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Abstract

determine the effect of these agents on hypoxia.

the modulation of tumor oxygenation.

including its measurement, modulation and targeting.

Background: Human and feline head and neck squamous cell carcinoma (HNSCC) share histology, certain
molecular features, as well as locally aggressive and highly recurrent clinical behavior. In human HNSCC, the
presence of significant hypoxia within these tumors is considered an important factor in the development of a
more aggressive phenotype and poor response to therapy. We hypothesized that feline head and neck tumors,
particularly HNSCC, would exhibit hypoxia and that 64Cu—diacetyl—bis(N4—methylthiosemicarbazone) (Cu-ATSM)
positron emission tomography/computed tomography (PET/CT) would permit detection of intratumoral hypoxia.

Methods: 12 cats with measureable head and neck tumors were given ®*Cu-ATSM and iodinated contrast for
PET/CT scan. The presence or absence of hypoxia was also assessed using an intratumoral fluorescent life-time
probe to quantitate pO, and pimonidazole immunohistochemical staining in biopsy specimens. In two cats,
intratumoral O, and ®*Cu-ATSM uptake was measured before and after treatment with anti-angiogenic agents to

Results: Eleven of twelve feline tumors demonstrated significant ®*Cu-ATSM uptake, regardless of malignant or
benign etiology. The presence (and absence) of hypoxia was confirmed using the fluorescent O, detection probe in
nine tumors, and using pimonidazole staining in three tumors. Squamous cell carcinomas (HNSCC) demonstrated
the highest degree of hypoxia, with T,,./M ratios ranging from 4.3 to 21.8. Additional non-neoplastic tissues
exhibited ®*Cu-ATSM uptake suggestive of hypoxia including reactive draining lymph nodes, non-malignant thyroid
pathology, a tooth root abscess, and otitis media. In two cats with HNSCC that received anti-vascular agents, the
pattern of ®*Cu-ATSM uptake was altered after treatment, demonstrating the potential of the feline model to study

Conclusion: Feline HNSCC serves as a clinically relevant model for the investigation of intratumoral hypoxia
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Background

Hypoxia occurs in tumors for a variety of reasons; these
include abnormal vessel growth [1,2], fluid accumulation
in the tumor extracellular matrix and rapid proliferation
of cancer cells causing high interstitial pressure [2,3], a
breakdown of the diffusion geometry within the tumor,
and paraneoplastic or therapy-related anemia leading to
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decreased oxygen delivery [4]. While tumor hypoxia was
initially recognized as a cause for cellular radiation
resistance, it is now known to contribute more gene-
rally to malignant progression and therapeutic failures
[5-7]. Lack of oxygen within tumors results in relative
resistance to ionizing radiation, since the presence of
oxygen permits irreversible peroxidation of DNA follo-
wing ionizing radiation [5]. Furthermore, in acidic,
hypoxic conditions, an aggressive cellular phenotype,
with increased propensity for angiogenesis, invasion,
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and metastasis can emerge, an effect mediated by hypoxia-
inducible transcription factors [2,8-11].

Hypoxia and its contribution to malignant phenotype
and treatment failure are well-documented in head and
neck squamous cell carcinoma (HNSCC) [6,9,11-17].
Conversely, modulation of hypoxia may provide benefit
to patients with HNSCC [18], which underscores the
importance of understanding the impact of therapies on
tumor hypoxia and developing improved methods to
modulate tumor pO, and the molecular response to
hypoxia. Unfortunately, animal models used to study
HNSCC may not completely recapitulate the larger,
invasive, and metastatic phenotype observed in human
clinical populations. Indeed for many cancers and agents,
there is a significant gap between preclinical rodent investi-
gations and the clinical response of patients, suggesting a
need to understand the biology of therapeutic interventions
in models that more closely mimic human malignancies.

One potential model for HNSCC is head and neck
squamous cell carcinoma that occurs spontaneously in
pet cats. HNSCC is among the most common cancers
affecting cats [19,20]. Although its causation is not well
studied, it is thought that the fastidious grooming behavior
exhibited by cats may put the feline oropharynx at risk of
exposure to a variety of environmental carcinogens [21-23].
In addition to sharing histopathologic appearance, feline
HNSCC is characterized by invasive, highly recurrent, and
sometimes metastatic phenotype that is also observed in
people with this cancer [19]. Furthermore, feline and
human HNSCC may share their molecular underpinnings
including frequent expression of EGFR [24,25] and Cox-2
[26-28], as well as mutant p53 [23]. However, to our know-
ledge, the presence of hypoxia has not been previously
studied in feline HNSCC.

A great variety of techniques to detect hypoxia in
tumors have been developed. Traditionally, techniques for
evaluating tumor hypoxia have comprised tissue probes
and immunohistochemical evaluation of tissue [29]. How-
ever, these methods have limited clinical application given
that they are invasive and provide only focal assessment of
oxygenation. To provide a clinically applicable, global as-
sessment of tumor hypoxia, imaging techniques have been
applied. In vivo imaging methods include both magnetic
resonance (MR) techniques such as dynamic contrast
enhanced-MR and nuclear-based imaging modalities,
including SPECT (Single Photon Emission Computed
Tomography) and PET (Positron Emission Tomography).

PET utilizes the detection of secondary, annihilation
photons produced by cyclotron-generated, positron-
emitting radionuclides, such as °F, °N, '°0, "'C, ®*Cuy,
and ®*Cu. Suitable radionuclides are chemically coupled
with tracers targeted for detection of particular molecular
or physiologic parameters, such as hypoxia. Though
activity of the most commonly used PET agent, 2-deoxy-2-
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(18F)ﬂuor0—D—glucose (FDG), has been correlated with gene
expression induced by hypoxia (HIF-1 a), FDG does not
directly detect hypoxia within the tissues [17]. A number
of PET tracers specifically designed for the detection
of hypoxia have been developed. These include either
misonidazole (MISO) or azomycinarabinofuranoside
(AZA) coupled to '®F, or ATSM coupled to a positron-
emitting isotope of Cu (°2Cu of ®*Cu) [13-16,30,31].
All such agents rely on the hypoxia-dependent trapping
of the tracer in cells that are hypoxic, yet viable. Cu-
diacetyl-bis(N,-methylthiosemicarbazone) (Cu-ATSM) has
been demonstrated to exhibit hypoxia associated cellular
uptake and is particularly advantageous due to its rapid
uptake and strong signal to noise ratio. However, there is
also evidence that some tumor subtypes may not demon-
strate a direct relationship between Cu-ATSM signal and
hypoxia [16,32].

Our primary goal was to determine whether feline
head and neck tumors, particularly feline HNSCC,
exhibit biologically relevant hypoxia. For our purposes
we considered levels of hypoxia sufficient to confer
cellular radioresistance or to induce of HIFla signaling
to be biologically relevant. Such consequences occur
below 1% O, (7.5 mmHg). In addition, we planned to
evaluate the utility of ®*Cu-ATSM PET to detect hypoxic
tumors in cats. To accomplish these aims, all cats were
imaged with **Cu-ATSM PET/CT and were also evaluated
using at least one other technique to measure intratumoral
hypoxia including a fluorescent probe and/or immunohis-
tochemical detection of pimonidazole. Herein, we demon-
strate that most feline head and neck tumors concentrate
®*Cu-ATSM and that this signal is concomitant with low
intratumoral oxygen levels and pimonidazole uptake.
Feline HNSCC provides an opportunity to explore the
modulation of tumor oxygen and vascular physiology in a
clinically relevant system.

Methods

Animals

This study was conducted with approval from Michigan
State University’s Institutional Animal Care and Use
Committee and informed client consent. Twelve pet cats
with head and neck tumors were recruited for participation
in this study. Inclusion criteria were the presence of a
measureable and accessible tumor and lack of systemic
illness that would preclude anesthesia or would impact
oxygenation (e.g. severe anemia, respiratory disease). Initial
evaluation included a physical examination, complete blood
count, serum biochemical profile, and urinalysis.

Anesthesia

Cats were anesthetized for PET/CT and then the following
day for intratumoral oxygen probe measurements and
tumor biopsy. In order to allow cats to breathe room air
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and not 100% oxygen, injectable rather than gas anesthesia
was used for PET and intratumoral O, measurements.
Cats were switched to either Isoflurane (1-3% in oxygen)
or desflurane (5-9% in oxygen) anesthesia immediately
prior to biopsy. Cats were placed under general anesthesia
using either a combination of diazepam (0.5 mg/kg)/keta-
mine (10 mg/kg) or a continuous rate propofol infusion
(100 — 600 pg/kg/min to effect). Decisions regarding
anesthetic combination were made based on the physical
status and concurrent conditions of these older, in many
cases geriatric, cats. Diazepam/ketamine combinations
were augmented with either butorphanol (0.2 mg/kg),
buprenorphine and or dexmedetomidine (40 pg/kg) for im-
proved immobilization. Cats were continuously monitored
visually and for heart rate, respiratory rate, and oxygenation
via a pulse-oximeter. Cats that received dexmedetomidine
were given atipamezole (250 pg/kg) intramuscularly for
reversal of sedation upon completion of the procedure.

PET/CT

®Cu-ATSM was produced with a commercially available
ligand kit (Proportional Technologies, Houston, TX) using
manufacturer instructions and 64-Cu obtained from the
Washington University Medical Center cyclotron. The
target dose was 74 MBq (2 mCi) of **Cu- ATSM per cat
with actual dose ranging from 72.5 to 107 MBq (1.96 to
2.9 mCi) delivered intravenously through a catheter placed
in either the cephalic or saphenous vein. Scans were
performed following an uptake period of 20 minutes.
Following induction of general anesthesia, cats were posi-
tioned in sternal recumbency in a GE Discovery™ STE
PET/CT scanner (GE Healthcare). After a CT attenuation
correction scan was performed, PET imaging of the head
and thorax were performed in two, 15.7 cm bed positions,
with 3D acquisition parameters. Intravenous non-ionic
iodinated contrast (iohexol) was administered at a dosage
of 660 mg I/kg for a post-emmission CT scan.

Intratumoral oxygen measurement

To quantify pO, in particular locations within the tumor,
a fluorescent life-time probe (OxyLab pO,™, Oxford
Optronix, Oxford, England, UK) was used in conjunction
with a large area needle sensor to provide pO, sampling
area of 0.8 — 1.0 mm? PO, was measured at three distinct
regions within each tumor. To perform the measurement,
a 22-gauge over- the-needle intravenous catheter was used
as a guide for the O, sensor. The catheter was introduced
into the tumor and the catheter needle was retracted, lea-
ving the polypropylene sheath in place. The 23-gauge
sensor was passed through the catheter to embed within
the tumor parenchyma beyond the catheter opening. The
probe was left in place until pO, readout stabilized, with
less than 1-2 mmHg variation for a two minute period.
Several minutes were required to equilibrate at each
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location. The value reached at the equilibration point was
recorded as the pO, for that region. This process was
repeated to obtain three pO, measurements at distinct
locations. In two instances, only two measurements were
obtained due to the small volume of accessible tumor.
Location of the probe was documented in the cases
treated with antiangiogenic agents and reevaluated, using
a diagrammatic representation of the feline oral cavity and
using digital photography to reproduce the area probed as
accurately as possible.

Pimonidazole immunohistochemistry

There are no published feline doses for pimonidazole.
Therefore dose was based on that reported in the dog
[33,34]. Pimonidazole was administered intravenously at
the time of ®*Cu-ATSM administration (24-hours before
biopsy) at a dose of 0.28 mg/m? and 0.5 mg/m? in four and
five cats, respectively. In three cats, pimonidazole was
administered at a dose of 0.5 mg/m? IV between 20 and 60
minutes prior to biopsy. Biopsies were collected 24 hours
following the PET/CT imaging and immediately following
pO, probe measurements. Following collection, biopsies
were fixed in 4% paraformaldehyde at 4°C for 24 hours.
Samples were then transferred to distilled water, 30% etha-
nol, 50% ethanol and 70% ethanol in series, each for 24
hours at 4°C. The fixed specimens were embedded in par-
affin, sectioned onto slides, and stained using a commer-
cially available monocolonal antibody against pimonidazole
tissue adducts ((Hypoxyprobe™- 1, Hypoxyprobe Inc,
Burlington, MA) according to manufacturer instructions.
Simultaneous examination of H&E stained sections was
performed using light microscopy by a board-certified
veterinary pathologist (DWA). Samples were scored to
determine the proportion of tumor «cells exhibiting
pimonidazole binding, as previously described [35].

Vascular targeting

Two cats were treated with vascular targeting agents and
evaluated with ®*Cu-ATSM PET/CT before and after
treatment. Pre- and Post- treatment imaging was
performed 7 days apart. The first agent evaluated was an
antivascular peptide, Anginex, that targets galectin-1 on
the surface of endothelial cells [36]. Anginex was adminis-
tered subcutaneously at a dose of 5 mg/kg twice daily for a
total of 5 doses prior to the second scan. The second agent
used was a multiple tyrosine kinase inhibitor, toceranib
(Palladia®, Pfizer Animal Health, Kalamazoo, MI) that
targets vascular endothelial growth factor receptor 2
(VEGEFR2) as well as platelet-derived growth factor 2 and
¢-KIT. Toceranib was administered at a dose of 2.7 mg/kg
per os, every other day for a total of three treatments prior
to repeating the PET/CT.
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Imaging data analysis

PET/CT data was analyzed with MedImage Medview™ LE
version 11.7, by a board-certified veterinary radiologist
(EAB). Regions of interest were hand-drawn around each
tumor and within dorsal cervical muscles, to determine
maximum and average tumor uptake (T, and T,,), and
average muscle uptake (M). These are standardized uptake
values (SUVy,,) normalized for body weight; SUV is the is
the ratio of the decay corrected activity per unit volume of
tissue (nCi/ml) to the administered activity per unit of
body weight (nCi/g) [37]. Ratios of uptake of tumor to
uptake of muscle were calculated (T ,../M and T,,/M) as
relative measures of tumor hypoxia.

Statistical analysis

All numerical variables were tested for deviation from a
normal distribution using the D’Agostino Pearson Test.
Data were described using a median value or using mean
+ standard deviation, if they failed or passed normality
testing, respectively. The Mann-Whitney test was used to
compare T,,,./M and T,,/M between HNSCC and other
tumor types. A Kruskal Wallis test was used to compare
Tma/M and T,/M in between HNSCC, sarcomas and
benign tumors.

Results

The twelve cats included in this study ranged in age from
7-16 years (mean =12+ 2.8 years), comprised 8 females
and 4 males, and were all of common domestic (rather
than purebred) origin. Of the twelve primary masses
examined in the cats, six were squamous cell carcinomas
(HNSCC), three were sarcomas, and three were benign
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lesions, (Table 1). Size of the masses ranged from 1.4 cm
(benign) to 8.7 cm (malignant) maximum diameter with a
mean of 4.0 + 2.0 cm.

With the exception of the bone cyst, all lesions demon-
strated at least regional 64-Cu uptake (Table 1). Tmax/M
ratios were significantly higher (P <0.005) than Tav/M
ratios, reflecting heterogeneity of uptake in tumors, which
in three tumors (both osteosarcomas and one HNSCC)
included signal voids. For the tumors exhibiting signal
voids, pre and post contrast CT images were compared.
Based on Hounsfield Unit (HU) analysis, the tumoral
regions exhibiting no 64-Cu uptake were also devoid of
CT contrast enhancement, which demonstrates lack of
perfusion and, likely, necrosis. Pre and post contrast
measurements in the HNSCC were 41 and 40 HU respec-
tively, while in the osteosarcoma, in an area without
mineral attenuation, values were 40 and 42 HU pre and
post contrast; this compares to an area with contrast
enhancement and 64-Cu uptake in the same tumor, of 37
and 122 HU pre and post contrast. In the second osteosar-
coma, histopathology of the entire tumor was performed
(Figure 1) and this demonstrated that the signal void
occurred within a necrotic cavity communicating with a
cutaneous ulcer.

*Cu - ATSM uptake was highest for HNSCC (Median
Thax/M =11; Median T,,/M =3.8) than for sarcomas
(Median T, /M =7.3; Median T,,/M = 2.2) and the be-
nign masses (Median T ,,,/M = 6.0; Median T,,/M = 1.9).
However, given the small numbers and variability in the
data, there were no statistically significant differences in
comparing uptake parameters between HNSCC (P = 0.24
for Ta/M; P=0.09 for T,,/M) and other tumor types

Table 1 Measurement of tumor hypoxia in twelve feline head and neck tumors

Cat: Diagnosis Location Maximum dimension Tmax/ Tav/ % pO2 1 p02 2 p02 3
(cm) M M PIM (mmHg) (mmHg) (mmHg)

1 Polyp Mandible  1.93 6.0 19 NE 32 55 0.6
Bone cyst Maxilla 146 14 1.0 NE 61 68 NE

3 Eosinophilic Sublingual  1.37 6.4 30 NE NE NE NE
granuloma

4 SCC Maxilla 4.16 14 4.7 NE 1.7 473 NE

5 SCC Mandible  4.32 M 4.8 50% NE NE NE

6 SCC sublingual 3.37 4.8 2.2 60% 1.8 40 08

7 SCC Maxilla 4.66 22 52 NE 50 03 33

8 SCC Mandible 441 1 3 NE 2.2 26.3 26

9 SCC Maxilla 418 43 1.8 NE 03 0 05

10 FSA Maxilla 442 73 33 NE 04 038 038

11 OSA Maxilla 8.73 7.5 15 NE 6.5 10.7 2.1

12 OSA Maxilla 511 6.2 2.2 Fig1 NE NE NE

Cats were assigned an arbitrary number from 1-12. The underlying etiology of the mass, location of the mass, maximum dimension of the mass, as well as values
for the three diagnostic tests are provided. Tmax/M is a ratio of maximum 64Cu-ATSM uptake over muscular uptake as a normalization for signal to background
uptake, Tav/M is the average uptake over the entire mass, %PIM is the percentage of pimonidazole uptake, and pO2 is the measured oxygen pressure with a
fluorescent life-time probe. HNSCC = squamous cell carcinoma, FSA = fibrosarcoma, OSA = osteosarcoma, NE = not evaluated, due to technical error.
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Figure 1 Spatial Correlation between ®*Cu-ATSM and pimonidazole uptake in a cat with maxillary ostesarcoma. Formalin-fixation and
sectioning of the entire tumor from cat #12 was performed to compare spatial distribution of pimonidazole in relation to ®*Cu-ATSM uptake on
PET. Panel A: Diagrammatic representation of a 5.1-cm osteosarcoma on the right lateral maxilla of a 7 year old spayed female domestic shorthair
cat. The position of two transverse sections are indicated by the letters B and C are shown in the diagram. The imaging and histologic sections at
these locations are provided in the panels below. Panels B and C: Top row: Transverse fused PET/CT image (left). H&E stained tissue section at 4x
magnification (middle). Pimonidazole at 4x magnification (reconstructed from tiled images) stained tissue section (right). Corresponding regions
in the PET/CT and histologic sections are marked by the numbers 1 and 2. Bottom Row (20x magnification of histologic sections): H&E stained
image from area marked “1" (Far left); Pimonidazole stained image from area marked “1” (Middle left). H&E stained image from area marked "2"
(Middle right); Pimonidazole stained image from area marked “2" (Far right). Note: The tumor tissue was friable and there were areas of necrotic
debris, such as the area marked by a star in panel B, that were lost during processing.

or between malignant and benign tumors (P=0.15 for
Tmax/M; P =021 to T, /M).

Quantitative detection of tumor O, using the intratu-
moral fluorescent probe confirmed, using a different tech-
nique, that tumors with **Cu-ATSM uptake also exhibit
regions of very low oxygenation, ranging from 0.6 to
2.6 mmHg, which would be expected to have biologic

consequences including radioresistance and HIFla induc-
tion (Table 1). Conversely, the tissues in the region of the
bone cyst that did not take up **Cu-ATSM, appeared to be
normoxic (Table 1).

In addition to the fluorescent O, detection probe,
pimonidazole immunohistochemistry was also used to
investigate tumor hypoxia. When pimonidazole was
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administered 24 hours prior to biopsy, there was minimal
detectable immunostaining in samples, regardless of dose.
Whereas in three tumors, in which pimonidazole was
administered within an hour of biopsy, there was intense
immunohistochemical staining. The discrepancy in stain-
ing between samples collected 24 hours or 1 hour before
biopsy suggests that pimonidazole tissue adducts are
relatively short-lived in cats [33]. The patient with osteo-
sarcoma was severely compromised by the primary tumor
and systemic metastasis and died following imaging. Thus
the entire tumor was available for examination and spatial
comparison of pimonidazole and ®*Cu-ATSM uptake
(Figure 1). This comparison suggests a similar distribution
of pimonidazole and ®*Cu-ATSM in this tumor.

Several additional tissues, distinct from the primary
tumor, demonstrated ®*Cu-ATSM uptake, including
lymph nodes (medial and lateral retropharyngeal lymph
nodes, mandibular lymph nodes, and superficial cervical
lymph nodes) draining the primary tumor in six of the
cats with malignancies. In one of these six cats, there
was additional assessment of a mandibular lymph node
evaluated by fine needle aspiration cytology, which
demonstrated reactive change rather than metastatic
neoplasia.

Two of the cats had fluid within the tympanic bulla that
demonstrated ®*Cu-ATSM uptake. One cat demonstrated
signal associated with a necrotic maxillary molar. Three of
the cats had ®*Cu-ATSM uptake within the thyroid glands.
In one cat with bilateral thyroid uptake, clinical hyperthy-
roidism was confirmed by serum thyroid panel. In another
case, a large thyroid gland with increased ®*Cu-ATSM
uptake on PET/CT was confirmed as a thyroid adenoma
at necropsy. In the third cat, there was PET signal in an
enlarged thyroid gland, but disease was not confirmed
with serum panel or histopathology. The cat with osteo-
sarcoma that died immediately following PET/CT had a
diffuse increase in pulmonary signal and at necropsy there
were multiple 2—4 mm metastatic nodules in its lungs.

In two cats, intratumoral hypoxia was evaluated before
and after treatment with an antiangiogenic agent, either
a galectin-1 targeted peptide (Anginex) or a multiple
tyrosine kinase inhibitor that targets VEFGR2 (toceranib,
Palladia™, Pfizer Animal Health, Kalamazoo, MI). PET/
CT and intratumoral oxygen probe measurements were
performed one week apart with treatment administered
in the intervening interval. Similar location of the probe
was attempted as outlined in the materials and methods.
After one week, there was minimal change in tumor size
as measured by CT, with both tumors classifiable as
“stable” when applying the RECIST (Response Evaluation
Criteria in Solid Tumors) system used for human tumors
[38]. Nor was there appreciable change in CT appear-
ance. However, both tumors exhibited a slight increase in
T max/M. While T,,/M increased slightly in the Anginex-
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treated cat, there was a slight decrease in T,,/M in the
toceranib-treated cat, with select regions of this second
tumor exhibiting less radiopharmaceutical uptake (see
Figure 2; Table 2). Intratumoral probe measurements
demonstrated variability in certain regions of both
tumors (Table 2). In the toceranib-treated tumor, pO,
values were consistently increased at each location. In
the Anginex- treated tumor the three regional measure-
ments demonstrated decreased, increased, and stable
pO,, levels, respectively.

Discussion

The biologic effects and clinical consequences of intra-
tumoral hypoxia have been the focus of decades of
research. It is well-established that hypoxic cells in vitro
and in animals are relatively radiation resistant [39].
Furthermore, it has been demonstrated that patients
with hypoxic tumors, including HNSCC, are more likely
to experience treatment failures both locally and system-
ically [12,18,39]. Therefore, a variety of methods to
increase tumor oxygenation or to target hypoxic cells
within tumors have been investigated. Traditionally, these
efforts have included measures such as hyperbaric oxygen
administration, inhalation of carbogen gas, and the use of
nitroimidazoles as hypoxic cell radiation sensitizers [18].
More recently, agents that specifically target hypoxic cell
populations have been developed [40]. Finally, it has also
been observed that anti-angiogenic and anti-vascular
therapies may also modulate tumor oxygenation [1,41].
However, despite these various efforts, clinical gains have
been modest. While a multitude of factors may contribute
to the gap between experimental and clinical results, two
issues are particularly problematic. First, of particular im-
portance in the targeting of tumor hypoxia, the assessment
of relevant molecular and biologic surrogate endpoints is
challenging in humans [42]. Second, rodent models for
human cancer have significant limitations that do not
always permit direct clinical translation [43]. In this study,
we demonstrate the application of developing technology
to assess tumor oxygenation in a clinically relevant model,
spontaneous feline HNSCC.

There are a variety of methods for evaluating tumor
oxygenation and these have been thoroughly reviewed
elsewhere [29,42]. All of these techniques have strengths
and limitations, with no single technique offering complete
characterization of this dynamic, complex phenomenon
[42]. Imaging technology, by providing a noninvasive,
three-dimensional, real-time assessment of hypoxia, is par-
ticularly promising as a clinical tool. In this study, we inves-
tigated hypoxia using ®*Cu-ATSM. Cu(Il)-conjugated
ATSM enters cells by either passive diffusion or endocytosis
where is reduced and trapped, likely with the dissociation
of reduced Cu(I) from ATSM, within hypoxic, yet viable
cells [44,45]. Normoxic cells are able to oxidize the reduced
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Figure 2 Uptake of ®*Cu-ATSM within a maxillary squamous cell carcinoma. PET signalis presented in three planes of imaging; sagittal plane
image on the left, dorsal plane image in the middle, and transverse plane on the right. A similar area of transection through the head in each
plane was chosen between two time points, using anatomic landmarks of the orbit, mandibular rami, and medial canthus of the palpebrae. 2A
represents the mass before treatment with toceranib, 2B 7 days post treatment. In 2A, the mass is best seen as a large area of ATSM uptake on
dorsal plane PET image (white outline). Note the region of decreased uptake within the ventromedial portion of the mass, represented by the red
dot on dorsal plane PET image, yellow dot on sagittal plane PET image, and green dot on transverse plane PET image.

copper, which then is transported out of cells, either pas-
sively or, more likely, using a variety of chaperones or
transporters [42,45]. In preclinical studies, data demon-
strate that tumor cells vary in their uptake of Cu-ATSM
even at constant pO,, implicating factors such as variable
transporter expression, microenvironmental pH, cellular

metabolism or the existence of alternative retention mecha-
nisms [32,45]. Advantages of Cu-ATSM include, rapid up-
take, strong signal to noise ratio, the availability of a variety
of Cu isotopes with variable half-lives and emission spectra,
and some potential for therapeutic as well as diagnostic
utility [46-48]. Cu-ATSM agents have subsequently been

Table 2 Evaluation of hypoxia in feline SCC before and after anti-angiogenic therapy

Column1 Diagnosis Location Maximum dimension (cm) Tmax/M Tav/M pO2 #1 (mmHg) pO2 #2 (mmHg) PO2 #3 (mmHg)
Cat 8a ScC Mandible 441 11 3.05 22 26 26
Cat 8b Scc Mandible 441 11.8 3.16 24 28 26
Cat 9a SCC Maxilla 418 4.25 1.83 03 0.1 0.6
Cat 9b SCC Maxilla 4.06 5 1.73 14 19 20

Cat 8 was treated with Anginex, an anti-vascular peptide, while cat 9 was treated with toceranib, a VEGFR2 inhibitor. 64Cu-ATSM PET/CT and intratumoural
fluorescent 02 measurements were performed 7 days apart, with treatment occurring in the intervening interval. Lower case letter a and b indicates pre- and
post-treatment data, respectively. The location of the mass, maximum dimension of the mass, Tmax/M, Tav/M and pO2 in three tumor regions are provided.

HNSCC = head and neck squamous cell carcinoma.
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used to image multiple tumors [16,32,44,46,49-53] and hyp-
oxic tissues [54,55].

In this study, we demonstrate that most (11 of 12) feline
head and neck tumors take up ®*Cu-ATSM with Tav/M
and Tmax/M greater than 1.5 and 4.3, respectively. In
studies that have investigated Cu-ATSM in human cancer
patients, Tav/M ratios ranging from 2.6 — 3.5 have been
used as arbitrary cutoff points for defining hypoxic and
normoxic tumors [56]. Indeed these levels of radionuclide
uptake have been associated with clinically relevant end-
points such as response to treatment and survival. How-
ever, these studies have not documented intratumoral
hypoxia using independent methods making it difficult to
determine whether these T/M ratios are best for deter-
mining actual hypoxic state. Furthermore, tumors with
significant radiopharmaceutical uptake also demonstrate
regions with quantitatively low pO, (less than 7.5 mmHg)
or an affinity for pimonidazole, a hypoxia specific marker
that forms adducts when the pO, is less than 10 mmHg.
Conversely, the bone cyst that failed to take up **Cu-
ATSM, with T/M ratios was normoxic based on peri-
tumoral pO, measurements. These results support the
hypothesis that ®*Cu-ATSM uptake occurs in hypoxic
rather than normoxic feline tumors. However, complete
spatial correlation between distribution of ®*Cu-ATSM
was only possible in one case in which the animal died fol-
lowing imaging and the entire tumor, an osteosarcoma,
was available for sectioning and evaluation. Additionally,
no proof of **Cu-ATSM uptake or lack thereof in these tu-
mors’ normoxic cells was available. Subjectively, there
appeared to be concordance between pimonidazole and
*Cu-ATSM uptake. Interestingly, in a xenograft study,
%%Cu-ATSM uptake failed to correlate with nitroimidazole
staining in a sarcoma, while demonstrating a strong correl-
ation in both a carcinoma and a glioma [32].

While we were able to measure hypoxia using at least
one other technique in 11 of the 12 tumors, technical
problems precluded the use of all three techniques in
every case. The intratumoral probe was not operational at
the time of evaluation of the first three cats. We also lim-
ited our quantitation of tumor pO, to a small number of
regions within the tumor. Studies of human tumors sug-
gest that dozens of measurements may be needed to fully
map tumor oxygenation. However, our goal was simply to
verify the presence or absence of hypoxia in a few
intratumoral or peritumoral areas rather than to provide a
complete mapping of each tumor.

While the use of pimonidazole has been studied in the
dog [33,34], we were unable to find reports of the use of
this marker in cats. Therefore, doses were selected based
on those reported in dogs. Many drugs, including the
nitroimidazole, metronidazole, have similar or identical
doses in both cat and dog. We were unable to perform
additional procedures such as biopsy in the imaging
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facility, which necessitated a separate anesthetic episode.
Our initial plan had been to administer the pimonidazole
concomitant with the ®*Cu-ATSM to permit side-by-side
comparison between the two. However, at the doses used,
we were not able to detect pimonidazole in cat biopsy
samples collected 24 hours after administration. In con-
trast, pimonidazole staining was strong and easily visual-
ized when pimonidazole was administered shortly before
biopsy. These data suggest that the pimonidazole adducts
may turn over more quickly in feline tumors than in dogs
[33]. Factors that may have influenced pimonidazole stain-
ing intensity in the cat include species specific pharmacoki-
netic variables such as serum half life, which in humans is
about 5 hours and only 15 minutes in the mouse. There-
fore recommended doses are several times higher in the
mouse than in humans. Unfortunately, these data are not
available for the cat. It is possible that with far larger doses
of pimonidazole we would have been able to visualize ad-
ducts in our biopsy specimens obtained 24 hours after
administration. Other factors that could have contributed
to poor retention of pimonidazole in tissues include rapidly
changing tissue perfusion or rapid turnover of cells in the
tumor. HNSCC in cats is considered a rapidly progressive
malignancy therefore it is possible that tumor growth kin-
etics may have also contributed. Pimonidazole dose
optimization should be performed in feline tumors to bet-
ter utilize this technique.

It is not surprising to see heterogeneous distribution
of hypoxia within tumors, therefore significant differ-
ences between the T,,,./M and T,,/M in these PET stud-
ies is expected. However, signal voids were also observed
in areas with poor perfusion (based on CT contrast stud-
ies), which would presumably be hypoxic. In one cat
with osteosarcoma, the signal void corresponded to a
necrotic cavity identified at necropsy. It is possible that
poorly perfused regions contain necrotic rather than vi-
able cells. Since uptake and retention of Cu-ATSM re-
quires intact cell and likely lysosomal membranes, it is
unlikely that Cu-ATSM would accumulate in these nec-
rotic regions [45]. A compounding factor in the specific
case of the osteosarcoma may be the high interstitial
pressures in bony areas of osteosarcomas leading to de-
creased perfusion [57-59].

In this study, while strongest ®*Cu-ATSM uptake was
observed in HNSCC, sarcomas and benign tumors also
exhibited uptake and significant hypoxia. Thus, hypoxia is
not a characteristic of tumor type or malignancy. The in-
creased uptake among feline HNSCC coupled with
intratumoral probe and pimonidazole data support that
these tumors are significantly hypoxic like their human
counterpart. However, we cannot rule out that some other
characteristic of HNSCC, in addition to hypoxia, has
influenced Cu-ATSM uptake and retention such as the
expression of specific transporters or metabolism. It has
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been hypothesized that altered redox state associated with
glycolytic metabolism in some tumors might also promote
reduction and trapping of Cu-ATSM. It is likely that the
use of multiple methods to investigate tumor hypoxia may
yield the most accurate assessment.

Regardless of whether ®*Cu-ATSM uptake is a direct re-
flection of tumor hypoxia, studies of human HNSCC indi-
cate the clinical significance of this tracer. SUV .., [53]
and T,/M ratio [56,60] cutoffs have been successfully
used to predict recurrence after radiation and prognosis,
respectively, in human cancer patients. It was not our ob-
jective to correlate these data with prognosis in cats nor
was it feasible given inconsistent follow-up therapy in
these cases. However, in using spontaneous HNSCC to in-
vestigate the biologic impact of therapeutic intervention,
these data may guide selection of appropriate thresholds.

Unexpectedly, certain other tissues in these cats exhibited
%Cu-ATSM uptake. Uptake in lymph nodes draining the
primary tumor was seen in 8/12 cats. These lymph nodes
exhibited normal contrast enhancement on CT and only
mild to moderate enlargement. In one case, the lymph
nodes exhibited reactivity rather than metastasis. While
hypoxia is recognized in metastatic or primary tumors oc-
curring in lymph nodes, its presence in reactive lymph
nodes has not been previously documented, to the authors’
knowledge [61,62]. It is interesting to consider how hypoxia
in draining lymph nodes might influence the development
of regional metastasis. Two cats also had **Cu-ATSM up-
take in association with presumptive otitis media. Hypoxia
has been demonstrated in rats with otitis media [63].

Hyperthyroidism is common in elderly felines and oc-
curs secondary to adenomatous hyperplasia, thyroid aden-
omas, or least commonly functional thyroid carcinomas
[64]. Two of the three patients with ®*Cu-ATSM uptake in
the thyroid had clinically proven functional hyperthyroid-
ism prior to the scan. There are limited data concerning
hypoxia in non-malignant disorders of the thyroid, though
low level vascular endothelial growth factor (VEGF) ex-
pression, which is hypoxia inducible, has been observed in
follicular adenomas and adenomatous goiter of the thyroid
in humans [65]. This may be caused by the hypermetabolic
state and increased oxygen consumption [66] of the thy-
roid cells in these conditions. Human thyroid carcinoma
metastases, though not present in these patients, were also
demonstrated hypoxic when imaged with *™Tc-HL91, a
nitroimidazole, and SPECT [67]. Confirmation of hypoxia
in other tissues using another technique could not be easily
performed in these cases due to inaccessibility of lesions
and invasive nature of the other techniques used.

Two cats were evaluated before and after different
antivascular therapies. It has been proposed that modula-
tion of tumor vasculature may affect intratumoral hypoxia
and preclinical studies have supported this notion [1,68].
In this study, treatment was accompanied by only slight
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changes in Cu-ATSM uptake. Since we do not have data
from untreated cats to demonstrate pattern on Cu-ATSM
uptake over time, it is not possible to determine whether
the changes observed were drug specific. However, in both
cats, there was a slight increase in Ty, /M possibly indi-
cating regional vascular compromise. However, these
changes may be within range of error, as the inverse quar-
tic relationship between partial pressure of oxygen and
Cu-ATSM uptake results in steep slope within the initial
decline of pO,, while at low pO,, slight changes may be
insufficient to alter uptake of ®*Cu-ATSM [13]. At the
same time, in the cat treated with a tyrosine kinase inhibi-
tor targeting VEGFR?2, a slight decrease in T,,/M occurred
concomitantly with increased quantitative pO, as mea-
sured with the intratumoral probe. Furthermore, focal
areas in the periphery of the tumors had decreased signal,
suggesting that further investigation into dose and time
frame of anti-angiogenic therapy administration as a hyp-
oxia modulator might be useful.

Despite their experimental utility, rodent models fail to
completely recapitulate human cancer and to provide the
degree of heterogeneity that is characteristic of human
clinical populations. The gap between xenograft and
genetically-engineered mouse models and human clinical
studies are well recognized. Furthermore, as function of
animal size, the tumors seen are considerably smaller from
that expected in a human clinical population. Feline
HNSCC may provide a relevant alternative to rodent
models for this disease.

Conclusions

All of the feline HNSCC studied exhibited regional evi-
dence of biologically relevant hypoxia, regardless of
measurement technique. Therefore, in addition to mor-
phologic, clinical and molecular similarities, feline and
human HNSCC also share physiologic characteristics,
further demonstrating how closely the disease in cats
mimics its human counterpart. We also preliminarily il-
lustrate, using anti-vascular agents, that feline tumors
can be used to study the biologic consequences of inter-
ventions and to develop and apply surrogate endpoints.
It is reasonable to assume that such studies could be
used to address specific issues of clinical translation and
inform the development of more effective human trials.
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