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Abstract

Background: Prostate cancer is one of the leading causes of cancer related deaths. For diagnosis, predicting the
outcome of the disease, and for assessing potential new biomarkers, pathologists and researchers routinely analyze
histological samples. Morphological and molecular information may be integrated by aligning microscopic histological
images in a multiplex fashion. This process is usually time-consuming and results in intra- and inter-user variability. The
aim of this study is to investigate the feasibility of using modern image analysis methods for automated alignment of
microscopic images from differently stained adjacent paraffin sections from prostatic tissue specimens.

Methods: Tissue samples, obtained from biopsy or radical prostatectomy, were sectioned and stained with either
hematoxylin & eosin (H&E), immunohistochemistry for p63 and AMACR or Time Resolved Fluorescence (TRF) for
androgen receptor (AR).
Image pairs were aligned allowing for translation, rotation and scaling. The registration was performed automatically by
first detecting landmarks in both images, using the scale invariant image transform (SIFT), followed by the well-known
RANSAC protocol for finding point correspondences and finally aligned by Procrustes fit. The Registration results were
evaluated using both visual and quantitative criteria as defined in the text.

Results: Three experiments were carried out. First, images of consecutive tissue sections stained with H&E and p63/AMACR
were successfully aligned in 85 of 88 cases (96.6%). The failures occurred in 3 out of 13 cores with highly aggressive cancer
(Gleason score ≥ 8). Second, TRF and H&E image pairs were aligned correctly in 103 out of 106 cases (97%).
The third experiment considered the alignment of image pairs with the same staining (H&E) coming from a stack of 4
sections. The success rate for alignment dropped from 93.8% in adjacent sections to 22% for sections furthest away.

Conclusions: The proposed method is both reliable and fast and therefore well suited for automatic segmentation and
analysis of specific areas of interest, combining morphological information with protein expression data from three
consecutive tissue sections. Finally, the performance of the algorithm seems to be largely unaffected by the Gleason
grade of the prostate tissue samples examined, at least up to Gleason score 7.
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Background
Prostate cancer (PCa) is the second most common cancer
in men worldwide. About 910.000 new cases were recorded
in 2008 accompanied with 258.000 deaths. According to
current estimates, the incidence of PCa is expected to
double by 2030 [1].
Analysis of the microscopic features of the prostate is

vital for clinical management of PCa patients, both with re-
spect to diagnosis and prognosis. Today, PCa is commonly
diagnosed by a uropathologist carefully examining at least
ten transrectal ultrasonography (TRUS)-guided prostate
biopsies using conventional brightfield microscopy [2].
Manual morphological analysis is also carried out on
whole-mount tissue sections after radical prostatectomy
(RP), which may provide valuable prognostic information
about outcome of the disease. The most important as-
sessment of the morphology is to determine tumor grade
according to the Gleason system [3]. Moreover, consid-
erable research efforts have been directed towards the
analysis of tissue sections for assessing the presence of
proteins (biomarkers) which can potentially be related
to the development and progression of the disease [4]. The
study of tissue biomarkers has been expanding since
the implementation of Tissue Micro Arrays (TMAs) [5].
Such arrays can contain several hundreds of tissue samples
(cores) and have paved the way for high-throughput studies
of predictive tissue biomarkers [6].
A common research objective is to investigate the ex-

pression of several biomarkers on a stack of consecu-
tive tissue sections. Moreover it is important to be able to
recognize specific tissue compartments (benign vs. cancer,
epithelial vs. stromal cells, cell cytoplasm vs. nuclei) where
such biomarkers are expressed, as this might be related to
different states of the disease. There is an unmet need to
combine morphological information with protein expres-
sion analysis coming from consecutive tissue sections. An
automated approach would make this procedure fast and
suitable for the study of multiple features on large TMAs.
The aim of our paper is to investigate the feasibility

for an integrative analysis through automated registra-
tion of digital images of consecutive histological prostate
sections stained and visualized with different modalities.
Manual evaluation of histological sections is time-

consuming and highly dependent on the user’s experi-
ence, resulting in high inter- and intra-variability [7].
However the improvement in technology and the access
to larger storing facilities in the last decade have led to
the creation of digital slide scanners and large digital ar-
chives [8]. This paves the way for the use of Image Ana-
lysis techniques to handle histological images.
Automated registration of histological sections (stained

with the same modality) has been attempted on cervical
carcinoma by Braumann et al. [9], while automated regis-
tration of multimodal microscopy with application to PCa
is considered in a recent paper by Kwak et al. [10].
Their aim was to register pairs of images, from light
microscopy and infrared spectroscopy, in order to ex-
tract morphological features for use in the classification
of cancer versus non-cancer cases. The registration is
intensity based, leading to a minimization of a non-
convex similarity measure over a four-dimensional space
of transformation parameters. This problem is solved
using the Nelder-Meade simplex method, which is a local
search technique. In contrast, our registration method is
landmark-based, with the landmarks coming from Scale
Invariant Feature Transform (SIFT), which has the ad-
vantage of speed. Moreover, landmark-based methods
look for similar features in the image pair rather than
dissimilarities and may therefore succeed even in the
presence of noise and occlusions. SIFT works with
gray-scale images, therefore using more of the original
image information when compared to Kwak et al. [10],
where only binary (black-white) images were used.
A number of papers explore the possibility to integrate

information from in vivo imaging (ex. PET, MRI) with
histology [11], and analysis of sequential immunofluores-
cence staining for assessing several biomarkers [12].
Multiple studies apply SIFT [13] for landmark-based

registration of medical images. The earliest of such studies
was performed by Chen et al. [14], where unimodal regis-
tration was considered. Their experiments are of a very pre-
liminary nature. Other applications are found in Tang et al.
[15] and Wei et al. [16]. The former consider alignment of
stem cell images whereas the latter is concerned with regis-
tration of retinal images, which differs from our problem in
that it requires registration transformations of another type
(quadric transformations). Another relevant contribution is
described by Zhan et al. [17] where texture landmarks,
found using scale-space methods, are used in the non-rigid
registration (with thin plate splines) of prostate image pairs
from histological and MR specimens. For a pair of images,
the determination of landmark correspondences and the
best registration transformation is found simultaneously by
solving a non-linear optimization problem in a large number
of variables. Evaluation was carried out for five image pairs.
The focus of the present paper is the alignment problem

for triplets of images produced with different modalities. In
particular we have used two pairs of images. One pair in-
cludes two images from consecutive sections stained re-
spectively for hematoxylin and eosin (H&E) and antibodies
directed against p63 and Alpha-methylacyl-CoA racemase
(AMACR), a combination of proteins used in routine clin-
ical diagnostics to identify basal cells and high grade prostate
intraepithelial neoplasia (HGPIN)/PCa cells, respectively.
Importantly, these 2 stainings give morphological informa-
tion and a possibility to identify cancer areas. The other pair
includes one H&E image and one Time Resolved Fluores-
cence (TRF) for Androgen Receptor (AR) obtained from the
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same section after washing off the H&E staining. This gives
information about the status of a potential biomarker (AR)
within the prostate. All these modalities are presented in
Figure 1. We use SIFT-landmarks, RANSAC and Procrustes
alignment, which yields an equally reliable yet faster method
for registration than that which has previously been de-
scribed in [10]. In our work, we have used images coming
from real patient material collected and processed at our in-
stitution. The staining techniques were optimized in order
to generate strong and specific detectable signals with min-
imal background noise.

Methods
Tissue acquisition and processing
Tissue samples came from two sources: RP for curative
purpose and needle biopsies taken for diagnostic purposes.
From the prostatectomy material cores with 1mm diam-
eter were punched out of relevant blocks and organized in
a TMA format. Core needle biopsies are up to 15mm long
and 1mm wide tissue samples. After the acquisition pro-
cedure both types of material were fixed in formalin and
embedded in paraffin.
To conduct the study, 4 μm sections were cut from the

paraffin blocks and mounted on slides. The pre-processing
before staining includes deparaffinization through xylene
and ethanol with decreasing concentration, followed by re-
hydration and antigen retrieval to allow the antibodies to
bind to the proteins of interest. The process described above
has been performed manually and the accuracy of each step
Figure 1 Tissue sections and staining techniques. A, H&E. Nuclei staine
shades of pink. This staining shows the morphological features of the tissu
aggressiveness (Gleason score). B, p63/AMACR. p63 is a protein present in
protein is present in the cytoplasm of cancer cells and appears red. This sta
for AR. AR is present in cell nuclei and its expression may be related to the
quantification of the fluorescence signal. Modalities in A, B, C are used in E
sections stained with H&E, such as the one used in experiment 3. The imag
can affect the quality of the final results and introduce arti-
facts. For example, tissue samples can undergo mechanical
deformation during handling and an incorrect preprocessing
can cause poor staining and therefore inferior images.
The procedure was done strictly in compliance with the

Helsinki Declaration after approval from the Regional Eth-
ical Review Board at Lund University.

Staining
In Experiment 1, a TMA containing 88 cores was pro-
duced and sectioned. One section was stained for H&E
followed by immunohistochemistry for p63/AMACR on
the consecutive section. The H&E is a traditional and
standardized method in which cellular nuclei are stained
with a bluish shade while the cytoplasm is stained with
different shades of pink. Slides stained with this proced-
ure are generally used to determine the presence of can-
cer and assess its aggressiveness. The p63/AMACR is a
double staining procedure in which the single basal cell
layer surrounding a benign gland has a brown nuclear
staining (p63), the cytoplasm in the majority of the can-
cer cells is stained with reddish shade (AMACR) and the
rest of the tissue has different shades of blue. This stain-
ing helps the pathologist to spot the presence of cancer
or pre-malignant lesions with HGPIN when the histo-
logical pattern is inconclusive.
For Experiment 2, sections from biopsies were stained

with mouse monoclaonal anti-AR antibody (AR411) which
was previously labelled with Europium for TRF. TRF is an
d in blue (Hematoxylin); Eosin stains all other structures in various
e and is used by uropathologists to diagnose cancer and grade its
the basal cells of benign glands and appears brown while AMACR
ining is used to confirm the diagnosis when H&E is not clear. C, TRF
status of the disease. AR was detected through TRF, which allows for
xperiment 1 and 2. D, schematics of a stack of consecutive tissue
es size is typically 1000x1000 pixels.
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evolution of conventional immuno-fluorescence. It uses lan-
thanide chelates (europium, terbium, etc.) as fluorophores
[18]. The long decay times of these isotopes together with a
gated acquisition system allow for the detection of a specific
signal by excluding the autofluorescence phenomenon, thus
obtaining a more linear quantification of the biomarker.
Here, TRF is used for the quantification of tissue protein ex-
pression in specific compartments as previously shown [19].
After acquisition of images by TRF the AR411 antibody was
washed off and the samples were further processed with
H&E staining.
Finally, in Experiment 3, one TMA was built containing

50 cores from prostatectomies; four sections were cut,
mounted on slides and stained for H&E. This TMA was
used to validate results in Experiments 1 and 2 and to study
the inner morphological variability of prostatic tissue.

Gleason grading
A normal prostate is organized in glandular structures
formed by a layer of basal cells and a layer of epithelial cells
surrounding an empty space known as the lumen. Such
glands are surrounded by connective tissue called stroma. In
presence of cancer, this normal glandular structure is
disrupted. The Gleason scoring was introduced in the 1960’s
and updated in 2005 [20]. It is a system based on histo-
logical growth patterns of cancer cells. The Gleason grades
(ranging from 1–5) of cancer cells from areas of two distinct
growth patterns (two most prevalent) are summed up to
form a Gleason score ranging from 2 to 10. A high Gleason
grade, and thus Gleason score, is found in less differentiated
tumours, that generally are more aggressive and have a poor
prognosis [21].
In order to assess the ability of the algorithm to regis-

ter a large range of images with various morphological
characteristics, a pathologist evaluated H&E staining and
assigned a Gleason score to each core.

Image acquisition
The Mirax Scan (Carl Zeiss) equipped with Plan-
Apochromat 20x/0.75 objective was used to take pic-
tures of H&E and p63/AMACR stained sections.
For Experiment 1, we collected twenty times magnified

(20x) images for each core resulting in a total of 88 image
pairs (H&E and p63/AMACR in consecutive sections).
For Experiment 2, 106 images pairs (H&E and TRF)

were collected. The Nikon Eclipse 600 equipped with an
appropriate laser and programmed electronics (Signifer
1432 MicroImager; Perkin-Elmer Life Sciences; Wallac
Oy) was used for TRF acquisition. In order to acquire
the Europium signal, a filter with excitation and emis-
sion bands centered in 340 nm and 615 nm was used.
TRF produced forty times maginified (40x) images.
For Experiment 3, we collected 20x images for each

core of the four sections.
Image registration
As described in Zitova et al. [22], our registration algorithm
pipeline consists of four steps: (1) feature detection and ex-
traction, (2) feature matching, (3) transformation function
fitting and (4) image transformation and image resampling.
We first explain the steps (3) and (4), to fix termin-

ology, and then move to SIFT (1) and RANSAC (2).
In our description a gray scale image I is a real valued

function I:Ω → [0,1] defined in a planar region Ω, called
the image domain, and whose value at a particular point
(pixel) x = (x1, x2) is the gray level I (x).
Suppose now that we are given two images I1:Ω1 → [0,1]

and I2:Ω2 → [0,1] where I2 depicts a scene which is similar
to the one obtained if the scene in I1 is subjected to a simi-
larity transformation, i.e., a mapping y = T (x) of the fol-
lowing form

T xð Þ ¼ a −b
b a

� �
x1
x2

� �
þ t1

t2

� �
:

Thus T is the combination of a scaling by the factorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
, a rotation by the angle arctan(b/a) and a

translation by (t1,t2). We define the transformed image
T*I2 :Ω→ [0, 1] as the pullback of I2 by T, that is, by the
formula T*I2(x) = I2(T(x)) if T(x) ∈Ω2, otherwise T*I2(x) = 0.
The objective is to find a map T such that T*I2(x) becomes
as similar to I1 as possible. We do this by finding corre-
sponding keypoints in the two images and then estimate
the optimal mapping using Procrustes analysis.

Assume that we have found N point pairs xi; yið Þf gNi¼1

in the two images, such that yi ∈Ω2 corresponds to xi ∈
Ω1 up to a small error ϵi after transformation:

yi ¼T xi
� �þ ϵi i ¼ 1;…;Nð Þ;

where T is a similarity transformation of the above type.
The desired mapping is the one which minimizes the

sum of the squares of the errors: minT 1
2

XN

i¼1
ϵi

		 		2 . Ob-

serve that if the transformation parameters are collected
in a vector z = (a, b, t1, t2) then we may write, T(x) = B(x) z
where B(x) is the matrix

B xð Þ ¼ x1 −x2
x2 x1

1 0
0 1

� �

The error becomes ϵi = yi − B(xi) z, which is linear in z.
(This is possible only in two dimensions).
If we stack the y-vectors as YT = [(y1)T,…, (yN)T] and

introduce the matrix B by BT = [B(x1)T,…, B(xN)T] then
one can see that the error-minimization becomes a clas-
sical least squares problem with respect to z,

minz
1
2

Y−Bzk k2

where ‖ ⋅ ‖ now denotes the norm in R2xN. The desired
mapping corresponds to the optimal z, which is the
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solution the normal equations BTBz = BTY. For this prob-
lem to be solvable we need at least two corresponding
point pairs. This is sufficient if the pairs are nondegenerate,
however, we use at least four point correspondences to get
a more well-conditioned problem.
The corresponding keypoint pairs, used in the Pro-

crustes alignment are found using SIFT and RANSAC in
a classical manner, described briefly below.
SIFT [23] works by the following principle: first,

keypoints are detected in the image. They are local extrema
in space and scale when the image is embedded in its
scale-space, and they have the property that they are stable
under changes in illumination and view-point. Secondly,
each such keypoint has a descriptor associated with it, as
similar to a fingerprint. In this paper, the keypoint together
with its descriptor is called a landmark. The descriptor
consists of a 128-dimensional vector containing gradient
statistics from eight directions in a 4 × 4 neighbourhood of
the keypoint.
A Preliminary matching is then performed; assume we

have found keypoints xi, i= 1,…,N1, in I1 and yj, j= 1,…,N2

in I2, together with their descriptors. Let D= [dij] denote the
N1 ×N2 distance matrix, where dij denotes the Euclidean
distance between the descriptors of xi and yj For each index
i, the points xi and yj

�
, where j� ¼ arg minj dij , is called a

preliminary matching if the following condition holds

minj dij

minj≠j� dij
< 0:77:

This condition is known as Lowe’s criterion. It states
that the nearest neighbor of the descriptor of xi in the
set of descriptors of all the keypoints yj should be much
closer than the next-nearest neighbor in order for the
keypoint xi to be matched with yj

�
. We have applied the

implementation of SIFT by Vedaldi and Fulkerson [24].
The set of preliminary matches found above may con-

tain a significant percentage of false matches, usually re-
ferred to as outliers. The RANSAC algorithm invented by
Fischler and Bolles [25] can be used to select a large subset
of matches, called inliers, from the set of preliminary
matches which is consistent with the registration model.
RANSAC is a statistical approach where a small number
of preliminary matches are selected at random from the
set of preliminary matches and used to estimate a model;
in our case we use four preliminary matches to estimate a
Procrustes alignment. Using this alignment transformation
all keypoints in the first image are transformed into the
second image. If a transformed keypoint is within 5 pixels
of the keypoint to which it has been matched in the pre-
liminary matching, then the preliminary matching of this
pair of keypoints is considered to be an inlier. The number
of such inliers is then recorded. This procedure is repeated
(in our case 100 repetitions) and the model is chosen
which has the highest number of inliers. The final align-
ment is then estimated by Procrustes analysis using all of
the matches in the set of best inliers.

The evaluation procedure
The proposed registration method has been tested in
three different experiments, each addressing different
image alignment problems. In all three experiments the
quality of the registration was evaluated visually. A regis-
tration was defined as correct if the computed trans-
formation was able to overlay the two images in such a
way that corresponding areas of interest were visually
confirmed to line up appropriately. An example of an
image overlay is shown Figure 2. Each visual evaluation
was performed by two independent authors.
Visual evaluation has the obvious drawback of being

subjective, however was chosen in order to save time.
Since the human eye is very good at detecting visual
inconsistencies we believe that visual evaluation is an
appropriate method for evaluating many registrations
within a limited amount of time.
We do not, however, rely entirely on visual inspection.

In the first of our three experiments we have also
performed an extensive quantitative evaluation of the re-
sults. Note that the first experiment contains potentially
the most challenging of the three registration problems
considered in this work since the image pairs consist of
adjacent tissue sections stained with different modalities.
The quantitative evaluation has two purposes, first of
which is to measure the quality of the automatic registra-
tion results. Second, the quantitative evaluation was used
to show the reliability of the visual evaluation, which was
employed in experiments 2 and 3.
With regards to the procedure of the quantitative

evaluation, in the 85 of the 88 cases where visual evalu-
ation has classified the automatic registration as correct,
the resulting registration transformation is compared to
the transformation obtained from Procrustes analysis
using manually detected keypoint pairs. More specific-
ally, for each image pair, multiple keypoint pairs were
found manually. If the images contained prominent sali-
ent features, three to four keypoints were used, other-
wise five keypoints were chosen. Procrustes analysis was
then performed and the corresponding transformation
Tmanual was recorded.
Next, the intrinsic uncertainty of the manual registration

is estimated. The intrinsic uncertainty is a positive number
ϵmanual defined in the following way: let {xi, yi}, i = 1,…,N,
denote the N manually detected pairs of corresponding
keypoints and define the residuals ϵi = yi − Tmanual(x

i). The
residuals have mean value of zero,

1
N

XN

i¼1
ϵi ¼ 0;



Figure 2 Successful alignment of H&E and AR. A, tissue section of a prostate biopsy, stained for H&E (20x magnification); B, the same tissue
section stained for AR using TRF (40x). C, Successful alignment shown as an overlay of image B onto image A. The staining procedure was the
following: first the tissue section was stained for AR and pictures acquired through TRF, then the AR was washed off, the section was stained for H&E
and a new picture was acquired through brightfield microscopy. Considering that AR is the protein to be quantified, it is important that AR expression
is preserved and therefore that the tissue is minimally stressed. Since the tissue is processed twice and this might alter its structure and protein
content, we have performed AR as the first staining. H&E on the other hand did not seem to be highly influenced by intermediate steps.
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by the construction of Tmanual. The intrinsic uncertainty
in the manual registration defined as the standard devi-
ation ϵmanual of the lengths of the residuals, i.e.,

�2manual¼
1

N−1

XN

i¼1
ϵi


 

2:

Note that this is, up to a fixed multiple, the quantity
that is minimized in the Procrustes analysis in order to
determine the optimal transformation T = Tmanual.
The next step is to use the proposed automatic registra-

tion method to compute the alignment transformation
Tauto. In order to estimate the uncertainty in the automatic
registration we use the manually detected keypoints {xi, y i}
once more to compute the residuals ϵiauto ¼ yi−Tauto xið Þ .
We then define the uncertainty ϵauto as the positive number
given by

�2auto¼
1

N−1

XN

i¼1
ϵiauto


 

2:

This is the same expression used in the definition of
the intrinsic uncertainty of the manual registration,
except that this time the automatically determined trans-
formation Tauto is used to map the manually detected
keypoints {xi} from the first image into the second
image. Note that, since the transformation Tmanual is de-
fined as the similarity transformation which minimizes

the expression �2 ¼ 1
N−1

XN

i¼1
ϵi


 

2 then the inequality

ϵmanual ≤ ϵauto is always satisfied.
We define an automatic registration as quantitatively

correct if the following condition is satisfied,

�auto≤�manual þ 5 pixels

The tolerance of five pixels corresponds to the tolerance
used in the RANSAC sub-procedure of the automatic
method. It should also be noted that the average size of a
cell nucleus in the images used in our experiments was
approximately 5 pixels. This criterion is used to evaluate
the performance of the automatic registration method in
experiment 1. If the number of quantitatively correct reg-
istrations is a large percentage of the images in the sample,
then we will conclude that automatic registration is as
good as manual registration. Moreover, if the number of
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quantitatively correct registrations is found to be almost
the same as the number of visually correct registrations,
then we will conclude that visual evaluation is reliable for
our purpose in all three experiments.

Results
Experiment 1
In Experiment 1, 85 out of 88 images (96.6%) were cor-
rectly aligned according to visual evaluation (Figure 3).
Table 1 shows the average number of keypoints, initial

matches, best inliers and success rate.
We also analyzed the location of the matching keypoints

and found out that 32.6% of them are present within the
lumina, 19.4% in the glandular epithelial layer and 48% in
mixed areas (between glands).
An independent observer evaluated the H&E sections

and assigned a Gleason score to each core. The algo-
rithm correctly aligns 10/10 cores containing stroma,
37/37 containing benign tissue, 14/14 containing tu-
mors with Gleason score 6, 14/14 containing Gleason
score 7 tumors (eight cores with Gleason score 3+4 and
six containing Gleason score 4+3), 10/13 containing tu-
mors with a Gleason score higher than 7 (Table 2).
A qualitative evaluation of the 85 images that were

classified as correctly aligned by visual evaluation was
performed. The automatic and manual registration
methods were compared for each image pair by comput-
ing the uncertainties ϵauto and ϵmaual, defined in the
Methods Section. Recall that we define a registration as
being quantitatively correct if

�auto≤�manual þ tol;

where the tolerance tol = 5 pixels was used. Using this cri-
terion we found that 82 of the 88 (93.2%) of the image pairs
are correctly aligned. Thus, three of the image pairs which
were originally considered correctly aligned by the visual
evaluation were rejected by the quantitative evaluation. It
Figure 3 Successful alignment of H&E (left) and p63/AMACR (right). In
inliers = 31. The arrows link the matching inliers on the two images after ro
arrows would be parallel. This, however, is unrealistic in practice.
should be noted that two of these image pairs failed to sat-
isfy the quantitative criterion by as narrow a margin as one
fifth of a pixel or less. For comparison, the quantitative cri-
terion was employed with tol = 4 pixels, which gave 80 of
88 (90.9%) correct alignments, and with tol = 6 pixels,
which resulted in 84 of 88 (95.5%) correct alignments.
We also computed the statistics of the intrinsic un-

certainty of the manual registration and found the
mean value μ(ϵmanual) = 3.38 pixels and standard devi-
ation of σ(ϵmanual) = 2.60 pixels, hence the estimate
ϵmanual = 3.4 ± 2.6 pixels. The corresponding statistics
for the automatic registration is ϵauto = 5.0 ± 3.3 pixels.
These estimates should be set in relation to our chosen
tolerance tol = 5 pixels.
Experiment 2
In Experiment 2, 103 out of 106 (97.2%) (Table 3) were
aligned correctly as shown in Figure 2. In order to simulate
a situation where the antigen of interest (AR in this case) is
present only in a limited area, we performed a test where
we set the intensity of some random areas of the TRF
image to null (Figure 4). Successful alignment was still
obtained, however with less keypoints (data not shown).
Experiment 3
In Experiment 3, we performed registration between im-
ages of tissue sections, progressively further away from the
respective initial section. As explained above, H&E stained
sections were used.
Table 4 shows the results at distance i (1<i<3) from

each other. The average number of initial matches and
best inliers are calculated for comparison with progres-
sively further sections. The average initial matches
drop from 40.9 comparing consecutive sections, to
around 10.4 comparing the furthest ones. Best inliers
drop from 25.8 to around 3.4. For consecutive sections
93.9% of image pairs were correctly aligned, while this
itial keypoints ≈ 1000 in each image, preliminary matches = 34, best
tation and scaling of the right image. In a perfect alignment the



Table 1 Experiments 1

H&E kyp p63/AMACR kyp Initial matches (Best inliers)/initial matches Success rate (#correct/#tot)

Exp 1 953 1327 67 66% 96.6% (85/88)

Keypoints (kyp), initial matches, best inliers and success rate in experiment 1.
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percentage dropped dramatically to 52.1% and 22% for
the sections progressively further away.

Discussion
The present study shows that an automated registration of
multimodal images from histological prostate sections is
possible by using SIFT. Our work is novel with regards to
multiple aspects: to our knowledge it is the first time that
such algorithm is applied to multimodal microscopy for
PCa. Our protocol can detect the presence of multiple
antigens.
Pathologists often rely on integration of multiple immu-

nohistochemical stainings (H&E, p63, and AMACR) to
perform diagnostics. Experiment 1 shows that in at least
96.6% (visual evaluation) of the cases, the two differently
stained sections can be automatically aligned. We there-
fore present a potential supportive tool for PCa diagnos-
tics since this allows for automated alignment and fast
visualization of areas of interest on differently stained sec-
tions. In addition, the automated approach displays advan-
tages also for researchers with regards to time efficiency
and management of large sample cohorts.
The quantitative evaluation in experiment 1, classified 82

out of 88 (93.2%) image pairs as correctly registered. Thus,
the quantitative criterion rejected three image pairs that
were originally accepted as correctly aligned by visual
evaluation. The two evaluations agree in 96.5% of all cases.
Of note, two of these three images failed to meet the quan-
titative criterion by a margin as small as one fifth of a pixel.
If we accept also these images pairs as correctly aligned,
then the agreement goes up to 98.8%. Based on these re-
sults we considered visual evaluation as a reliable way of
assessing automated registration in all experiments.
In our protocol we have not only used different immuno-

histochemical staining but have also made use of TRF.
TRF allows for biomarker quantification due to its signal
linearity. As a result, we are able to integrate morpho-
logical information from H&E with quantitative analysis of
the expression of a certain molecule (in this case AR). Bio-
logical studies on the AR status in prostate tissues using
our method are ongoing. In the TRF and H&E registration
we observed a success rate of 97% (103 out of 106 images).
Table 2 Experiment 1; performance of the algorithm in
different histological classes

Stroma benign Gleason 6 Gleason 7 Gleason >7

Correct/total 10/10 37/37 14/14 14/14 10/13

The results suggest that Gleason score might be influential for the algorithm
success only for very aggressive cases.
In addition, the performance of the algorithm seems to be
very stable as displayed in the observation that 93% of the
initial matches were identified as best inliers. Robustness to
obstruction was also confirmed through correct alignment
of corrupted images (Figure 4). However, the fact that we
re-stained the same tissue section following removal of the
antibody may have contributed to the good performance. In
order to do the re-staining, we performed an optimization
of the protocol. Nevertheless, these data show that reusing
the same tissue again for re-staining does not affect the
quality of the resulting images and the registration process.
In our third experiment we tested automated alignment

of several consecutive H&E tissue section (4 in our initial
setting). In our mind this would have given us the upper
limit of sections that could be aligned and analysed for the
expression of several biomarkers in the same area of interest.
We observed that sections further than one section away
from each other have already some substantial differences in
the structure (assessed by an independent observer), which
can explain the lower success rate in automated alignment.
With this in consideration, the use of more than 3 consecu-
tive sections for multiple staining analysis will not guarantee
overlap of the area of interest. In order to address this issue,
one could consider optimizing protocols for multilabeling of
the same tissue section. In this regards, immunofluorescence
would technically be the best solution for quantification.
Since PCa is a very heterogeneous disease we have

assessed the performance of the algorithm for samples
with different Gleason scores. The algorithm correctly
aligned all the images with Gleason equal to or lower
than 7, which is the most common Gleason score
detected in patients. For patients with higher Gleason
scores, 10 out of 13 images were correctly aligned. This
may be due to the fact that the higher Gleason scores
are characterized by a more complex structure. They
present with fused glands and scattered individual can-
cer cells resulting in a highly variable appearance across
consecutive sections.
Due to the fact that the image pairs in question have

different modalities and may therefore not be easily
aligned by minimizing an intensity-based dissimilarity
measure, we have chosen a landmark-based registration
method for the image alignment. An intensity-based
dissimilarity measure was used in Kwak et al. [10] for
images of different modalities; however this required
first a transformation into binary images. In our method
we use grayscale images in order to retain more of the
available image information. Moreover, landmark-based
methods focus on features two images have in common



Table 3 Experiments 2

H&E kyp TRF kyp Initial matches (Best inliers)/(initial matches) (%) Success rate % (#correct/#tot)

Exp 2 9193 672 30 93% 97.2% (103/106)

Keypoints (kyp), initial matches, best inliers and success rate in experiment 2.

Lippolis et al. BMC Cancer 2013, 13:408 Page 9 of 11
http://www.biomedcentral.com/1471-2407/13/408
and ignore dissimilarities. In addition, landmark-based
registration is also easier to compute and therefore a
potentially faster method.
In our work the landmarks were extracted from the im-

ages by first detecting keypoints and descriptors using
SIFT. True correspondences between keypoints were sub-
sequently established using the descriptors and RANSAC.
Both SIFT and RANSAC are well-established tools in com-
puter vision and image analysis. The proposed method has
been used for other medical registration problems, but the
application to PCa and to these specific modalities (whose
advantages have been explained before) is, to our know-
ledge, novel.
The time it takes to transform one image was used as a

unit to measure the computational performance of the pro-
posed algorithm. This is an operation fundamental to all
registration problems and therefore appropriate for com-
parisons. We observed that 6% of the total time it takes to
register two images (typically 1000×1000 pixels each) is
Figure 4 Experiment 2: robustness of the algorithm. Image B
has been obtained from A by setting the intensity of random areas
to null. This simulates an image with lower antigen expression.
used for the image transformation. In addition when ana-
lysing the performance in detail we found that the bottle-
neck of the algorithm is the computation of distance
matrix, which is used to compare the keypoint descriptors
derived from SIFT. This computation represents 40% of the
total time required by the algorithm, which is nearly seven
times the amount required for one image transformation.
There are no algorithms able to find the exact nearest
neighbor in a more efficient way than exhaustive search,
however the Best Bin First [26] can speed up the computa-
tion by finding it with a certain probability. The average
runtime of our script was 7.6 seconds per image pair, in-
cluding visualizations, using a Matlab implementation. We
have observed that a preprocessing step, which deletes all
the spurious background keypoints, can reduce the distance
matrix to 50% of its original size. Unfortunately, we have
not been able to obtain information about the performance
of the registration method described by Kwak et al. [10]
However, we can infer from the method that they use that
computation of the intensity-based dissimilarity measure
requires one image transformation. Their optimization
method (in four-dimensional space) requires five such com-
putations just to get started and a number of iterations in
order to converge to a good solution. Unless their method
converges in about ten iterations, it cannot possibly be
faster than the one proposed by us.
One must however mention that the current study may

have some limitations. The work is a proof of principle
study and therefore is performed on a limited number of
samples. In addition, the samples come from one single in-
stitution and therefore the results must be validated by fur-
ther studies conducted at several independent institutions.

Conclusions
In this study we have investigated the potential to automat-
ically align microscopic images of prostate tissue sections
stained with different modalities. This addresses the need
for integration of morphological information with protein
expression data allowing for a more detailed description of
Table 4 Experiment 3

Distance from
the reference
section

Initial matches Best inliers Success rate %

average (range) average (range) (#correct/#tot)

consecutive + 1 40.9 (6–124) 25.8 (0–108) 93.9% (46/49)

consecutive + 2 13.5 (1–33) 5.6 (0–15) 52.1% (25/48)

consecutive + 3 10.4 (0–26) 3.4 (0–12) 22% (11/50)

Initial matches, best inliers and success rate for sections progressively further
away from each other.
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PCa. Our results, based on the use of SIFTalgorithm shows
that potentially 3 consecutive sections of prostate tissue
with different stainings can be aligned in an unsupervised
way allowing for successive analysis of the tissue. Of note,
good results were obtained when aligning H&E and p63/
AMACR images (96.6% of images correctly aligned using
visual evaluation) and even better results were obtained
when aligning TRF and H&E images (97%). This shows that
the algorithm performed well also with less informative im-
ages such as 1-channel TRF (it must be said that in this
case using the same section for producing the 2 images
might have contributed to the very high success rate). The
advantage in terms of time efficiency is very clear when
considering that typical research studies can include thou-
sands of tissue samples and therefore thousands of compar-
isons that otherwise must be performed manually. The
results in experiment 3 confirm what was observed in the
other experiments and suggest that the number of easily
alignable consecutive sections may be limited to 3. There-
fore, if one wishes to investigate many biomarkers, it is pref-
erable to develop multi-staining procedures to be performed
on the same slide. Currently work in the field of clinically
relevant image analysis remains limited. Our study is there-
fore a novel approach that supports implementation of auto-
mated image analysis in the field of PCa diagnostics and
prognostics.
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