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Abstract

Background: Thyroid nodules with indeterminate cytological features on fine needle aspiration (FNA) cytology
have a 20% risk of thyroid cancer. The aim of the current study was to determine the diagnostic utility of an 8-gene
assay to distinguish benign from malignant thyroid neoplasm.

Methods: The mRNA expression level of 9 genes (KIT, SYNGR2, C21orf4, Hs.296031, DDI2, CDH1, LSM7, TC1, NATH)
was analysed by quantitative PCR (q-PCR) in 93 FNA cytological samples. To evaluate the diagnostic utility of all the
genes analysed, we assessed the area under the curve (AUC) for each gene individually and in combination. BRAF
exon 15 status was determined by pyrosequencing. An 8-gene computational model (Neural Network Bayesian
Classifier) was built and a multiple-variable analysis was then performed to assess the correlation between the
markers.

Results: The AUC for each significant marker ranged between 0.625 and 0.900, thus all the significant markers,
alone and in combination, can be used to distinguish between malignant and benign FNA samples. The classifier
made up of KIT, CDH1, LSM7, C21orf4, DDI2, TC1, Hs.296031 and BRAF had a predictive power of 88.8%. It proved
to be useful for risk stratification of the most critical cytological group of the indeterminate lesions for which there
is the greatest need of accurate diagnostic markers.

Conclusion: The genetic classification obtained with this model is highly accurate at differentiating malignant from
benign thyroid lesions and might be a useful adjunct in the preoperative management of patients with thyroid
nodules.

Keywords: Thyroid, Fine-needle aspiration (FNA), Area under the curve (AUC), Computational model, Preoperative
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Background
Thyroid nodules represent a very common problem. The
majority (>95%) of them are benign; however, malignancy
risk increases with female gender, nodule size, extremes of
age (<30 and >60 years), personal or family history of thy-
roid malignancy and radiation exposure [1].
The advent of thyroid ultrasound allowed for an in-

creasing number of nodules to be diagnosed, and it is
now recognized that nodules are present in an estimated
50% of the general population and are detected at sub-
clinical level. However, since only 10% of these nodules
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reproduction in any medium, provided the or
will be a true malignancy, preoperative testing to differ-
entiate benign from malignant nodules are needed [2,3].
Currently, fine-needle aspiration (FNA) cytology is the

most accurate and cost effective diagnostic test to ex-
clude a thyroid cancer diagnosis. In general, a thyroid
nodule on FNA cytology can be classified as benign, ma-
lignant, suspicious, indeterminate, or non-diagnostic [4].
Unfortunately, about 30% of FNAs are indeterminate

and often require a diagnostic thyroidectomy to establish
the diagnosis on permanent histological examination.
Only 20% of diagnostic thyroidectomies in patients with
indeterminate FNA cytology demonstrates malignant
lesions on permanent histology, and these patients often
require a completion thyroidectomy [5].
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Therefore, because of this obvious limitation of FNA
cytology in the preoperative diagnosis, there is a clinical
need for reliable preoperative molecular markers to dis-
tinguish benign from malignant thyroid nodules.
A 10-gene (KIT, SYNGR2, C21orf4, Hs.296031,

Hs.24183, FAM13A1, C11orf8, KIAA1128, IMPACT,
CDH1) and a 6-gene (KIT, LSM7, SYNGR2, C21orf4,
Hs.296031, Hs.24183) assays have been proposed to have
high diagnostic accuracy to distinguish thyroid nodules
[6]. Those assays have been developed from microarray
analyses of tumor specimens obtained after surgical re-
moval of thyroid nodules. Since only 20% of patients
undergoing surgery have malignant lesions, preoperative
tests are needed to avoid unnecessary surgery. Gene ex-
pression profiling studies have identified many other
possible markers with high accuracy, however the clin-
ical application of these markers is limited to the use of
post-surgical samples. FNA cytology represents a useful
tool in the preoperative evaluation of a thyroid nodule,
especially because of the knowledge of the amount of
tumor cells per sample. In a previous paper [7] we
showed the clinical relevance of KIT expression to the
diagnosis of thyroid tumors, whose RNA was extracted
from cytological preoperative FNA specimens. Although
KIT expression resulted to increase the diagnostic accur-
acy of 15% compared to the cytology alone, there were
samples still remained indeterminate.
The aim of the current study was to build a q-PCR-

based computational model able to preoperatively diag-
nose benign and malignant thyroid tumors on the basis
of the expression profiles of the genes mentioned above
(KIT, SYNGR2, C21orf4, Hs.296031, Hs.24183, CDH1,
LSM7), plus two other genes (TC1, NATH) known to be
involved in thyroid carcinogenesis from the literature [8-
10]. In addition, since BRAF sequencing is so far the
best molecular test used in the preoperative assessment
of thyroid nodules malignancy, we also built a model in-
cluding BRAF mutational status.
In the last years, a new class of techniques known as

Bayesian Neural Networks (BNN) have been proposed as
a supplement or alternative to standard statistical techni-
ques. For the purpose of predicting medical outcomes, a
BNN can be considered a computer intensive classifica-
tion method and, in addition, BNNs do not require expli-
cit distributional assumption (such as normality) [11].
As previously described by us, KIT is down-regulated

in malignant thyroid tumors compared to the benign
ones. SYNGR2 has been characterized as an integral
vesicle membrane protein [12] and the only data avail-
able indicate its up-regulation in fetal mouse ovaries
[13]. LSM7 has been described in the family of Sm-like
proteins, involved in pre-messenger RNA splicing and
decapping [14]. The interaction of LSM7 with the
TACC1 complex may participate in breast cancer onco-
genesis [15]. C21orf4 encodes a predicted trans-
membrane protein (Tmem50b) and is one of few genes
significantly over-expressed during cerebellar develop-
ment in a Down syndrome mouse model [16]. The role
of SYNGR2, LSM7 and C21orf4 in thyroid carcinogen-
esis has not yet been explored. E-Cadherin (CDH1) ex-
pression is reduced in thyroid carcinomas [17] and its
promoter resulted to be hypermethylated in thyroid neo-
plasm [18]. Hs.24183 (now Hs.145049) has been identi-
fied as part of the 3’UTR of DDI2 (DNA-damage
inducible 1 homolog 2) gene in H. sapiens, but no data
exists about its role in thyroid. For Hs.296031 the only
information available refers to gene sequence and map-
ping, but no gene and protein function are known yet.
In contrast, the expression of the thyroid cancer-1 (TC1)
gene resulted to be related to malignant transformation
in thyroid and the potential use of TC1 gene expression
as a marker of malignancy has also been shown in litera-
ture [19]. NATH (N-acetyl transferase human) is involved
in protein acetylation which represents an important post-
translational modification regulating oncogenesis, apop-
tosis and cell cycle. NATH resulted to be over-expressed
at the mRNA level in papillary thyroid carcinomas com-
pared to non-neoplastic thyroid tissue [8].
In this study we used 87 FNA cytological samples to

build several preoperative computational models and 6
unknown samples to test in order to find the most dis-
criminative one.
A correlation analysis between the markers was also

performed in order to investigate their biological import-
ance and to find a link that could give us a better under-
standing of the molecular mechanisms underlying thyroid
cancer development.

Methods
Thyroid specimens
Preoperative thyroid FNA slides of a total of 93 patients
carrying thyroid lesions (49 malignant, 38 benign, 6 un-
known) were selected from archived materials of the
Section of Cytopathology, Division of Surgical, Molecu-
lar and Ultrastructural Pathology, S. Chiara Hospital,
Pisa. For ethical reasons we used only cases with two or
more slides per patient and the molecular analysis was
performed on only one of the available smears. In all
cases FNA was performed using ultrasonography guid-
ance. All smears were reviewed by a senior cytopatholo-
gist. Diagnosis was carried out on the basis of the
following criteria broadly suggested in the literature:
smear background, cell arrangements, cell shape, nu-
clear/cytoplasmic features, presence of nucleoli and mi-
tosis. The histological diagnosis assessed ultimately the
malignancy or benignity of the 93 thyroid lesions.
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Ethical board
This study was approved by the Internal Review Board
of the University of Pisa. All patients gave their consent
for the participation to the study.

RNA and DNA isolation
Archival FNA slides stained with Papanicolaou tech-
nique were kept in xylene for 1 to 3 days, depending on
the time of storage, in order to detach slide coverslips.
The slides were then hydrated in a graded series of
ethanol followed by a wash in distilled H2O for 1 mi-
nute. The slides were finally air dried. RNA extraction
was performed using a commercial kit (High Pure RNA
Paraffin kit, Roche). The lysis solution was poured on
the slide to scrape off the cytological stained sample.
Whole scraped tissue was then collected in a microcen-
trifuge tube and processed for RNA extraction. The
quantity/quality of RNA was estimated with Nanodrop
1000 spectrophotometer using 1 μl of undiluted RNA
solution. RNA was treated with DNase Ι recombinant,
RNase-free (Roche). RNA was reverse transcribed in a
final volume of 20 μl, containing 5X RT buffer, 10 mM
dNTPs, 50 ng/μl Random Primers, 0.1 M DTT, 40 U/μl
RNaseOUT, 50 μM oligo(dT), DEPC-Treated Water,
15 U/μl Cloned AMV reverse transcriptase (Invitrogen,
Carlsbad, CA).
DNA was isolated directly from stained cells using a

commercial kit (Nucleospin, Macherey-Nagel, Düren,
Germany) according to the manufacturer’s instructions.

Gene expression analysis
The level of KIT, SYNGR2, C21orf4, Hs.296031, DDI2,
CDH1, LSM7, TC1, NATH expression was analysed by
quantitative PCR (q-PCR) on the Rotor-Gene 6000 real
time rotary analyzer (Corbett, Life Science, Australia)
following the manufacturing instructions. Endogenous
reference gene (B2M, beta 2 microglobulin) was used to
normalize each gene expression level. PCR products
were previously sequenced using the Applied Biosystems
3130xl Genetic Analyzer (Foster City, CA) to confirm
gene sequence. PCR was performed in 25 μl final vol-
ume, containing 5 μl of cDNA, 12.5 μl of MESA GREEN
qRT-PCR MasterMix Plus (EUROGENTEC, San Diego,
CA), 40 pmol of each primer (Invitrogen, Carlsbad, CA)
per reaction with the following cycling conditions: initial
denaturation 95°C for 5 min; 40 cycles at 95°C for
15 sec, 61°C for 40 sec, 72°C for 40 sec; final step 25°C
for 1 min. Primers were selected using Primer3 software:
KIT F: 5’- GCACCTGCTGCTGAAATGTATGACA

TAAT - 3’
KIT R: 5’- TTTGCTAAGTTGGAGTAAATATGATT

GG - 3’
SYNGR2 F: 5’- ATCTTCTCCTGGGGTGTGCT - 3’
SYNGR2 R: 5’- AGGGTGGCTGTTGGTAGTTG - 3’
C21orf4 F: 5’- GACAACAGTGGCTGTGTTTTAAG - 3’
C21orf4 R: 5’- GCATTGGATACAGCATTTATCAT - 3’
Hs.296031 F: 5’- TGCCAAGGAGCTTTATAGAA - 3’
Hs.296031 R: 5’- ATGACGGCATGTACCAACCA - 3’
DDI2 F: 5’- TGCAGTTCCCAAACTTACCC- 3’
DDI2 R: 5’- CAGCAACATATCTCGGAGCA- 3’
CDH1 F: 5’- GCATTGCCACATACACTCTC- 3’
CDH1 R: 5’- AGCACCTTCCATGACAGAC- 3’
LSM7 F: 5’-GACGATCCGGGTAAAGTTCCA - 3’
LSM7 R: 5’- AGGTTGAGGAGTGGGTCGAA - 3’
TC1 F: 5’- AAATCTTCTGACTAATGCTAAAACG - 3’
TC1 R: 5’- TTATTGTTGCATGACATTTGC - 3’
NATH F: 5’-AAGAAACCAAAGGGGAACTT - 3’
NATH R: 5’- TAATAGGCCCAGTTTTCAGG - 3’
B2M F: 5’- CATTCCTGAAGCTGACAGCATTC - 3’
B2M R: 5’- TGCTGGATGACGTGAGTAAACC - 3’
Standard curves were generated for each gene for data

analysis. To verify primers specificities, melting curve ana-
lysis was performed. Fluorescent data were acquired dur-
ing the extension phase. After 40 cycles, a melting curve
for each gene was generated by increasing the temperature
from 50°C to 99°C (1°C for each step), while the fluores-
cence was measured. For each experiment a no-template
reaction was included as a negative control.
For each cDNA sample the ratio between the expres-

sion value of the gene of interest and the expression
value of B2M was calculated. Mean values and standard
deviations of malignant and benign groups were calcu-
lated as well.

BRAF status
BRAF sequence was screened for V600E mutation by
pyrosequencing. DNA was first amplified using “Rotor-
Gene 6000” (Corbett Research) and then sequenced
using PyroMark Q96 ID system.
PCR was performed with the following conditions: initial

denaturation 95°C for 3 min; 40 cycles at 95°C for 30 sec,
55°C for 30 sec, 72°C for 30 sec; final step 60°C for 5 min
with TaKaRa Ex Taq (Qiagen). PCR amplification and mu-
tational analysis were performed in accordance to the Dia-
tech manual (Anti-EGFR MoAb response BRAF status).

Statistical analysis
Gene expression analysis
Mann–Whitney test and Student’s t-test were used to
determine differences between mRNA expression levels
of KIT, LSM7, C21orf4, DDI2, SYNGR2, TC1,
Hs.296031 and CDH1 and NATH, respectively. All the
analyses were performed using Statgraphics Centurion
(V. 15, StatPoint, Inc.).

ROC analysis
To determine the diagnostic accuracy of the molecular
computational model, we calculated the area under the
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curve (AUC) of the receiver operating characteristic
(ROC) curve for each gene individually and in combin-
ation using logistic regression analysis (Medcalc 11,
Medcalc Software, Stata Software).

BNN classifier
Several computational models (Neural Network Bayesian
Classifiers) were built in order to find the best combin-
ation of markers able to discriminate benign from ma-
lignant thyroid samples using Statgraphics Centurion
(V. 15, StatPoint, Inc.).

Molecular diagnosis
Fisher’s test was used to compare samples correctly clas-
sified by the BNN model according to their probability
score (> 90% and <90%). The diagnostic gain was then
calculated after applying molecular tests (BRAF, KIT and
BNN model).

Correlation analysis
In order to evaluate the biological importance of the
markers analysed, a multiple-variable correlation analysis
was performed between the markers (Partek software).

Results
Gene expression levels
KIT, CDH1, LSM7, C21orf4, DDI2 mRNA expression
levels were significantly different between benign and
malignant tumors, p(KIT) < 0.0001; p(CDH1) = 0.004;
p(LSM7) = 0.03; p(C21orf4) = 0.01; p(DDI2) = 0.0001.
No statistically significant difference was found for
NATH, SYNGR2, TC1, Hs.296031. Among the markers,
all but TC1 resulted expressed higher in benign sam-
ples compared to the malignant ones (Figure 1A).

BRAF status
Among the 49 malignant samples, 28 carried the V600E
mutation. All the benign samples were wild-type. Sensi-
tivity and specificity of BRAF test were 57 and 100%,
respectively.

ROC analyses
We employed receiver-operated characteristics (ROC)
curve analyses to determine model robustness for pre-
dicting malignancy in thyroid samples using the expres-
sion of each gene individually (Figure 1B, Table 1).
Among the markers, KIT showed the highest AUC (0.9).
We also performed a ROC analysis for the statistical sig-
nificant markers (KIT, CDH1, LSM7, C21orf4, DDI2)
and BRAF status in combination, the AUC resulted to
be 0.8824, the sensitivity 91% and specificity 63%
(Figure 1C). Although the AUC resulted quite similar to
the KIT one, the predictive power increased when the
markers were combined together.
Neural networks
The expression data of the markers were used to build
Bayesian Neural Networks (BNN) in order to estimate
the probability of thyroid malignancy.
We built several BNNs in order to find the most pre-

dictive one. This procedure uses a Probabilistic Neural
Network (PNN) to classify cases into malignant and be-
nign categories, based on 9 input variables (KIT, LSM7,
C21orf4, DDI2, SYNGR2, TC1, Hs.296031, CDH1,
NATH), by implementing a nonparametric method for
classifying observations into one of benign and malig-
nant groups based on the observed expression variables.
The Neural Network Bayesian Classifier made up of all

markers has a predictive power of 80%, while the classifier
made up of KIT, CDH1, LSM7, C21orf4, DDI2, TC1 and
Hs.296031 resulted to have a predictive power of 87.7%.
The analysis was then conducted on 6 unknown sam-

ples. The pathological diagnosis for each sample was
kept blinded until after the analysis was completed.
When the blind was broken, we found that 5 of the 6
unknown samples were diagnosed by the model in con-
cordance with the diagnosis determined by standard
pathological criteria.
We also built a neural network classifier made up of

the markers used in the most predictive model (KIT,
CDH1, LSM7, C21orf4, DDI2, TC1 and Hs.296031) plus
BRAF status. This classifier had a predictive power of
88.8%, and, more importantly, it resulted to completely
discriminate the 6 unknown samples when the blind was
broken (Table 2). When applying the BNN model, no
classification errors came out when the probability of
diagnosis was higher than 90%, thus allowing us to use
this model as a correct predictor of samples with a prob-
ability score >90% (p < 0.0001).
Role of molecular diagnosis in increasing the diagnostic
accuracy of FNAC
We stratified the samples depending on either the histo-
logical and cytological diagnosis (Table 3) and then cal-
culated the diagnostic gain obtained by applying BRAF
molecular analysis, KIT expression model and BNN
model to the indeterminate samples (Table 4).
Among the indeterminate samples (IFP and SPTC) at

the cytological level, 11 SPTC were correctly diagnosed
as malignant by BRAF test, 4 additional samples were
correctly classified by KIT model as 1 malignant and 3
benign, and 9 additional samples were diagnosed by the
BNN model as 1 malignant and 8 benign. As shown in
Table 4, when applying the molecular analysis, 13 malig-
nant samples were moved to the diagnostic group of
PTC and the total number of PTC raised from 30 (61%)
to 43 (88%) with a malignancy diagnostic gain of 27%.
Similarly, 11 IFP samples were moved to the diagnostic
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Figure 1 Expression mean of 49 malignant (red) and 38 benign (green) samples for each marker (A). ROC analysis for KIT, CDH1, LSM7,
C21orf4, DDI2 separately. Among the markers, KIT resulted to be the most powerful in discriminating benign from malignant thyroid tumors
(AUC = 0.9) (B). ROC analysis for KIT, CDH1, LSM7, C21orf4, DDI2, and BRAF status in combination (AUC = 0.88) (C).
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group of BN and the total number of BN rose from 19
(50%) to 30 (79%) with a benignity diagnostic gain of 29%.
Finally, if we consider both PTC and BN diagnoses,

the whole diagnostic gain is of 28% with a statistically
significant p-value of 0.0001.
Table 1 ROC analysis for each marker individually

Sensitivity Specificity AUCa

KIT* 79.6 86.8 0,900

CDH1* 61.2 73.7 0.700

NATH 57.8 57.9 0.553

LSM7* 69.4 57.9 0.625

C21orf4* 58.3 73.7 0.644

DDI2* 56.2 86.8 0.729

SYNGR2 47.9 78.9 0.608

TC1 85.0 38.2 0.581

Hs.296031 77.8 32.4 0.490
aAUC (area under the curve).
bSE (standard error).
cCI (confidence interval).
*p < 0.05.
Correlation analysis
A multiple-variable analysis was performed to evaluate
the correlation between the markers. The knowledge of
the correlation of the markers could give us a better
understanding of the mechanisms underlying thyroid
SEb Thresholds Value 95% CIc

0.0313 ≤ 0.105 0.817-0.954

0.0586 ≤ 0.11 0.559-0.766

0.0658 ≤ 0.112 0.440-0.662

0.0633 ≤ 0.11 0.515-0.727

0.0607 ≤ 0.0001 0.533-0.744

0.0551 ≤ 0.0026 0.622-0.819

0.0613 ≤ 0.04 0.497-0.712

0.0679 > 0.006 0.460-0.695

0.0671 ≤ 0.0051 0.375-0.605



Table 2 Probability values of the prediction model for the unknown samples

Unknown samples Benignity probability Malignancy probability Predicted diagnosis Pathological diagnosis

A 3.07E-07 1 Malignant Malignant

B 0.294935 0.705065 Malignant Malignant

C 0.427773 0.572227 Malignant Malignant

D 7.09E-11 1 Malignant Malignant

E 0.00012769 0.999872 Malignant Malignant

F 0.94438 0.05562 Benign Benign
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cancer biology. In fact, the statistical correlation may re-
flect biologically correlation between markers.
Pearson’s correlations between pairs of variable are

reported in Figure 2.

Discussion
Many candidate markers of thyroid cancer have been
identified in microarray studies that require analytic and
clinical validation in a cohort large enough to permit
evaluation of their clinical utility. q-PCR has become a
highly reliable technique that allows precise quantifica-
tion of gene expression levels identified by microarray
studies from various laboratories [20-22]. Moreover,
q-PCR has been in clinical use as a diagnostic test in
various fields of medicine.
Currently, the diagnosis of thyroid nodules relies pri-

marily on cytology. For the majority of patients with
PTC, FNA-based cytology can make a diagnosis with
high accuracy [3]. However, there is a significant propor-
tion of neoplasm in which the FNA-based preoperative
cytological diagnosis fails.
The primary aim of this study was to find a diagnostic

accurate preoperative assay able to distinguish benign
from malignant thyroid neoplasm. We found 5 out of 9
proposed gene markers (KIT, LSM7, C21orf4, DDI2,
CDH1) differentially expressed in malignant and benign
thyroid samples with a significant p-value (<0.05).
Of particular interest is the down regulation of KIT

and CDH1 in malignant samples.
We previously showed that the expression silencing of

KIT gene is associated with the malignant phenotype of
thyroid nodules and KIT expression may represent a
Table 3 Histological and cytological diagnosis of 87
thyroid nodules

Histological diagnosis Cytological diagnosis

PTCa: 49 cases PTCa SPTCb IFPc

30 (61%) 14 (29%) 5 (10%)

BNd: 38 cases BNd IFPc

19 (50%) 19 (50%)
aPTC: papillary thyroid carcinoma.
bSPTC: suspicious papillary thyroid carcinoma.
cIFP: indeterminate follicular proliferation.
dBN: benign.
useful tool in the preoperative management of thyroid
lesions [7]. KIT is a well-known proto-oncogene. Other
studies obtained findings similar to ours [6,23]. We
speculated that in some cell types KIT expression posi-
tively regulates mitogenesis and is selected for in neo-
plastic transformation; in other tissues (such as thyroid
tissue) KIT is involved in morphogenesis and differenti-
ation and is, therefore, negatively selected in the course
of tumor progression. Although the functional conse-
quences of this modulation are unknown so far, KIT is
likely to be relevant in regulating thyrocyte differenti-
ation and survival, however further work is needed to
elucidate the biological meaning of KIT down-
expression in PTCs.
CDH1 encodes for E-cadherin. We found a down

regulation of CDH1 expression in malignant samples
and this is in perfect concordance with the literature.
Loss of E-cadherin function or expression has been
implicated in cancer progression and metastasis [24-26].
In fact, E-cadherin down-regulation decreases the
strength of cellular adhesion within a tissue, resulting in
an increase in cellular motility. This in turn may allow
cancer cells to cross the basement membrane and invade
surrounding tissues.
Regarding TC1, several studies reported a higher ex-

pression of this protein in thyroid malignancies com-
pared to benign nodules. Concordant to the literature,
we observed a tendency of TC1 to be overexpressed in
our cohort of malignant samples, though not statistically
significant. TC1 has been shown to interact with Chibby
(Cby) [27], which regulates the β-catenin-mediated tran-
scription antagonistically and thereby enhances the sig-
naling pathway through relieving the suppression by
Cby. TC1 regulation of Cby is of considerable biological
significance in the Wnt/β-catenin pathway. Indeed TC1
up-regulates β-catenin target genes implicated in inva-
siveness and aggressive behaviour of cancer.
For the other markers it is difficult to speculate since

their function and role in thyroid carcinogenesis are still
largely unknown. Additional functional studies are
needed to elucidate their role in thyroid cancer initiation
and progression.
When assessing the diagnostic utility of the markers,

KIT, LSM7, C21orf4, DDI2, and CDH1 had a high



Table 4 Role of molecular tests in the preoperative diagnosis

CDa BRAF V600E KIT class 1
(malignancy
probability 100%)

KIT class 4
(benignity
probability 100%)

BNNd

(probability
score >90%)

SPTCb 11(Mi) 1(Mi) 1(Mi)

IFPc 3(Bh) 8(Bh)

CDe MDf + CDe DGg

correctly diagnosed samples 49/87: 56% 73/87: 84% +28%
aCD: cytological diagnosis.
bSPTC: suspicious papillary thyroid carcinoma.
cIFP: indeterminate follicular proliferation.
dBNN: Bayesian neural network.
eCD: cytological diagnosis.
fMD: molecular diagnosis.
gDG: diagnostic gain.
hB: benign.
iM: malignant.
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diagnostic accuracy. Thus, all the significant markers,
alone and in combination, can be used to distinguish be-
tween malignant and benign FNA samples.
Recently, a new class of techniques known as Bayesian

Neural Networks (BNN) have been used as a supple-
ment or alternative to standard statistical techniques
[11]. Since they do not require explicit distributional
assumptions, BNNs have been employed for the classifi-
cation of medical outcomes [11]. We developed a Bayes-
ian Artificial Neural Network model based on data
collected from FNA samples. Bayesian classification has
been applied across the spectrum of medicine, from
optimization of pharmacotherapy dosing [28,29], pre-
dicting cancer screening [30] and diagnostic test results
[31,32], to determining injury severity [33], assessing
operative risk [34] and predicting surgical outcomes
Figure 2 Similarity matrix of KIT, SYNGR2, C21orf4, Hs.296031, Hs.241
coefficient.
[35-38]. We built several Neural Networks and the
most predictive one has resulted to be made up of KIT,
CDH1, LSM7, C21orf4, DDI2, TC1 and Hs.296031,
with a power of 87.7%. The network was then validated
on 6 unknown samples. The model determined the ac-
curate diagnosis of 5 of 6 unknown samples tested,
based on a comparison to the gold standard patho-
logical diagnosis as determined by clinical pathologists.
It’s important to notice that we have put in the model

also two non-significant markers (TC1, Hs.296031), be-
cause their contribution to the predictive power seemed
to be relevant. In fact, some variables although not sig-
nificant may increase the discriminative power to a
model refining the predictions.
The classifier built using also BRAF mutational status

resulted to have a predictive power of 88.8% and to
83, CDH1, LSM7, TC1 and NATH based on Pearson’s correlation
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successfully discriminate the unknown samples when
the blind was broken (Table 2), thus the gene expression
analysis combined to the BRAF mutational analysis may
represent a very useful test to preoperatively discrimin-
ate benign from malignant thyroid tumors.
The probability of the prediction of diagnosis for al-

most all the samples resulted to range between 95% and
100%, thus, although the general prediction value is
88.8%, the predictive power to assess each sample indi-
vidually can reach a value of 100%. These data also
strengthen the importance of the 8-markers model as an
adjunctive tool for the preoperative diagnosis of thyroid
nodules.
We also stratified the samples depending on both the

histological and cytological diagnoses (Table 3). The
diagnostic gain obtained by applying BRAF molecular
analysis, KIT expression model and BNN model was
then calculated.
By applying the BNN model, no classification errors

came out when the probability of diagnosis was higher
than 90%, thus allowing us to use this model as a cor-
rect predictor of samples with a probability score >90%
(p < 0.0001).
We then calculated the diagnostic gain after applying

molecular tests (Table 4).
Among the uncertain samples (IFP and SPTC) at the

cytological level, 11 were correctly diagnosed by BRAF
test, 4 additional samples by KIT model and 9 additional
samples by the BNN model. It is important to point out
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that IFP lesions are often very difficult to diagnose even
at frozen section and in this study we developed a mo-
lecular approach that is able to correctly classify as cer-
tain benign 46% (11/24) of IFP lesions. Therefore using
molecular approaches these patients would have been
clinically enrolled to the follow up group instead of sent
to surgery. Thus, the combined use of the molecular
tests resulted to produce a diagnostic gain of 28%
(Table 4). Basically, what we propose in this paper is the
use of BRAF molecular analysis (after uncertain cyto-
logical diagnosis) to assess the malignancy of thyroid
nodules in the first place, then the use of KIT model for
the indeterminate nodules and at last the use of the
8-gene model to ultimately assess the diagnosis of
the nodules that otherwise would remain suspicious
(Figure 3). The combinatorial power of these tools
could definitely increase the percentage of thyroid
nodules correctly classified while decreasing the ones
remained indeterminate.
All these findings strengthen the importance of mo-

lecular pathology where morphology and molecular
alterations represent a powerful approach to diagnosis.
In this line, this study aimed to assess the diagnostic po-
tential of the 8-gene expression model as an adjunctive
tool in the preoperative management of thyroid nodules.
We demonstrated that the 8-gene expression model pro-
vides an increased diagnostic power to the molecular
pathology approach based on BRAF mutation and KIT
expression analysis.
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We also performed a multiple variable analysis among
all the markers, independently on the diagnostic classifi-
cation, in order to evaluate a possible functional correl-
ation among the markers (Figure 2). In literature there is
no evidence about the biological correlation among the
well-studied markers; however it is interesting to note
that the unknown marker Hs.296031 statistically corre-
lates with NATH, C21orf4, DDI2, SYNGR2 and TC1.
This may reflect also a biological correlation, thus, fur-
ther studies are needed to explore this phenomenon.

Conclusion
The genetic classification obtained with the model here
presented is highly accurate and may provide a tool to
overcome the difficulties in today’s preoperative diagno-
sis of thyroid malignancies. We hoped that the quantita-
tive nature of this test will be a useful gene-based
objective adjunct to the preoperative diagnosis of a dis-
ease that currently relies solely on cytology.
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