM35 in a dose- and time-dependent manner (Fig. 1A).
This finding with melanoma cells is consistent with previ-
ously published data reporting that A-192621 inhibits
melanoma growth in nude mice [13]. We also tested the
ability of ETRB-specific antagonist BQ788 to reduce the
viability of the glioma cells. BQ788 was added to non-
confluent cells in the same manner as A-192621 at con-
centrations from 1 to 100 uM. This inhibitor causes a sig-
nificant decrease in viable LN-229 cells after 48 or 72 h of
treatment but no significant change in SW1088 cells (Fig.
1B). BQ788 also reduces cell viability in both melanoma
cell lines in a dose- and time-dependent manner (Fig. 1B).
This last result is consistent with previous findings of
melanoma cells in our laboratory [22]. To assess the
involvement of ETRA in viability, cells were treated with
BQ123, an ETRA-specific antagonist. BQ123 was added to
cells at 1 to 100 uM and incubated for 24 to 72 h. No sig-
nificant changes in cell viability were observed in any of
the four cell lines, at any concentration or time point
(Additional file 1). Thus, potential cross-reaction of A-
192621 or BQ788 with ETRA does not play a role in their
effects on cell viability.
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Endothelin receptor B antagonists reduce viable cell number in a dose- and time-dependent manner. (A) A-
192621 significantly reduces the number of viable cells in both glioma (LN-229 and SW1088) and melanoma (A375 and WM35)
cell lines at 24, 48 and 72 h of treatment. (B) BQ788 significantly reduces the number of viable cells in melanoma at 48 and 72
h of treatment. Values are expressed as the mean of three replicates £ SEM. Symbols for statistical significance as compared
with vehicle-treated controls are displayed at the bottom of the figure and are applicable to all panels. Colors correspond to

the cell line.

A-192621 decreases glioma cell proliferation and increases
cell death

To investigate how A-192621 reduces glioma cell number
we assessed the rate of cell proliferation over time. The
human glioma cells were labeled with carboxyfluorescein
diacetate succinimidyl ester (CFSE). This non-fluorescent
reagent passively diffuses into cells, where the acetate
groups are cleaved by intracellular esterases, producing

green-fluorescent carboxyfluorescein succinimidyl ester.
The ester groups react with intracellular amines and fluo-
rescent intensity is exponentially diluted as cells divide.
Fluorescent intensity was measured by FACS at 9 to 72 h.
We tested two doses of A-192621, 10 nM, a concentration
slightly above the ICg, that is calculated from radio-
labeled ET-1 binding displacement studies [23], and 100
M, a concentration that dramatically reduces the number
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of viable cells in both the LN-229 and SW1088 lines (Fig.
1A). We find that 100 uM, but not 10 nM, significantly
reduces fluorescent carboxyfluorescein succinimidyl ester
dilution in both LN-229 and SW1088 cells at 24 h, and
this effect is sustained through later time points, indicat-
ing that A-192621 reduces the rate of cell division (Fig.
2A).

We also examined the cell cycle status following A-
192621 treatment using BrdU/propidium iodide (PI)
double staining. Following treatment with A-192621, cul-
tures were labeled with BrdU for 40 min to identify cells
undergoing DNA synthesis and fixed immediately after-
wards. Cells were analyzed by FACS, and BrdU intensity
was plotted against DNA content. In both glioma cell
lines, 100 uM A-192621 significantly increases the per-
centage of cells in the G2/M phase compared to vehicle, or
to 10 nM treatment after 24 h (data not shown). This

A
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accumulation of cells in the G2/M phase continues
through 72 h and is coupled with a concomitant decrease
in the G1/GO population (Fig. 2B), indicating that A-
192621 induces a G2/M phase arrest. In addition to
effects on proliferation, we investigated whether A-
192621 treatment also affects cell death, as measured by
the percentage of total cells that stain positively with PI. A-
192621 significantly increases PI staining at 48 h in both
LN-229 and SW1088 cells, and at 72 h in SW1088 cells
(Fig. 3A). Moreover, as a measure of apoptotic cell death,
caspase 3/7 activity is increased at 72 and 48 h in LN-229
and SW1088 cells, respectively (Fig 3B).

Genes induced by DNA damage are up-regulated following
A-19262] treatment

In order to further understand the effects of A-192621 on
glioma cells, we assessed changes in gene expression by
microarray analysis following a 12 h treatment with vehi-
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The endothelin B receptor antagonist A-192621 decreases glioma cell proliferation. (A) A-192621 suppresses cell
proliferation. LN-229 and SW 1088 cells were stained with CFSE and analyzed by FACS at 9, 24, 48 and 72 h after addition of
A-192621. The exponential dilution of CFSE was converted to the number of cell divisions. (B) A high concentration of A-
192621 (100 M) induces G2/M cell cycle arrest in both LN-229 and SW1088 cells by 72 h. Cells were pulsed-labeled with
BrdU, stained with propidium iodide and analyzed by FACS. Values are expressed as means of three replicates + SEM. Symbols
for statistical significance as compared with vehicle-treated controls are displayed at the bottom of the figure and are applicable

to all panels.
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Figure 3

The endothelin B receptor antagonist A-192621 induces cell death. (A) A-192621 induces cell death at 48 and 72 h.
LN-229 and SW 1088 cells were stained with propidium iodide following treatment with A-192621 and analyzed by FACS. (B)
A-192621 induces apoptosis by 72 and 48 h in LN-229 and SW 1088 cell lines respectively. Caspase 3/7 activity was adjusted for
total cell number. Values are expressed as means of three replicates £ SEM. Symbols for statistical significance as compared

with vehicle-treated controls are displayed at the bottom of the figure and are applicable to all panels.

cle, 10 nM or 100 uM A-192621 in glioma cells. Changes
in gene expression were identified using the criteria of > 3-
fold change and P < 0.0001. A striking finding is that, in
both cell lines, 100 uM A-192621 up-regulates several
genes that are known to be induced by DNA damage
(Table 1). These genes were not significantly up-regulated
by 10 nM A-192621. These genes include growth arrest
and DNA-damage-inducible (GADD) 153, GADDA45A,
GADD34, sestrin 2 and death receptor 5 (DR5). The up-
regulation of these genes was confirmed by real-time PCR
in the human glioma cell lines, and also in the human
melanoma cell lines (Table 1). A-192621 increases
GADD153 expression the most dramatically, with a 10- to
66-fold increase, depending on the cell line treated. A-
192621 increases GADD45A and GADD34 expression
similarly by 5- to 23- and 3- to 21-fold, respectively.
Expression of sestrin 2 and DR5 is up-regulated 12- to 19-
and 4- to 12-fold, respectively.

A-192621 and BQ788 effects on cell viability in vitro are
not mediated by endothelin receptor B

The concentrations A-192621 and BQ788 required to
reduce cell viability in vitro are far above the IC;, concen-
trations required to displace ET-1 [23,24]. Moreover,
when we examined expression levels by real-time PCR, we

Table I: Treatment of glioma and melanoma cell lines with 100
1M A-192621 up-regulates DNA damage-inducible genes.

Genes Cell Lines
LN-229 SW1088 A375 WM35
GADDI53 28 12 10 66
GADDA45A 23 5 9 8
GADD34 16 3 21 6
Sestrin 2 15 18 19 12
DR5 12 4 10 5

Genes were identified by microarray analysis and real-time RT-PCR
was used to quantify the fold-increase in expression over vehicle-
treated controls.
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could not detect ETRB in the SW1088 cell line after 45
amplification cycles (Fig 4A). These findings led us to
question the involvement of ETRB in the growth inhibi-
tion by ETRB antagonists. To address this question
directly, we reduced the expression level of ETRB 69-93%,
using small interfering RNA (siRNA) (Fig 4B). All cell lines
were transfected with siRNAs targeting ETRB or a non-tar-
geting, scrambled siRNA, and then treated 24 h later with
100 uM A-192621, BQ788 or their respective vehicles. The
number of viable cells was assessed at 24 to 72 h. First,
reduced ETRB expression alone does not affect cell viabil-
ity. Second, both A-192621 and BQ788 decrease the
number of viable cells equivalently in cells transfected
with ETRB-targeting siRNA or scrambled siRNA at all time
points (Fig. 4C; 24 and 48 hours not shown). The lack of
effect of ETRB knockdown on A-192621- and BQ788-
mediated reduction in cell number is further evidence that
antagonism of this receptor is not the primary mechanism
for the viability effects of these two drugs in vitro.

Discussion

A number of ETRB antagonists are widely used in studies
of cancer, and several have been tested in humans. We
show here that both melanoma and glioma cell viability
are sensitive to ETRB antagonists. Both BQ788 and A-
192621 decrease melanoma and glioma cell number in a
dose- and time-dependent manner. We find that A-
192621 is more potent than BQ788, causing a greater
decrease in viable cell numbers at lower concentrations
and at earlier time points. In fact, within the time frame
tested, only A-192621 was able to reduce the viable cell
number in the astrocytoma line SW1088.

In addition, A-192621 is attractive as a therapeutic agent
because it is orally bioavailable, and considering that it is
also more potent than BQ788, we investigated how it
reduces glioma cell number in greater detail. The CFSE
labeling study indicates that A-192621 inhibits mitosis.
Using cell cycle analysis, treatment of glioma cells with A-
192621 increases the percentage of cells with G2/M DNA
content over time. This is coupled with a concomitant
decrease in the percentage of cells with GO/G1 DNA con-
tent, indicating an arrest in the G2/M phase of the cell
cycle, which likely accounts for the reduction in cell divi-
sion seen with CFSE labeling. We also find that A-192621
treatment induces apoptotic cell death. Reduction in via-
ble cell number is therefore a consequence of both
decreased mitosis and increased apoptosis. To our knowl-
edge, this is the first evidence of ETRB antagonist-induced
G2/M cell cycle arrest.

To further elucidate the actions of A-192621 on human
glioma cells, we analyzed changes in gene expression
using microarray technology. Notably, after 12 h of A-
192621 treatment, there are highly significant increases in
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Figure 4

Reduced ETRB expression does not alter the effect of
ETRB antagonists on viable cell number. (A) ETRB
mRNA in untreated cell lines. ETRB mRNA was not detected
in the SW1088 line. (B) Following transfection, reduction in
ETRB mRNA was assessed by real-time RT-PCR. Reduction
in ETRB expression is displayed as a percentage relative to
ETRB mRNA in cells transfected with scrambled siRNA. (C)
Cells were transfected with either scrambled siRNA or
ETRB siRNA and then treated with either 100 uM A-192621
or 100 uM BQ788 for 72 h. Values are expressed as a mean
of three replicates + SEM. Significance was determined by a
paired t-test. Symbols for statistical significance are displayed
at the bottom of the figure and are applicable to panels B and
C.

the expression of several genes known to be up-regulated
following DNA damage. These genes include GADD153,
GADD45A, GADD34, Sestrin 2 and DR5. Environmental
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stressors such as methylmethane sulfonate, or ultraviolet
or gamma irradiation induce GADD45A [25]. Expression
of GADD45A and other GADD45-like genes activates the
p38/INK pathway and apoptosis. GADD45A also induces
G2/M cell cycle arrest through its interaction with Cdc2
and cyclin B1 following genotoxic stress [26-29]. Two
other members of the GADD family, GADD34 and
GADD153, are also up-regulated by A-192621 treatment.
Like other members of this family, GADD34 and
GADD153 are induced by stressful growth conditions and
DNA damage. Over-expression of GADD34 and
GADD153, along with GADD45 and others, suppresses
cell growth (as measured by colony formation) and
induces apoptosis [30-33]. Sestrin 2 is one of three closely
related genes in the sestrin family [34] and is closely
linked to other GADD genes since sestrin 1, also known as
PA26 [35], is a member of the GADD gene family. Sestrin
2, also known as Hi95, is induced by hypoxia, oxidative
stress and DNA damage [36]. Over-expression of sestrin 2
leads to apoptosis approximately 24 h following induc-
tion, and the cells are hypersensitive to further insult. DR5
is one of the TRAIL receptors with a cytoplasmic death
domain that induces caspase-dependent apoptosis [37-
39]. DR5 is induced by DNA damaging compounds in
malignant gliomas, including LN-229 [40]. Taken
together, this evidence suggests that A-192621 affects gli-
oma viability by activating stress/DNA damage response
pathways, which leads to cell cycle arrest and apoptosis. A
similar process may also occur in melanoma. The up-reg-
ulation of these genes was confirmed by real-time PCR in
LN-229 and SW1088 cell lines, and also occurs in human
melanoma cell lines, A375 and WM35, following 12 h of
A-192621 treatment. Up-regulation of these genes may
account for the G2/M arrest and the apoptosis we see at
later time points. This is the first evidence linking ETRB
antagonist treatment to enhanced expression of DNA
damage-inducible genes.

We also present evidence that the reduction of both gli-
oma and melanoma in vitro viability by A-192621 and
BQ788 is not dependent on ETRB expression. This conclu-
sion is supported by three types of data. (1) The concen-
trations of ETRB antagonists required to reduce cell
number are far above the concentrations required to dis-
place ET-1 from ETRB. (2) At the high dose, A-192621
reduces cell viability in the glioma cell line SW1088
despite the absence of detectable ETRB expression in these
cells. (3) Experimental reduction of ETRB expression in
the other cell lines by >90% has no effect on the ability of
either antagonist to reduce glioma or melanoma cell
numbers in vitro. Despite the evidence that these ETRB
antagonists are not acting through ETRB, it is clear that
they are not toxic for all cell types. That is, our prior exper-
iments showed that BQ788 kills 7 different melanoma
cell lines without affecting the human kidney line 293,

http://www.biomedcentral.com/1471-2407/8/354

even at 100 uM [23]. Thus, there appears to be something
distinctive about melanoma and glioma cells, and possi-
bly a number of cancer cell types (ovarian, prostate,
meninges) that are susceptible to ETRB antagonists [2].

Conclusion

We have demonstrated that ETRB antagonists are effective
agents against glioma and melanoma cell growth in vitro.
To date, mechanisms of ETRB antagonist action in cancer
treatment have focused on blocking ET-1 induced path-
ways. Although determining the precise mechanism by
which ETRB antagonists reduce cell number in these can-
cers is beyond the scope of this study, the data presented
here indicate that ETRB antagonists function independ-
ently of direct ETRB antagonism to mediate their effects
on in vitro cell viability. We present evidence that A-
192621 affects glioma and melanoma viability by activat-
ing stress/DNA damage response pathways, which leads
to cell cycle arrest and apoptosis. This is the first evidence
linking ETRB antagonist treatment to enhanced expres-
sion of DNA damage-inducible genes, and suggests a
novel direction for future work on the mechanism of
action of ETRB antagonists in cancer.
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