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Abstract
Background: Nitrogen-containing bisphosphonates (N-BPs) have been designed to inhibit
osteoclast-mediated bone resorption. However, it is now accepted that part of their anti-tumor
activities is related to interference with the mevalonate pathway.

Methods: We investigated the effects of zoledronic acid (ZOL), on cell proliferation and protein
isoprenylation in two tumoral (LnCAP, PC-3,), and one normal established (PNT1-A) prostatic cell
line. To assess if inhibition of geranyl-geranylation by ZOL impairs the biological activity of RhoA
GTPase, we studied the LPA-induced formation of stress fibers. The inhibitory effect of ZOL on
geranyl geranyl transferase I was checked biochemically. Activity of ZOL on cholesterol
biosynthesis was determined by measuring the incorporation of 14C mevalonate in cholesterol.

Results: ZOL induced dose-dependent inhibition of proliferation of all the three cell lines although
it appeared more efficient on the untransformed PNT1A. Whatever the cell line, 20 µM ZOL-
induced inhibition was reversed by geranyl-geraniol (GGOH) but neither by farnesol nor
mevalonate. After 48 hours treatment of cells with 20 µM ZOL, geranyl-geranylation of Rap1A was
abolished whereas farnesylation of HDJ-2 was unaffected. Inhibition of Rap1A geranyl-geranylation
by ZOL was rescued by GGOH and not by FOH. Indeed, as observed with treatment by a geranyl-
geranyl transferase inhibitor, treatment of PNT1-A cells with 20 µM ZOL prevented the LPA-
induced formation of stress fibers. We checked that in vitro ZOL did not inhibit geranyl-geranyl-
transferase I. ZOL strongly inhibited cholesterol biosynthesis up to 24 hours but at 48 hours 90%
of this biosynthesis was rescued.

Conclusion: Although zoledronic acid is currently the most efficient bisphosphonate in metastatic
prostate cancer management, its mechanism of action in prostatic cells remains unclear. We
suggest in this work that although in first intention ZOL inhibits FPPsynthase its main biological
actitivity is directed against protein Geranylgeranylation.
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Background
Bisphosphonates (BPs) have been used in oncological
practice for many years to reduce skeletal complications
and pain especially during myeloma and the metastatic
phase of breast and prostate cancers. For many years their
specific bone targeting suggested that the main mecha-
nism of action of BPs was inhibition of bone resorption
by direct effects on osteoclasts or other bone cells in the
immediate microenvironment of osteoclasts[1]. The late-
generation BPs have a nitrogen-containing aliphatic side
chain (pamidronate, alendronate, ibandronate) or hete-
rocyclic ring (zoledronate). Their anti-resorptive potency
is up to 1000-fold greater than that of non-amino BPs and
they exert their cellular effects by interference with the
mevalonate (MVA) pathway [2]. Many studies have inves-
tigated the nature of the enzymatic targets of N-BPs within
the MVA pathway. In vitro, squalene synthase activity was
shown to be affected by some N-BPs but neither by
pamidronate nor alendronate[3]. More recently, farnesyl-
pyrophosphate (FPP) synthase was proposed as the main
enzymatic target of alendronate, risedronate, ibandro-
nate, and pamidronate in vitro [4-6]. Some authors sug-
gested that isopentenyl (IPP) isomerase could also be
inhibited by novel N-BPs [4,5]. In vivo, some studies con-
firmed the hypothesis of an inhibition of FPP synthase

because apoptosis [7-9] and caspase activation [7]
induced by several N-BPs were reversed by addition of FPP
and GGPP or of cell-permeable analogs, farnesol (FOH)
and geranyl-geraniol (GGOH). Conversely, recent in vivo
studies suggested that the inhibition of the mevalonate
pathway by N-BPs lies downstream the FPP synthesis step;
indeed, several cellular effects of N-BPs such as inhibition
of osteoclast formation[10], inhibition of ovarian cancer
cell migration [11] or inhibition of breast cancer cell inva-
sion [12] were reversed only by GGOH but not by FOH.
Whatever the enzymatic target(s) of N-BPs most previous
reports agree to suggest that the action of N-BPs results in
the impairment of protein isoprenylation in osteoclasts or
bone explants [4,5,8,10,13,14] as well as in tumoral cell
lines [9,12,15-17]. It remains unclear whether protein far-
nesylation and geranyl-geranylation are equally affected
by N-BPs. Some recent data suggest that geranyl-geranyla-
tion, especially of Rho GTPases, may be the main target of

Effect of mevalonate-derived products on 20 µM zoledro-nate-induced inhibition of prostatic cell proliferationFigure 2
Effect of mevalonate-derived products on 20 µM 
zoledronate-induced inhibition of prostatic cell prolif-
eration. At D0, cells were seeded into 96-well plates to 
obtain 80% confluence at D5 in control wells. At D1, and D3, 
cells were treated by vehicle or 20 µM zoledronate (ZOL) in 
the presence or absence of intermediates of the mevalonate 
pathway (GGOH = geranyl-geraniol; MVA = mevalonate; 
FOH = farnesol; SQUA = squalene) at the indicated doses. 
Results are are expressed as the ratio ODtreated cells/ODun-

treated of three independent assays each performed six times. 
Error bars indicate inter-assay mean ± 1 SD. * indicates a sig-

nificant difference versus ZOL-treated cells (p < 0.01).  

PC-3  PNT1A  LNCaP

Effect of zoledronate on proliferation of PC-3, PNT1-A and LNCaPFigure 1
Effect of zoledronate on proliferation of PC-3, PNT1-
A and LNCaP. At D0, the cells were seeded into 96-well 
plates to obtain 80% confluence at D5 in control wells. At 
D1 and D3, cells were treated by vehicle or increasing doses 
of zoledronate (ZOL: 5, 10, 15, 20 µM). At D5, the cells 
were fixed with TCA and stained with 0.4% sulforhodamine. 
Staining intensity was quantified at 540 nm. Results are 
expressed as the ratio ODtreatedcells/ODuntreated of three inde-
pendent assays each performed six times. Error bars indicate 
inter-assay mean ± 1 SD. * indicates a significant difference 

versus non-treated cells (p < 0.01).  PC3  PNT1A 

 LNCaP
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their anti-invasive effect [11,12] although their apoptotic
effect may be related to the inhibition of Ras farnesylation
[16,17].

In prostate tumoral cells, few studies have investigated the
cellular or molecular effects of N-BPs, while zoledronate
(ZOL) and pamidronate (PAM) are widely used to prevent
skeletal complications of prostate cancer and of androgen
deprivation therapy [18,19]. After the report of the inhibi-
tion of prostate carcinoma cell invasion by several N-BPs,
including ZOL [20], PAM and ZOL were shown to inhibit
growth in three widely used prostatic cell lines, PC-3, DU-
145 and LNCaP [21]. The anti-tumor effect of alendro-
nate, ZOL and PAM was correlated to their inhibition of
the MWA pathway in prostate cells [15,17], favoring the
hypothesis of an inhibition of FPP synthesis, protein ger-
anyl-geranylation was not assessed although GGOH
appeared more effective than FOH to rescue ZOL-induced
apoptosis.

In the present work, we investigated i) the effect of ZOL
and MVA-derived metabolites on tumoral and normal
immortalized prostatic cell line proliferation; ii) the mod-
ification by ZOL of the prenylation status of farnesylated
(HDJ-2) and geranyl-geranylated (Rap1A) proteins in
prostatic cells; iii) the impact of ZOL on the biological
activity of a geranyl-geranylated protein, RhoA; vi) the
effect of ZOL on cholesterol biosynthesis.

Methods
Chemicals and materials
All material for cell culture was from Dutcher (Brumath,
France). Growth media were purchased from Cambrex
Bio Science (Verviers, Belgium) and fetal calf serum (FCS)
from Invitrogen (Cergy-Pontoise, France). Zoledronic
acid [hydrated disodium salt of 2-(imidazol-1-yl)-
hydroxyl-ethylene-1,1-bisphosphonic acid)] was supplied
by Novartis Pharma AG (Basel, Switzerland). Stock solu-
tions (4 mM) were prepared in phosphate buffered saline
(PBS) and aliquots were stored at -20°C to be diluted in
culture medium prior to experiments. Peptidomimetic
prenyl-transferase inhibitors FTI 277 and GGTI 298
[22,23] were a generous gift from Pr S. Sebti (Tampa, Flor-
ida). Stock solutions (100 mM) were prepared in DMSO-
10 mM DTT and aliquots were stored at -20°C to be
diluted in culture medium prior to experiments. Y27632
was purchased from Calbiochem (La Jolla, California).
Mevalonate (stock = MVA 200 mM), trans-transfarnesol
(FOH; stock solutions 100 mM in ethanol, stored at -
20°C), geranyl-geraniol (GGOH; stock solutions 100 mM
in ethanol stored at -20°C), squalene (stock solutions 100
mM in ethanol stored at -20°C FOH), Cholesterol, L-α-
lysophosphatidic acid (LPA) and paraformaldehyde
(PFA) were purchased from Sigma Aldrich (St Quentin

Fallavier, France). [14C]-mevalolactone (56Ci/mmol. spe-
cific activity) was from Perkin-Elmer.

Prostatic cell lines
LNCaP cells are prostatic tumoral human cells expressing
an active but mutated (T877A) androgen receptor. Under
androgenic stimulation, these cells produce prostate-spe-
cific antigen (PSA). PC-3 are prostatic tumoral human
cells, which are non-responsive to androgenic stimula-
tion. The PNT1-A cell line was developed by Cussenot et
al. [24]. The cells are normal epithelial cells immortalized
by SV-40. They express the wild-type androgen receptor
but, under androgenic stimulation in vitro, they do not
secrete PSA into the culture medium. The three cell lines
were purchased from the European Collection of Cell Cul-
ture (PC-3: # 90112714; LNCaP clone FCG: # 89110211;
PNT1A: #95012614).

Prostatic cell lines were routinely grown either in RPMI
7% FCS (PC-3 and PNT1-A) or in RPMI 10% FCS supple-
mented by 10 mM Hepes and 1 mM sodium pyruvate
(LNCaP). All cells were incubated at 37°C in a humidified
5% CO2 incubator.

Proliferation colorimetric assay
Proliferation was assessed by a colorimetric assay with sul-
forhodamine as described by Skehan [25]. Cells were
seeded in 96-well microtiter plates to finally obtain 80%
confluence in control wells. At the end of the treatment
period, the cells were fixed with TCA (1 h, 4°C) and then
stained with 0.4 % sulforhodamine. After four washes
with 1% acetic acid to remove unbound dye, the plates
were dried and protein-bound dye was extracted with Tris
(10 mM, pH = 10.5). Coloration was quantified at 540
nm in a microtiter plate (Multiskan® Multisoft, Labsys-
tems)

Prenylation status analysis
Cells were scraped off then lysed with 150 µL of lysis
buffer [20 mM Tris-HCl, 100 mM NaCl, 1% Triton X-100,
10 mM MgCl2, 5 mM EDTA, 20 mM NaF, 10 mM PNPP,
2 mM Na orthovanadate, and a cocktail of protease inhib-
itors (Sigma, France, final dilution 1/100). Proteins were
quantified in cellular extracts by a Bradford assay. Five to
forty µg of cleared protein extracts were separated on a
12.5% SDS-polyacrylamide gel and then transferred to a
Hybond-P polyvinyldifluoride membrane (Amersham
Biosciences). After pre-incubation with TBST (25 mM Tris,
140 mM NaCl, 0.1% Tween 20, pH 8) supplemented with
5% fat-free milk, the membranes were incubated over-
night at 4°C with the primary antibody diluted in TBST 1
% milk. After three washes with TBST, the membranes
were incubated for 1 hour at room temperature with the
secondary antibody labeled by peroxidase. The antibody
was visualized using the ECL Plus system (Amersham Bio-
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sciences) and luminescence quantified with Phophorim-
ager® (Molecular Dynamics).

The following primary antibodies were used: anti-HDJ2
Ab-1 mouse monoclonal antibody (Interchim; clone
KA2A5.6, diluted 1/10000), anti-prenylated Rap1A C17
goat polyclonal antibody (TEBU; ref SC-1482, diluted 1/
2000), anti-total Rap1A-Krev1 rabbit polyclonal antibody
(TEBU; ref SC-65, diluted1/1000). The following peroxi-
dase-labeled secondary antibodies were used, all diluted
1/10000: anti-mouse (Biorad, ref 170–6516) anti-goat
(Santa Cruz, ref sc-2033) or anti-rabbit (Biorad, ref 170–
6515).

Visualization of actin cytoskeleton by fluorescence 
microscopy
At day 0 (D0), PNT1-A cells were seeded onto glass cover-
slips in 6-well plates to obtain 60% confluence on day 3
(D3). On day 1 (D1), the cells were serum-starved until
treatment on D3. After exposure to different drugs and
then after stimulation by LPA (20 µM, 5 hours on D3), the
cells were fixed with 3% paraformaldehyde/PBS for 20
minutes and then permeabilized with 0.1% Triton- X-
100/PBS for 5 minutes. To visualize the actin fibers, the
coverslips were incubated with tetramethylrhodamine
isothiocyanate-labeled phalloidin (Molecular Probes) for
30 minutes at room temperature. The cells were viewed on

a Zeiss Axiophot microscope and pictures taken with a
Princeton camera.

In vitro farnesyl-transferase (FTase) and geranyl-geranyl-
transferase I (GGTase I) activity measurement
To investigate the putative inhibitory effect of ZOL on pre-
nyl-transferase activity, in vitro prenylation assays were
performed. As substrate proteins, we used bacterially
expressed wild-type H-Ras protein for FTase assay and
CVLL-H-Ras mutant protein (geranyl-geranylated form)
for GGTase I assay. 1 µM substrate proteins were incu-
bated with [3H]-prenyl pyrophosphate (0.25 µM final
concentration, specific activity 8–10 Ci/mmol, American
Radiolabeled Chemicals) and either recombinant FTase
or recombinant GGTase I (50 ng) in a reaction medium
containing 50 mM Tris, pH 7.7, 20 mM KCl, 10 mM
MgCl2, 2 mM DTT, and 5 µM ZnCl2. The reaction volume
was 50 µl. Reactions proceeded for 10 min at 30°C and
were stopped by the addition of 0.5 ml of 4% SDS. Total
protein was precipitated by the addition of 0.5 mL of 30%
trichloroacetic acid. After 20 min, samples were filtered
through 25-mm glass fiber filters (Schleicher & Schuell),
which bound the prenylated protein leaving unprenylated
protein and excess prenyl groups to go through the filter.
Reaction tubes were washed with 2 × 2 mL of 4% SDS plus
6% trichloroacetic acid, and the washes were added to the
filters. Bound protein was washed with a further 4 mL of

Effect of zoledronate on farnesylation status of HDJ2Figure 3
Effect of zoledronate on farnesylation status of HDJ2. Prostatic cells where treated for 48 h with ZOL (20 µM), lysed in 
hot (90°C) SDS (1%) and analyzed by Western blot.
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4% SDS/6% trichloroacetic acid and then 3 × 2 mL 6%
trichloroacetic acid. After drying, radioactivity bound to
the filters was counted in a scintillation counter. Negative
controls were also performed without protein substrate or
using enzymes that were previously inactivated by incuba-
tion for 5 min at 90°C. Each substrate protein was reacted
under standard conditions with vehicle, specific trans-
ferase inhibitor or ZOL. The level of prenylation was
expressed as a percentage of maximum incorporation of
[3H]-prenyl for each substrate, as determined by allowing
the uninhibited reaction to go to completion.

[14C]-Cholesterol biosynthesis in PC3 cells
The experiment was conducted as described by Awad [26].
Briefly, PC3 cells were seeded in 6-well plates and treated
with ZOL for 2, 22, 46 hours and [14C]-mevalolactone
(2.25 µCi/ml) was added to the medium for 2 hours
more, then the medium was removed, the cells washed
twice with PBS, and treated by 1 ml of NaOH (2 M). The
mixture was incubated at 37°C for 30 min. and then 0.5
ml of methanol containing 100 µg of non-radioactive
cholesterol were added. Saponification took place at 70°C
for 1 hour and unsaponified lipids were hexane extracted

Effect of zoledronate on GGPP/GGOH incorporation into proteins in vitro (A) and in vivo (B)Figure 4
Effect of zoledronate on GGPP/GGOH incorporation into proteins in vitro (A) and in vivo (B). A: Geranyl-gera-
nyl transferase I (GGTase I) was quantified using an in vitro test based on [3H]-prenyl pyrophosphate (0.5 µM, 8–10 Ci/mmol) 
incorporation into a mutant form of H-ras with a geranyl-geranylation CAXX box. The level of prenylation is expressed as a 
percentage of maximum incorporation of [3H]-prenyl, as determined by allowing the uninhibited reaction to go to completion. 
B: Western-blot analysis; PC-3 cells are treated by vehicle, ZOL 20 µM; ZOL 20 µM + FOH 10 µM; ZOL 20 µM + GGOH 10 
µM.
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three times. After drying (under argon) the pellets were
dissolved in chloroform and separated by thin layer chro-
matography (silica gel F/ethyl acetate). [14C]-Cholesterol
was revealed and quantified by autoradiography with
Phophorimager® (Molecular Dynamics).

Results
Zoledronic acid inhibits proliferation of LNCap, PC-3 and 
PNT1-A cells
The effect of ZOL on cell growth was assessed in the three
prostatic cell lines: the cells were treated from D1 to D5
with ZOL from 5 to 20 µM. The ratio of proliferation ver-

sus control wells was assessed by a colorimetric sulforhod-
amine assay. The results are shown in figure 1. ZOL
inhibited the proliferation of the three cell lines dose-
dependently. The non-tumoral cell line PNT1-A was
affected most (IC50 = 11 µM). PC-3 cells displayed an
intermediate sensitivity (IC50 = 18 µM) and the LNCaP
cells appeared to be the most resistant (IC50>20 µM).
These results agree with those previously obtained by oth-
ers for growth [21,27] or viability [15] of DU145, PC-3
and LNCaP in the presence of ZOL. Moreover the present
work shows that ZOL is more effective at inhibiting the
cell growth of the untransformed cell line PNT1-A.

Effect of zoledronate on LPA-induced stress fiber induction, a cellular effect dependent on RhoA geranylgeranylationFigure 5
Effect of zoledronate on LPA-induced stress fiber induction, a cellular effect dependent on RhoA geranylgera-
nylation. On D0, PNT1-A cells were seeded onto glass coverslips in 6-well plates to obtain 60% confluence on D3. On D1, the 
cells were serum-starved till fixation on D3. After treatment by the indicated drugs then stimulation by LPA (20 µM, 5 hours on 
D3), actin fibers were visualized by tetramethylrhodamine isothiocyanate-labeled phalloidin. Cells are viewed on a Zeiss Axio-
phot microscope (X 630), and pictures are taken with a Princeton camera.
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Inhibition of proliferation by ZOL is reversed by geranyl-
geraniol
N-BPs have been described to interfere with the meval-
onate pathway. We therefore investigated if the inhibition
of proliferation observed with 20 µM ZOL could be
reversed by metabolites of the MVA pathway: MVA (100
µM), the precursor of all sterol and non-sterol isopre-
noids, squalene (SQUA, 100 µM), the precursor of cyclic
isoprenoids i.e. sterols, farnesol (FOH, 10 and 20 µM)
and geranylgeraniol (GGOH, 10 µM). Unlike FPP and
GGPP, free isoprenols FOH and GGOH are able to enter
the cells easily [28], thus, they can be used for prenylation
via a salvage pathway. Cells were seeded as previously
described and treated every 48 hours with 20 µM ZOL in
the presence or absence of the different metabolites from
D1 to D5. The results are shown in figure 2. Concerning
the differential sensitivity of the three cell lines to ZOL,
the results were similar to those previously obtained
although a two-day longer exposure resulted in a greater
cell growth inhibition with 20 µM ZOL. At the concentra-

tions used, none of the MVA-derived products altered the
proliferation (data not shown). Moreover, neither MVA,
SQUA, or FOH could reverse the inhibition of prolifera-
tion induced by 20 µM ZOL. In contrast, GGOH com-
pletely rescued the proliferation of the three prostatic cell
lines when added to the culture medium simultaneously
with 20 µM ZOL. However, the reversion of ZOL-induced
inhibition of proliferation by GGOH but not by FOH
does not agree with the biochemical target of ZOL, FPP
synthase.

ZOL impairs in vivo geranyl-geranylation of Rap1A 
without impairing farnesylation of HDJ-2
To investigate the effects of ZOL on farnesylation and ger-
anyl-geranylation, we analysed i) Rap-1A, an exclusively
geranyl-geranylated small GTPase involved in the regula-
tion of signal transmission from Ras, ii) HDJ-2, an exclu-
sively farnesylated co-chaperone protein classically used
as a marker of FTase inhibition [29]. Western-blot analysis
of these proteins was performed after treatment by 20 µM

Biosynthesis of [14C]-cholesterol in PC3 cells under ZOL treatmentsFigure 6
Biosynthesis of [14C]-cholesterol in PC3 cells under ZOL treatments. Cells were treated with ZOL (20 µM) for 2, 22 
or 46 hours and [14C]-mevalolactone (2.25 µCi/ml) was added to the medium for 2 hours more. Sterols were separated by 
thin layer chromatography (silica gel F/ethyl acetate). [14C]-Cholesterol was revealed and quantified by autoradiography with 
Phophorimager® (Molecular Dynamics).
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ZOL, or by specific peptidomimetic inhibitors of far-
nesylation (FTI-277) or geranyl-geranylation (GGTI-298).
The results are shown in figure 3. Treatment by FTI 277
(10 µM, 48 hours) resulted, as expected, in the accumula-
tion of the unfarnesylated HDJ-2 which migrates slower
than the farnesylated forms. By contrast, treatments with
GGTI-298 or ZOL (20 µM, 48 hours) did not modify HDJ-
2 farnesylation. At this point we questioned the in vivo
efficacy of ZOL on the mevalonate pathway and decided
to look for its effects on protein geranyl-geranylation.

ZOL impairs Rap1A geranyl-geranylation by preventing 
GGPP production and not GGPP incorporation into the 
protein
Indeed, there is a structural analogy between the bisphos-
phonate radical of ZOL and the pyrophosphate group of
cell substrates of FTase and GGTases, respectively FPP and
GGPP, and some bisphosphonate analogues of FPP were
shown to inhibit FTase [30]. To challenge these two
hypotheses, we tested the ability of ZOL to prevent GGPP
incorporation into substrate proteins in vitro and in vivo.
The results are shown in figure 4. In vitro, we measured
GGTase I activity, in the absence or presence of 10 and 50
µM ZOL. Unlike GGTI-298, which totally abolishes
GGTase I activity, ZOL did not impair the enzymatic activ-
ity of GGTase I (figure 4A). We also checked that ZOL did
not impair the enzymatic activity of FTase (data not
shown). In vivo, we used GGOH as a surrogate for GGPP
because it has been shown that GGOH can rescue Rap1A
geranyl-geranylation in lovastatin-treated cells, [31]. In
prostatic cells, rescue of Rap1-A geranyl-geranylation was
obtained when 10 µM GGOH was added simultaneously
to 20 µM ZOL. This recovery was observed neither after
ZOL/FOH incubation, nor after GGTI/GGOH incubation
(figure 4B).

So, inhibition of geranyl-geranylation by ZOL appears to
result from a blockade in GGPP synthesis from FPP rather
than from the inhibition of the enzymatic transfer of
GGPP onto its protein substrate.

ZOL impairs LPA-induced formation of stress fibers, a 
cellular effect dependent on RhoA geranyl-geranylation
RhoA is a small GTPase, which is exclusively geranyl-gera-
nylated. RhoA geranyl-geranylation is crucial for its bio-
logical activity, especially for its specific activity in the
formation of stress fibers under LPA stimulation [32]. For
this reason, we investigated the effect of ZOL on the for-
mation of stress fibers induced by LPA stimulation.
Among the three prostatic cell lines, only PNT1-A cells
form an easily detectable stress fiber network in response
to LPA. So, we chose this cell line for the experiment.
PNT1-A cells were cultured as described above and stimu-
lated by 25 µM LPA for 5 hours. Under these conditions,
numerous stress fibers appeared (fig 5B1 and 5B2). With

pre-treatment by Y27832 (10 µM, 10 min), a specific Rho
kinase inhibitor, stress fiber induction was totally abol-
ished (figure 5C). Similarly, when PNTI-A cells were
treated with GGTI-298 (10 µM, 24 hours) prior to LPA
stimulation, no stress fibers appeared (figure 5D). When
PNT1-A cells were treated by ZOL (20 µM, 48 hours) prior
to LPA stimulation, stress fiber formation was also totally
abolished (fig 5E). So, we suggest that inhibition of gera-
nyl-geranylation by ZOL affects the biological activity of
geranyl-geranylated proteins, as shown herein for the
small GTPase RhoA.

ZOL Inhibits cholesterol biosynthesis up to 24 hours
Four hours treatment of PC3 cells with ZOL 20 µM com-
pletely inhibited cholesterol biosynthesis (Fig 6A) sug-
gesting that ZOL, as previously reported, may inhibit
farnesyl pyrophosphate synthase at the crossroads of the
mevalonate pathway to cholesterol biosynthesis or pro-
tein isoprenylation. However, as early as 24 hours later,
about 10% of the biosynthesis was rescued, reaching 90%
after 48 hours (Fig 6). The same results were obtained
with LnCAP and PNT-1A (data not shown).

Discussion
Although zoledronic acid is widely used in metastatic
prostate cancer management, few data are available about
its molecular effects in prostatic cells [15,20,21]. Our
work shows that, in prostatic cells, ZOL impairs protein
geranyl-geranylation but not farnesylation. This result
contrasts with the well-documented in vitro inhibition of
FPP synthase displayed by many N-BPs [4-6,33] including
ZOL [33]. However, conflicting results about the FPP syn-
thase inhibition by N-BPs have been obtained in vivo.
Indeed, some studies support the inhibition of FPP syn-
thase, impairing FPP, and consequently GGPP, produc-
tion [7-9,15,17], whereas other teams suggest the
existence of an additional enzymatic target of N-BPs,
downstream of FPP synthase [11,12,34]. Our results with
ZOL lend further support to this latter hypothesis and cor-
roborate two other works performed in mammary MDA-
MB-231 [12] and ovarian Caov-3 [16] tumoral cell lines.
In the first report [12], it was shown that the anti-invasive
effect of ZOL resulted from an inhibition of RhoA geranyl-
geranylation. In alendronate-treated Caov-3 cells, Sawada
et al. showed inhibition of Rho activation through GGPP
depletion and suggested that this inhibition accounted for
the inhibition of LPA-induced stress fiber formation they
observed. This biological effect is typically related to RhoA
activity.

Conclusion
In the present work it is shown that the main biological
activities of ZOL are sustained by its inhibitory effect of
protein geranyl-geranylation. We show by study of choles-
terol biosynthesis that this impairment of geranyl-geran-
Page 8 of 10
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ylation is time-dependently related to an inhibition of
FPPsynthase followed by, or concomitant with, inhibition
of GGPPsynthase. In vitro studies show that this effect is
not related to inhibition of GGTase I
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