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Abstract
Background: Genomic DNA copy number aberrations are frequent in solid tumors, although the
underlying causes of chromosomal instability in tumors remain obscure. Genes likely to have
genomic instability phenotypes when mutated (e.g. those involved in mitosis, replication, repair, and
telomeres) are rarely mutated in chromosomally unstable sporadic tumors, even though such
mutations are associated with some heritable cancer prone syndromes.

Methods: We applied array comparative genomic hybridization (CGH) to the analysis of breast
tumors. The variation in the levels of genomic instability amongst tumors prompted us to
investigate whether alterations in processes/genes involved in maintenance and/or manipulation of
the genome were associated with particular types of genomic instability.

Results: We discriminated three breast tumor subtypes based on genomic DNA copy number
alterations. The subtypes varied with respect to level of genomic instability. We find that shorter
telomeres and altered telomere related gene expression are associated with amplification,
implicating telomere attrition as a promoter of this type of aberration in breast cancer. On the
other hand, the numbers of chromosomal alterations, particularly low level changes, are associated
with altered expression of genes in other functional classes (mitosis, cell cycle, DNA replication
and repair). Further, although loss of function instability phenotypes have been demonstrated for
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many of the genes in model systems, we observed enhanced expression of most genes in tumors,
indicating that over expression, rather than deficiency underlies instability.

Conclusion: Many of the genes associated with higher frequency of copy number aberrations are
direct targets of E2F, supporting the hypothesis that deregulation of the Rb pathway is a major
contributor to chromosomal instability in breast tumors. These observations are consistent with
failure to find mutations in sporadic tumors in genes that have roles in maintenance or manipulation
of the genome.

Background
Genomic DNA copy number aberrations are frequent in
solid tumors [1]. The wide range in the number and types
of chromosome level alterations are likely to reflect the
different solutions taken by individual tumors to escape
normal protective mechanisms. Thus, the spectrum of
alterations is likely to reflect a composite of selection and
particular failures in genome surveillance mechanism(s).
The interplay between selection and genetic instability in
shaping tumor genomes is currently most clearly estab-
lished in tumors with defects in mismatch repair. These
tumors have a high frequency of nucleotide sequence
level aberrations, fewer DNA copy number alterations and
characteristic histological phenotype [1]. On the other
hand, less is known about specific gene defects that give
rise to chromosome level aberrations in tumors. Muta-
tions in genes encoding proteins involved in mitosis and
DNA damage sensing and repair mechanisms, which are
associated with chromosomal level instability have been
identified in cancer-prone syndromes, including ATM,
TP53, BRCA1, BRCA2, NBS1 and BUB1B, however they
are rarely mutated in sporadic tumors [2,3]. Similarly,
searches for mutations in genes that participate in mainte-
nance or manipulation of the genome (e.g. genes involved
in DNA repair, replication, spindle checkpoints etc.) have
found only a small number of mutations in tumors [3].
Nevertheless, deregulation of functions that maintain
genome stability appears to occur early in tumors, as acti-
vation of the DNA damage checkpoint, possibly in
response to DNA replication stress, is evident in pre-
malignant lesions [4,5]. Similarly, telomere shortening is
observed in pre-malignant lesions, supporting a role for
telomere dysfunction early in tumor development [6].
Other proposed routes to instability include deregulation
of CCNE1 and AURKA expression through loss of func-
tion of FBXW7 (hCdc4) [7] and more global alteration in
gene expression due to deregulation of the Rb pathway
[8]. The foregoing discussion suggests that failures in a
number of different processes that maintain genome
integrity could contribute to the wide variety of genomic
alterations in solid tumors. Often these aberrations
include net gain or loss of whole chromosomes (aneu-
ploidy) or parts of chromosomes. Gene amplification,
defined as a copy number increase of a restricted region of
a chromosome arm may also occur. Here we investigated

the numbers and types of copy number alterations in
tumors and whether they were associated with differential
expression of genes likely to play a role in manipulation
or maintenance of the genome. These studies found three
subtypes of breast tumors distinguished by copy number
aberrations. Telomere dysfunction was implicated in the
propensity to amplify, since shorter telomeres and differ-
ential expression of genes involved in telomere mainte-
nance were associated with the numbers of amplicons and
the presence of at least one amplicon, respectively. On the
other hand, the number of lower magnitude gains and
losses of chromosomal segments was associated with dif-
ferential expression of genes involved in processes main-
taining or manipulating the genome. These genes are
significantly enriched for the known targets of E2F. Fur-
thermore, we observed enhanced expression of most E2F
target genes, indicating that over expression rather than
deficiency was associated with genetic instability. These
observations support the hypothesis that deregulation of
the Rb/E2F pathway is a major contributor to chromo-
somal instability in breast tumors.

Methods
Specimens
Frozen tumor tissue was obtained from the University of
California San Francisco Comprehensive Cancer Center
Breast Oncology Program Tissue Bank. All specimens were
collected under approved protocols from UCSF with
patient consent. Patient characteristics are provided in
Supplementary Table 1 (Additional file 1). Expression and
copy number data from a second set of ductal invasive
breast tumors were used and patient characteristics are
given in Chin et al. (submitted). The patient groups in
both sets were similar in terms of their genomic and path-
ological characterization.

Extraction of nucleic acids
Nucleic acids were extracted from tumor blocks as
described previously [9,10]. Briefly, blocks were trimmed
with a razor blade to remove normal tissue and cryosec-
tions were obtained from either side of the block to ascer-
tain that tumor cells comprised greater than 70% of the
specimen. DNA was extracted using the QUIamp tissue
kits (29304, Qiagen).
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TP53 sequencing
Exons 5–8 of TP53 were amplified from genomic DNA
and cycle sequencing was carried out as described previ-
ously [11].

Array CGH and data processing
Array CGH, imaging and data analysis were carried out as
described previously using arrays of 2464 genomic clones
(BAC or P1) each printed in triplicate (HumArray1.14 and
HumArray2.0) [11,12]. Data processing is described in
detail in the Supplementary Methods (Additional file 2)
and the array data are available in Supplementary Table 2
(Additional file 3).

Telomere length assessment
The mean TRF length was measured using the TeloTAGGG
telomere length assay kit (Roche Applied Science). Briefly,
1 µg genomic DNA was digested with Hinf I and Rsa I
restriction enzymes and electrophoretically resolved on
0.8% agarose/1X TAE. The gels were blotted to a nylon
membrane (Positive charged, Roche) and fixed by UV-
crosslinking. After hybridization with digoxigenin labeled
telomere specific probe, the signals were visualized with
an alkaline phosphatase – CDP-Star chemiluminescent
system. The filters were exposed to X-ray film and the
mean TRF length was calculated using Quantity One soft-
ware.

Statistical methods
A detailed description of the methods used for all aspects
of the data analysis is provided in the Supplementary
Methods (Additional file 2).

Results
Genomic analysis of breast tumors
Application of array CGH to the analysis of copy number
aberrations in 62 sporadic ductal invasive breast tumors
and five BRCA1 mutant tumors revealed a number of fre-
quent low level gains and losses (Supplementary Tables 1
and 2, Additional files 1 and 3) and 12 regions of recur-
rent amplification (Table 1). We observed significant dif-
ferences in the spectrum of aberrations with respect to
estrogen receptor (ER) status (Figure 1) consistent with
other published reports [13]. We also found that tumors
with mutations in exons 5–8 of TP53 showed a higher fre-
quency of alterations, as well as significant differences in
the frequency of alteration of certain regions of the
genome compared to tumors without mutations as indi-
cated by the t-statistic for each clone (Figure 2). Moreover,
we found a highly significant concordance between the
test statistic for association of the particular chromosomal
regions with TP53 mutation status in our data and an
independent set of more than 100 primary breast tumors
(Fedele et al., personal communication) (Pearson correla-
tion of 0.53 corresponding to the p-value << 0.001).

Hierarchical clustering of tumors according to their
genome-wide DNA copy number profiles revealed three
main branches. Tumors within each of the branches also
differed in the number of copy number changes that were
present, as well as the frequency of particular aberrations
(Figures 3 and 4). The same three clusters were observed
in an independent set of breast tumors (Chin et al., sub-
mitted), thus confirming our initial observation. The
groups in both sets agreed in terms of their genomic and
pathological characterization.

At the low end of chromosomal level instability are ER
positive tumors (n = 7 tumors, Figure 1A, left branch),

Table 1: Recurrent amplicons in breast tumors with examples of some candidate oncogenes

Tumors Chr. Proximal flanking clone Start (bp) Distal flanking clone End (bp) Size 
(Mb)

Candidate Genes

S0257; S1508 1 RP11-235B24 50120611 CTD-2010C4 64641284 14.5 JUN
S0021; S0065; S0127; S0132; S1534; 
S1539

8 RP11-210F15 36452678 RP11-262I23 39744917 3.3 BAG1; FGFR1; TACC1

S0013; S0257; S1598 8 RP11-128G18 127638988 RP11-227F7 131013284 3.4 MYC; WISP1
S0132; S0394; S1524 11 CTD-2115C17 32421376 RP11-18B9 40252688 7.8 TRAF6
S0050; S0065; S0081; S0132; S0252; 
S0303; S1534; S1539; S1598

11 CTD-2080I19 68483419 RP11-98G24 76964746 8.5 CCND1; FGF4; EMS1; PAK1

S0184; S1508 12 12pter 0 RP11-272L6 5221281 5.2 CCND2; FGF6; DYRK4
S0051; S0052; S0122; S1522 12 RP11-18B8 63882712 RP11-92P22 74052886 10.2 MDM2; DYRK2; YEATS4; 

HELB;
S0021; S0043; S0052; S0059; S0257; 
S0394; S1511; S1522; S1526; S1539

17 RP11-58O8 34147697 RP11-87N6 38680670 4.5 STARD3; ERBB2; GRB7; 
TOP2A; MMP28

S0043; S0104; S0394 17 RP11-110H20 47546526 RP11-481C4 49705574 2.2 IMP-1; ITGA3
S0001; S0021; S0043; S0104; S1508; 
S1511

17 RP5-1073F15 58499308 CTB-244K7 64939230 6.4 BRIP1; GH1; GH2; MAP3K3

S0127; S0257; S0269 18 RP11-7E5 10817140 RP11-10G8 17272427 6.5 PTPN2
S0021; S0043; S0050; S0051; S0055; 
S0059; S0122; S1522; S1545; S1598

20 RP11-169A6 44424925 RMC20P179 62702798 18.3 CYP24; ZNF217; STK6
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designated 1q/16q, as their genomes showed very few
copy number changes other than gain of 1q and loss of
16q (Figure 3A, B, G and 3H, Figure 4). Tumors in this
group were exclusively of moderately or well differenti-
ated grade, stage II, and did not recur. These tumors had
very high within group similarity with average pairwise
Pearson correlation of 0.76.

At the other extreme of genome instability are sporadic
tumors (n = 16, Figure 3A, middle branch) in which the
mean fraction of the genome at altered copy number is
greater than 0.6 due to the presence of many low level
copy number aberrations (Figure 3A, C, G and 3H). Copy
number losses involving chromosomes 3p, 4, 5q, 11p,
14q, 15q, 17q and 18q were more prevalent in this sub-
type than in others (Figure 4). All but one tumor in this
group are ER negative, all were of high grade and patients
experienced significantly worse outcome as compared to
other groups (Figure 3I). Four had mutations in exons 5–
8 of TP53, accompanied by a copy number loss encom-
passing the locus (Table 2). In addition this cluster con-
tains all of the familial BRCA1 mutant tumors (Figure 3E
and 3F) in our dataset. Similar to BRCA1 mutant tumors,
they show a relatively high degree of within group similar-
ity in regions of aberration in spite of the presence of
many alterations (see Methods for discussion of statistical
analysis, Additional file 2). We refer to this group as "com-
plex" in recognition of their many low level copy number
alterations.

The third group (n = 39, Figure 3A, right branch) com-
prised of both ER positive and negative tumors is charac-
terized by the presence of low level gains and losses and
recurrent amplifications (Figure 3A, D, G and 3H). Gains
involving chromosome 8q and 12p were more frequent in
this group than the others (Figure 4). We refer to this
group as "mixed amplifiers." The more frequently occur-
ring amplifications in this group, which occurred predom-
inantly in the ER positive tumors involved 8p, including
FGFR1 (6 ER positive tumors/6 tumors with 8p amplifica-
tion), 11q13, including CCND1 (8 ER positive tumors/9
tumors with 11q13 amplification) and regions of 20q
including ZNF217 (6 ER positive tumors/9 tumors with
20q amplification). Within this subtype, amplification of
17q (ERBB2) was present in both ER positive (n = 5) and
ER negative tumors (n = 2) (Figure 5A and Table 1).

Association of copy number aberration types with 
alterations in processes/genes involved in maintenance and 
manipulation of the genome
The discrimination of breast tumor subtypes based on
copy number aberrations led us to investigate possible
associations of copy number aberration types with altera-
tions in processes/genes involved in maintenance of
genome stability. Over expression or depletion of such
genes in vitro results in a variety of genome instability phe-
notypes, including disruptions of chromosome integrity,
aberrant mitoses, aberrant cell division, etc. As telomere
dysfunction has been widely proposed as a source of
genetic instability in tumors, we first investigated the pos-
sible association of telomere attrition with copy number
aberrations. We determined average telomere length in 28
breast tumors using Southern blotting. We found an
inverse correlation between telomere length and number
of chromosome arms with amplification (Figure 6, Spear-
man correlation = -0.42, p = 0.02). Moreover we observed
an inverse association between telomere length and the
presence of at least one amplicon (median length in
amplified samples of 6.3 compared to unamplified, 7.4),
but the comparison was underpowered and statistically
not significant (Wilcoxon rank sum test, p = 0.25). These
observations suggest a role for telomere attrition in pro-
moting amplification in breast tumors.

Next, we investigated whether expression levels of genes
that play a role in maintenance or manipulation of the
genome varied among tumors with greater or lesser num-
bers of copy number aberrations. To carry out this analysis
we used a second independent set of 101 ductal invasive
breast tumors for which copy number profiles and
Affymetrix High Throughput Array (HTA) GeneChip®

expression data were available (Chin et al., submitted).
We determined the number and type of copy number
changes in each tumor by counting three types of copy
number alterations; copy number changes involving

Frequency plot of copy number alterations in ER positive and negative tumorsFigure 1
Frequency plot of copy number alterations in ER pos-
itive and negative tumors. The top two panels show the 
frequency of gains, indicated by the green bars ranging from 0 
to 1, and losses, indicated by the red bars ranging from 0 to -
1, in 62 sporadic breast tumors for each clone. The bottom 
panel displays the magnitude of the t-statistic for each clone 
computed based on the smoothed data as described in the 
Methods. The horizontal dotted lines indicate the statistic 
cut-off corresponding to the FDR-adjusted p-value of 0.05 
(blue) and 0.1 (green).
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whole chromosomes, low level gains and losses affecting
extended portions of chromosomes, and amplifications
defined as focal regions of increased copy number [14].
Specifically, a clone was declared amplified if it belonged
to a copy number segment <20 Mb and the increase in
ratio exceeded the criterion described in the Statitical
Methods. The distinction between gains and amplifica-
tions can be seen in the copy number profiles in Figure
5A. A copy number gain spanning 8q can be seen in the

top left profile, while the wide variety in amplicon profiles
is evident by comparison of all the profiles. We enumerate
low level changes by counting "copy number transitions,"
the number of changes in the CGH profile from one copy
number level to another that occur within chromosomes
(see Supplementary Methods for further discussion of
aberration finding, Additional file 2). Since the spacing
between clones is ~1.5 Mb, focal aberrations that fall
between clones on the array will be missed. On the other
hand, all copy number transitions will be recorded, but
the precision with which they will be located on the
genome will depend on clone spacing. We note that these
copy number analyses found that the number of copy
number transitions associated with amplifications varied
over a wide range in tumors of all subtypes in both data-
sets, however the greatest number of amplifications did
not occur in the samples with either the smallest or largest
number of copy number transitions (Figure 5B).

We tested for associations between gene expression and
copy number aberrations by developing a list of 426 genes
assigned to functional categories, "DNA replication,"
"DNA damage/repair," "cell cycle," "mitosis," "centro-
some" (centrosome and centrosome cycle) and "tel-
omere" using Gene Ontology Annotation (GOA) terms
and reference to the literature (Supplementary Methods
and Supplementary Table 3, Additional files 2 and 4).
Many of the genes were assigned to more than one proc-
ess. Expression of 350 of the 426 stability genes could be
analyzed in the breast tumor data set. Controlling for
estrogen receptor status as a possible confounder, we
observed that the telomere functional class was signifi-
cantly associated with the presence of at least one ampli-
con, with half of the genes showing positive and half
showing negative association (Table 3). On the other
hand, we found that mitosis, cell cycle, DNA replication
and DNA damage/repair functional classes were highly
significantly enriched for association with copy number
transitions (Table 3). Moreover these associations held

Analysis of TP53 mutation in breast tumorsFigure 2
Analysis of TP53 mutation in breast tumors. Fre-
quency plot of copy number changes in TP53 mutant and wild 
type tumors. The top two panels show the frequency of 
gains, indicated by the green bars ranging from 0 to 1, and 
losses, indicated by the red bars ranging from 0 to -1, in 62 
sporadic breast tumors for each clone. The bottom panel 
displays the magnitude of the t-statistic for each clone com-
puted based on the smoothed data as described in the Meth-
ods. The horizontal dotted lines indicate the statistic cut-off 
corresponding to the FDR-adjusted p-value of 0.01 (red), 
0.05 (blue) and 0.1 (green). Thus, copy number alterations 
occurring more frequently in TP53 mutant tumors included 
losses of regions on 3p, 4q, 5q, 15q, 17q and gain of a small 
region on distal 8q.
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Table 2: TP53 mutations in breast tumors

Tumor 
Sample

CGH Subtype TP53 
Mutation

Copy 
Number

Loss of 
Function1

Gain of 
Function1

Dom. Neg.1 TS1

S0013 Complex Y205D Loss NA NA NA NA
S0184 Complex R175H Loss Yes Yes Yes No
S0269 Complex M237I Loss NA NA No NA
S1511 Complex C275Y Loss NA NA No NA
S0001 Mixed amplifier Y234C No Loss Yes NA NA Yes
S0043 Mixed amplifier Y163C No Loss Yes Yes No NA
S0055 Mixed amplifier 196 Stop Loss NA NA No NA
S0126 Mixed amplifier intron 5/6 Loss NA NA NA NA
S1503 Mixed amplifier C176Y Loss Yes NA Yes NA
S1579 Mixed amplifier G245C Loss Yes NA Yes NA

1From IARC TP53 database release, R10, July 2005 [48]. Function assayed in either human or yeast. Dom. Neg., Dominant Negative. TS, 
Temperature sensitive.
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Genomic analysis of breast tumors reveals three subtypesFigure 3
Genomic analysis of breast tumors reveals three subtypes. A. Hierarchical clustering of 62 ductal invasive breast 
tumors and five BRCA1 mutant tumors based on their genome-wide DNA copy number profiles. Individual clones are repre-
sented as rows, ordered by chromosome and genome position according to the July 2003 freeze of the human genome. Clones 
on the p-arm and q-arm of chromosomes are indicated in shades of dark gray (odd numbered chromosomes) or light gray 
(even numbered chromosomes). Acrocentric chromosomes are shown in dark or light gray. Columns represent individual 
tumor samples. The estrogen receptor status of the tumors is shown in shades of blue (dark blue = ER negative, light blue = ER 
positive), BRCA1 mutant tumors are indicated in orange, and TP53 mutation status is indicated with a maroon box for TP53 
mutant tumors, a gray box for tumors with no detected mutation and a black box if the TP53 status is unknown. Copy number 
losses are indicated in red, gains in green and amplifications as yellow dots. Three main clusters are evident. B-F. Genome-
wide copy number aberrations profiles of sporadic and hereditary (BRCA1) breast tumors are plotted as the normalized 
log2ratio for each clone sorted by chromosome and ordered according to genome position from the p-arm to the q-arm. Nor-
malized copy number ratios of genomic DNA are shown for a tumor from the 1q/16q cluster with few copy number changes 
including gain of 1q and loss of 16q (B), a tumor from the ER negative, complex cluster showing many low level chromosome 
changes and few amplifications (C), a tumor from the amplifier cluster with low level gains and losses and amplifications (D) and 
tumors from patients with mutations in BRCA1 (E and F). G. Numbers and types of copy number aberrations in breast tumor 
subtypes. The mean numbers of whole chromosome copy number changes, copy number transitions and amplifications were 
determined for the tumors within each subtype. H. Numbers and types of copy number aberrations in breast tumor subtypes. 
The mean numbers of chromosomes showing no copy number change, whole chromosome copy number changes, copy 
number transitions, copy number transitions at centromeres and amplifications were determined for the tumors within each 
subtype. I. Association with disease-specific survival. Significance of the log-rank test was used to assess the association 
between a genomic subclass and survival phenotypes. The significance was declared at p < 0.05. Patients with complex tumors 
experienced significantly worse outcome compared to the other groups.
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when only tumors of the complex subtype were consid-
ered, indicating that the results are not due to confound-
ing between the large number of low level transitions and
complex subtype. Expression of 146 stability genes was
significantly associated with the number of copy number
transitions (false discovery rate, FDR < 0.05). Most associ-
ations were positive (120/146 genes), indicating that
enhanced expression of these genes was associated with
greater numbers of copy number transitions (Figure 7).
The number of amplifications was associated with mito-
sis, cell cycle and to a lesser extent, DNA replication cate-
gories. Again, this relation held when considering all
samples, as well as only samples within the mixed ampli-
fier subtype. Twenty-five individual genes were associated
with number of amplifications (FDR < 0.05) and 21 were
in common with the group of genes associated with copy
number transitions (Figure 7). Here too, we observed that
most associations were positive (21/25 genes), indicating
that increased expression of the genes was observed in
tumors with more amplifications. Finally, we investigated
how the GOA categories represented by our list of 426 sta-
bility genes ranked among all known GOA categories with
respect to associations with frequency of copy number
aberrations by considering all probes measured by the
expression analysis. In this subsequent unsupervised anal-
ysis, we found enrichment for genes associated with copy
number transitions (FDR < 0.05) in the same functional
classes, e.g. mitosis, cell cycle, cell division and DNA rep-
lication (Holm adjusted p-value < 0.005), providing fur-
ther support for these associations.

We noted that the 146 stability genes associated with
numbers of copy number transitions included E2F1, and
they are significantly enriched for genes known to be tar-
gets of E2F1 (p < 2 × 10-6, Fisher exact test, Figure 7).
Moreover the expression levels of known E2F1 target
genes were highly correlated with E2F1 expression (p < 2
× 10-10, Supplementary Table 4, Additional file 5). These
observations provide in vivo validation of the in vitro
determinations of E2F1 target genes. They are also consist-
ent with deregulation of E2F being a major contributor to
genomic instability affecting numbers of copy number
transitions and amplifications. Taken together these
observations suggest that telomere attrition and deregu-
lated expression of genes in the other functional classes,
particularly those that are targets of E2F, contribute to the
numbers of chromosomal alterations.

Discussion
Our analysis of large numbers of breast tumors by array
CGH revealed variety in the numbers and types of copy
number alterations in the tumor genomes. In the ductal
invasive breast tumors reported here, three subtypes were
distinguished by copy number alterations. The subtypes
differed with respect to the numbers and types of aberra-
tions, as well as patient survival. The1q/16q subtype with
very few copy number alterations in addition to gain of 1q
and loss of 16q was associated with the best patient out-
come, consistent with other studies. Searches for tumor
suppressor gene(s) on 16q have failed to find mutations
in candidate genes in the region in ductal invasive breast
cancer, although mutations in E cadherin and loss of 16q
are characteristic of lobular breast tumors. Two genes
involved in telomere maintenance, TERF2 and TERF2IP
were among those ruled out as tumor suppressors on 16q,
as was E2F4 [15-17]. The stability of the genome of these
tumors also suggests that copy number alterations of these
and other stability genes mapping within the aberrant
regions, +1q and -16q are less likely to contribute to chro-
mosomal level instability in breast cancer.

Complex tumors with extensive chromosomal level insta-
bility were associated with poor patient survival. They are
similar to BRCA1 hereditary tumors in their copy number
alterations [18,19] (Figure 3). BRCA1 participates in a
number of cell functions that maintain genome integrity
either directly through double strand break repair or indi-
rectly through maintenance of checkpoints at G1, S and
mitosis [20-22]. Thus, it is possible that BRCA1 [23,24] or
the genes/pathways that interact with BRCA1 are defective
in this subtype either through mutation, silencing or copy
number mediated dosage effects. We note that the copy
number loss on 17q associated with this subtype includes
the BRCA1 locus (9/16 tumors, Figure 4).

Copy number changes more frequently associated with one subtypeFigure 4
Copy number changes more frequently associated 
with one subtype. Frequency for each clone of gains and 
losses, which were uniquely present in more than 50% of 
samples of one subtype and in less than 30% of samples in 
other subtypes. Gains are indicated by green bars, ranging 
from 0 to 1, and losses, by the red bars ranging from 0 to -1 
for each clone.
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Overview of most frequent DNA amplifications on chromosomes 8, 11, 17 and 20 in 62 breast tumors determined by genome-wide array CGHFigure 5
Overview of most frequent DNA amplifications on chromosomes 8, 11, 17 and 20 in 62 breast tumors deter-
mined by genome-wide array CGH. A. Heat map depiction of aberrations on chromosomes 8, 11, 17 and 20 and typical 
chromosome copy number profiles showing amplifications of 8p (including FGFR1), 11q13 (including CCND1), 17q (ERBB2) and 
regions on 20q (including ZNF217). Note that the chromosome 11 copy number profiles vary depending on whether amplifica-
tion of chromosome 8 is also present. In both cases copy number losses distal to the amplicon are observed, however in the 
absence of chromosome 8 amplification (right), the region of loss extends distally from the amplified region, whereas, when 
chromosome 8 was amplified (left), the copy number loss includes regions proximal as well as distal to CCND1. B. For each 
tumor, the numbers of copy number transitions is compared to the number of chromosome arms with at least one amplifica-
tion.
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The discrimination of breast tumor subtypes based on
copy number aberrations led us to investigate possible
associations of copy number aberration types with altera-
tions in processes/genes involved in maintenance of
genome stability. We observed shorter telomeres in
tumors with greater numbers of amplifications, consistent
with telomere attrition promoting this type of copy
number aberration in breast tumors. Telomere dysfunc-
tion, often referred to as "telomere crisis" has been impli-
cated in amplification, particularly by breakage-fusion-
bridge processes. On the other hand, our analyses of sta-
bility gene expression in relation to copy number aberra-
tion types found that expression of genes in the functional
classes; "mitosis," "cell cycle," "replication," and "DNA
damage/repair" were associated with greater numbers of
copy number transitions. Furthermore, a subsequent
analysis found significant enrichment for these same
classes among all GOA groups when analyzed with GOS-
tats [25]. The number of amplicons was associated with
similar functional groups, "mitosis" and "cell cycle."
Many of these genes are E2F targets [26-36] and therefore
potentially coordinately deregulated due to Rb pathway
defects [37]. Abrogation of Rb pathway function is fre-
quent in breast tumors by loss of expression of Rb or
altered expression of inhibitors of Rb activity (e.g. loss/
silencing of CDKN2A (p16) and amplification and/or
over expression of CCND1, CDK4, CDK6) (Figure 7). It is
interesting to note that whereas E2F1 is up-regulated in
breast tumors, its expression is low in prostate tumors
[38], which typically have genomes with fewer copy
number changes than most ductal invasive breast cancers
[39]. For example, in an array CGH dataset of 64 primary

prostate tumor samples [39], the median number of copy
number transitions was 13 per tumor genome compared
to 30 in our primary breast tumor samples (p < 5 × 10-9,
Wilcoxon rank sum test). Mechanistic support for a cen-
tral role of E2F1 in genomic instability comes from a
recent report that elevated numbers of DNA double strand
breaks are present in cell lines with deregulated E2F1 and
Rb deficiency [40].

Chromosomal instability has been observed in vitro when
many of these E2F target genes (Figure 7) associated with
replication, DNA repair, cell cycle control and the mitotic
checkpoint are mutated, knocked out or knocked down
using siRNA [8,41,42]. Contrary to expectation, we
observed that greater chromosomal instability in breast
tumors is associated with increased expression levels of
many of these genes, even though they have loss of func-
tion instability phenotypes. These assays further demon-
strate that loss of a single copy of some of the genes results
instability or cancer prone phenotypes. Genes that have
been shown to be haploinsufficient in this way and that
are among those we identified as showing significant
association with the number of copy number aberrations
in our tumors (FDR < 0.05) include RAD17, ATM and
RB1, which are expressed at lower levels in tumors with
more copy number changes. These genes are also nega-
tively correlated with E2F1 expression. Other genes show-
ing haploinsufficiency in vitro, MAD2L1, PLK4, BUB1B
and CHEK1 show enhanced expression in association
with number of chromosomal changes and are positively
correlated with E2F1 expression (Supplementary Table 4,
Additional file 5). As all seven of the above mentioned
genes with haploinsufficiency phenotypes map to regions
of frequent loss in breast tumors and genetic instability
phenotypes are associated with deficiency in these genes,
we asked whether loss of function might play a role in the
subset of tumors in which there is a copy number loss of
the locus. Specifically, we asked if their expression levels
were down regulated when there is a copy number loss.
Although 118 of the genome stability genes showed
highly significant reduction in expression in tumors in
which the locus was lost (FDR < 0.05, one-sided Wilcoxon
rank sum test), we found little difference in expression
level with copy number loss for MAD2L1, PLK4, ATM and
RB1, whereas BUB1B was increased in expression in
tumors with loss of the locus (Supplementary Table 4,
Additional file 5). Only expression of RAD17 was signifi-
cantly reduced when lost (unadjusted p = 8 × 10-4, Wil-
coxon rank sum test), suggesting that RAD17 might be
haploinsufficient in tumors with copy number loss of the
locus at 5q13.

Our observations in tumors support the hypothesis that
global alteration of expression of genes involved in proc-
esses such as chromosome segregation and maintenance

Telomere length measurements in 28 breast tumor samplesFigure 6
Telomere length measurements in 28 breast tumor 
samples. Plotted is the telomere length determined by 
Southern blotting relative to the number of chromosome 
arms with amplification. A significant inverse correlation is 
evident.
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of genome integrity, driven by deregulation of E2F, under-
lies much of the chromosomal instability in breast
tumors. Furthermore gene expression appears to be rela-
tively up-regulated. On the one hand, this observation
seems contradictory in light of the phenotypes resulting
from mutational analyses of genes involved in mainte-
nance of genome stability. Such in vitro studies have gen-
erally assessed the consequences of functional deficiency
one gene at a time and have found that individually many
genes have loss of function instability phenotypes. On the
other hand, as many of these genes participate in multi-
protein complexes that depend on proper stoichiometry
for function, alterations resulting in overproduction or
deficiency are likely to have similar or related phenotypes
(reviewed in [43]). Indeed, in mammalian cells, instabil-
ity phenotypes have been reported in association with
both up and down regulation of genes such as MAD2L1
[8,41], ATR [44,45], PLK4 [46] and AURKA [47]. Further
studies will be required not only to assess instability phe-
notypes when expression levels are increased, but also
how phenotypes might vary when multiple genes are up-
regulated.

In tumors, changes in gene dosage due to low level copy
number alterations may also lead to small alterations in
expression of multiple genes, which together could con-
tribute to dysfunction of processes manipulating the
genome, resulting in more error prone cell division cycles.
Thus, during tumor progression, genome instability may
be enhanced not only by deregulation of E2F, but also by
the acquisition of greater numbers of copy number
changes encompassing more genes involved in genome
maintenance. Since genetic instability is an on-going fea-
ture of tumors, allowing them to evolve resistance to ther-
apy, the ability to recognize the active mechanisms of
instability in tumors may help to guide therapeutic deci-
sions.

Conclusion
Application of array CGH to the study of breast tumors
found three subtypes. Investigation of the numbers and
types of copy number alterations in tumors and their asso-
ciation with differential expression of genes likely to play
a role in manipulation or maintenance of the genome

implicated telomere dysfunction in the propensity to
amplify. On the other hand, the number of lower magni-
tude gains and losses of chromosomal segments was asso-
ciated with differential expression of genes which were
significantly enriched for the known targets of E2F, sup-
porting the hypothesis that deregulation of E2F underlies
much of the chromosomal instability in breast tumors.
Furthermore, we observed enhanced expression of most
E2F target genes, indicating that over expression rather
than deficiency was associated with genetic instability.
These observations provide a possible explanation for the
failure to find mutations in sporadic tumors in genes that
have roles in maintenance or manipulation of the
genome.
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Table 3: Association of expression of functional classes with copy number aberration types

Class Copy Number Transitions Amplifications At least one Amplicon

Mitosis 0 4.6 × 10-4 0.15
Cell Cycle 0 5.2 × 10-5 0.02

DNA Replication 3.1 × 10-12 0.04 0.25
Centrosome 0.28 0.52 0.25

Telomere 0.02 0.06 2.9 × 10-4

DNA Damage/Repair 7.3 × 10-9 0.06 0.2
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Signaling pathway and E2F responsive genes associated with numbers of copy number transitions and amplificationsFigure 7
Signaling pathway and E2F responsive genes associated with numbers of copy number transitions and amplifi-
cations. The receptor signaling cascade impinging on Rb includes a number of up-stream genes that are frequently altered in 
cancers and result in deregulation of the E2F family of transcription factors through inhibition or loss of Rb function. Here, we 
show genes enriched for association with numbers of copy number transitions (FDR < 0.05). Genes, which have been identified 
as E2F targets (asterisk) and/or are correlated with E2F1 expression levels (|Pearson correlation| > 0.3) are shown in the top 
box. Genes which showed less correlation with E2F1 are shown in the bottom box. Genes also associated with numbers of 
amplifications (FDR < 0.05) are highlighted in yellow. Four additional genes associated with amplifications (FDR < 0.05) are 
ASCIZ, MSH5, RAE1 and TDG. Red, increased expression. Blue, decreased expression.
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