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Abstract

Background: The advanced phases of chronic myeloid leukemia (CML) are known to be more resistant to therapy.
This resistance has been associated with the overexpression of ABCBT, which gives rise to the multidrug resistance
(MDR) phenomenon. MDR is characterized by resistance to nonrelated drugs, and P-glycoprotein (encoded by
ABCBT) has been implicated as the major cause of its emergence. Wnt signaling has been demonstrated to be
important in several aspects of CML. Recently, Wnt signaling was linked to ABCBIT regulation through its canonical
pathway, which is mediated by B-catenin, in other types of cancer. In this study, we investigated the involvement
of the Wnt/-catenin pathway in the regulation of ABCBT transcription in CML, as the basal promoter of ABCBT has
several 3-catenin binding sites. 3-catenin is the mediator of canonical Wnt signaling, which is important for CML
progression.

Methods: In this work we used the K562 cell line and its derived MDR-resistant cell line Lucena (K562/VCR) as CML
study models. Real time PCR (RT-qPCR), electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation
(ChIP), flow cytometry (FACS), western blot, immunofluorescence, RNA knockdown (siRNA) and Luciferase reporter

approaches were used.

pathway of Wnt signaling.

Results: 3-catenin was present in the protein complex on the basal promoter of ABCBT in both cell lines in vitro,
but its binding was more pronounced in the resistant cell line in vivo. Lucena cells also exhibited higher 3-catenin
levels compared to its parental cell line. WntT and B-catenin depletion and overexpression of nuclear 3-catenin,
together with TCF binding sites activation demonstrated that ABCBT is positively regulated by the canonical

Conclusions: These results suggest, for the first time, that the Wnt/f3-catenin pathway regulates ABCBT in CML.

Background

Chronic myeloid leukemia (CML) is a myeloproliferative
disease characterized by the BCR-ABL constitutive
tyrosine kinase (TK) oncoprotein, the result of the
balanced reciprocal translocation of chromosomes 9 and
22 (t(9;22)(q34;q11)) [1]. BCR-ABL signaling is responsible
for the pathogenesis of CML and is the primary molecular
target for disease therapy with imatinib mesylate (Glivec,
Gleevec, IM), a TK inhibitor. CML progresses in three
phases: an initial phase known as the chronic phase (CP),
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the accelerated phase (AP) and the blastic crisis (BC) [2].
CML progression to BC has been associated, among
others, with the canonical pathway of Wnt signaling. Acti-
vation of this pathway leads to nuclear accumulation of f3-
catenin, which activates the TCF/LEF1 family of transcrip-
tional factors. The canonical pathway plays an important
role in CML progression by activating several targets, such
as c-MYC, ROK13A, cadherin, MDI1, prickle 1, and FZD2
[3]. Recently, this pathway was demonstrated to be crucial
in disease maintenance through the sustenance of CML
stem cells [4-6]. Hu and colleagues indicated that p-
catenin is essential for the survival and self-renewal of
CML stem cells even in mice subjected to kinase inhib-
ition therapy [7].

Mechanisms surrounding the response to IM ther-
apy in CML have been mostly associated with BCR-
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ABL oncoprotein mutations and BCR-ABL amplifica-
tion. Nevertheless, some patients do not present either
mechanism or respond to therapy, suggesting other
mechanisms, the so-called BCR-ABL-independent
mechanisms. Among them is the multidrug resistance
(MDR) phenotype that is dependent on the expression
of proteins that function as extrusive pumps [8-10].
In leukemia, the product of ABCBI, P-glycoprotein
(Pgp), is most commonly implicated in the develop-
ment of drug resistance. It is known that ABCBI can
be regulated by several pathways in different condi-
tions and that there is redundancy in this regulation
[11]. However, despite the complex pattern of the
ABCB1 promoter region, the existence of seven
TCF/LEF1 consensus binding sites on the basal pro-
moter of this gene [12] indicates the possibility of
ABCBI regulation by the canonical Wnt pathway. In-
deed, Yamada and colleagues [13], Flahaut and collea-
gues [14] and Bourguignon and colleagues [15]
revealed the involvement of the Wnt/B-catenin path-
way in ABCBI regulation in early colorectal cancer,
neuroblastoma and breast cancer, respectively. Regard-
ing CML, studies with patients have shown that poly-
morphisms of the ABCBI gene can alter the response
to therapy [16-21]. A few works have confirmed that
ABCBI can be overexpressed in the AP of disease
[22-26], and IM-resistant cell lines also overexpress
ABCBI [27-29]. Our previously work have demon-
strated that MDR cell line Lucena, which over-
expresses ABCBI (800-fold increase) and Pgp (45-fold
increase) is cross-resistant to IM and IM-resistant
patients present ABCBI over-expressed, despite of dis-
ease phase [30]. Therefore, the aim of this work was
to investigate the involvement of the WNT/(-catenin
pathway in the regulation of ABCBI transcription in
CML. Our results provide unprecedented information
regarding ABCBI regulation in CML.

Methods

Culture conditions

Lucena (K562 multidrug-resistant cell line induced by
vincristine (VCR)) cells overexpressing ABCB1 were
kindly provided by Dr®. Vivian Rumjanek (Departamento
de Bioquimica Médica, Universidade Federal do Rio de
Janeiro, Brazil) [31]. The human myelogenous leukemia
cell line (K562) and its vincristine-resistant derivative,
the Lucena cell line, were grown in RPMI 1640 medium
(Invitrogen) supplemented with 10% FBS (Invitrogen),
50 units/mL penicillin G (Invitrogen), 50 pg/L strepto-
mycin (Invitrogen) and 2 mM l-glutamine (Invitrogen)
at 37 °C in a humidified atmosphere containing 5% CO,.
Lucena medium was supplemented with 60 nM VCR
(Sigma).
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Electrophoretic mobility shift assays (EMSAs)

Syntheses of double-stranded oligonucleotides for the
seven TCF sites in the ABCBI sequence from the up-
stream promoter followed the protocols of Labialle and
colleagues see reference [12]. They were named S1 to
S7, with S7 being the shortest distance from the coding
sequence. TCF sites are distributed throughout the
ABCBI promoter, with S1 and S2 being distal sites.

S1: 5'-CAACTCGTCAAAGGAATTAT-3’
S2: 5'-GGTGTTGATCAAAGGTACAA-3’
S3: 5'-GCAGAACTCAAAGAAACAGA-3’
S4: 5'-ATGTCAAAACAAAGGAGATT-3’
S5: 5'-AAACAAAGTTTGCTCCTCTT-3’
S6: 5'-GTAGGAAATACAAAGAATACT-3’
S7: 5'-GCCTAAGAACAAAGAGAGAG-3’

Dephosphorylated oligonucleotides (25 pmol) were
end-labeled with [y->*P] ATP and T4 polynucleotide kin-
ase. For binding reactions, 7 pg of nuclear protein
extracts, prepared as previously described [32], was incu-
bated with 80.000 cpm of labeled probe in 2 pL of 1x
binding buffer (50 mM HEPES - pH 7.4, 300 mM KCl,
5 mM EDTA, 5 mM DTT, 11.5% Ficoll) and 1 pg of poly
(dI-dC)(dI-dC) (GE) in a total volume of 20 pL for
40 min at room temperature (25 °C). Reactions were
resolved by 4.5% polyacrylamide gel electrophoresis in
0.5x TBE for 90 min at 4 °C. In all EMSA experiments,
the concentration chosen for competition experiments
was a 200-fold molar excess. For competition reactions,
a 200-fold molar excess of nonlabeled competitor DNA
was added 20 min before the addition of the probe. The
Opt oligonucleotide, described by Pizzatti and collea-
gues, was also used as a competitor because it only pos-
sesses the TCF consensus binding site in its sequence
[33]. Opt 5'-GGTAAGATCAAAGGG-3’

For supershift analysis of the ABCB1 promoter, protein
extracts were incubated for 2 h with 1 pg of the anti-
B-catenin (Sigma) and anti-Smad8 (Santa Cruz Tech-
nologies) antibodies at 4 °C before the addition of the
probe. Anti-Smad8 was used as a negative control.

Chromatin immunoprecipitation (ChIP) assays on native
chromatin

Chromatin from K562 and Lucena cells was fractio-
nated by incubation of purified nuclei with micrococ-
cal nuclease and its immunoprecipitation with anti-p-
catenin antibody was performed as described previ-
ously [34]. DNA extractions from bound fractions
were performed following the Abcam (www.abcam.
com) protocol. The immunoprecipitated DNA was
amplified for sequences containing binding sites by
using the following ABCBI promoter sequence pri-
mers: ABCBIp (F) 5'-CAACTCGTCAAAGGAATTAT-
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3" and ABCBIp (R) 5'-TTGTACCTTTGATCAACAC
C-3".

Quantification was evaluated by RT-qPCR analysis.
Immunoprecipitation of Protein A (Santa Cruz Technolo-
gies) was used for non-specific binding, and Smad8
(Santa Cruz Technologies) was used as a positive control.

Real-time quantitative PCR (RT-qPCR)

Analysis of ABCB1, WNTI, f-catenin and B-ACTIN
mRNA levels was performed by RT-qPCR. Two micro-
grams of Trizol (Invitrogen) extracted RNA from cell
lines was treat with DN Ase Amplification Grade I (Invi-
trogen) and reverse-transcribed with Superscript II Re-
verse Transcriptase® (Invitrogen). c¢DNAs dilutions
(1:100) were mixed with SYBR Green PCR Master Mix®
(Applied Biosystems) and the following primers: ABCBI:
(F) 5'-CCC ATC ATT GCA ATA GCA GG-3’ and (R)
5'-GTT CAA ACT TCT GCT CCT GA-3'; WNTI: (F)
5'-TGG TTT GCA AAG ACC ACC TCC A-3, and (R)
5-TGA TTC CAG GAG GCA AAC GCA T-3%; -
CATENIN: (F) 5'-AAG ACA TCA CTG AGC CTG
CCAT-3" and (R) 5'-CGA TTT GCG GGA CAA AGG
GCA A-3%; B-ACTIN: (F) 5'-ACC TGA GAA CTC CAC
TAC CCT-3" and (R) 5'-GGT CCC ACC CAT GTT
CCA G-3'. RT-qPCR was performed in a Rotor Gene
6000 thermocycler (Corbett) with 50 cycles of 20 s at
95 °C, 30 s at 60 °C and 30 s at 72 °C. For each sample,
the expression of target genes was normalized to S-actin
mRNA levels. Changes in the mRNA levels of genes
were evaluated [35].

WNT/B-catenin activation by LiCl treatment

Cell cultures were exposed to 10 mM LiCl [36]. Treat-
ment was performed in 12-well culture plates for 24 and
48 h at a cellular density of 2.0 x 10° cells/mL. The tox-
icity of the assay was evaluated by FACS analysis, and
ABCBI mRNA levels were analyzed by RT-qPCR.

Flow cytometry (FACS) analysis

Viability was evaluated via the analysis of propidium iod-
ide (PI) staining (Sigma-Aldrich). Briefly, K562 and Lucena
cells (approximately 3.0 x 10° cells) treated with 10 mM
LiCl (24 h and 48 h) were harvested and washed in 500 pL
of PBS. PI (1.5 ug/mL) was added to the incubated tubes
prior to FACS analysis. PI(-) cells were considered viable.
All procedures were performed according to the manufac-
turer’s protocol. For B-catenin expression detection, cells
were harvested (approximately 2.5 x 10° cells) and fixed
with PBS/1% Formol. As follow, they were permeabilized
with 0.5% Tween 20 to allow intracellular staining and
labeled with anti-B-catenin polyclonal antibody (Sigma).
Results are expressed as mean relative fluorescence inten-
sity (MRFI), which was calculated by subtracting the
mean fluorescence intensity (MFI) for specific antibody
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by the MFI of the respective secondary antibody (which
served as negative isotype control). Ten thousand events
were analyzed for each sample in a FACSCalibur Flow
Cytometer (Becton Dickinson). The data were analyzed
using CellQuest v.3.1 software (Becton Dickinson). All
experiments were performed in triplicate.

RNAi knockdown (siRNA) and transfection

All RNA oligonucleotides described in this study were
synthesized and purified using high-performance liquid
chromatography at Integrated DNA Technologies (Coral-
ville), and the duplex sequences are available upon re-
quest. siRNA and transfections were performed following
the manufacturer’s protocols of the TriFECTa Dicer-
Substrate RNAi kit (Integrated DNA Technologies) and
the Trifectin reagent (Integrated DNA Technologies).
K562 and Lucena cells (5.5 x 10* cells per well) were split
in 24-well plates at 60% confluence in RPMI medium
1 day prior to transfection. The TriFECTa kit contains
control sequences for RNAi experiments, including a
fluorescently labeled transfection control duplex and a
scrambled universal negative control RNA duplex that is
absent in human, mouse and rat genomes. Fluorescence
microscopy was used to monitor the transfection effi-
ciency according to the manufacturer’s recommenda-
tions. Only experiments in which transfection efficiencies
were > 80% were evaluated. mRNA levels were measured
48 h after transfection. Duplexes were evaluated at 10
nM. All transfections were minimally performed in du-
plicate, and the data were averaged. WntI and 5-Catenin
depletion and RT-qPCR analyses were performed as
described above.

Western blot analysis

Cell lysates from K562 and Lucena cells (control - un-
treated - and treated with LiCl 10 mM) were run on
15% sodium dodecyl sulfate-polyacrylamide gels (SDS-
PAGE), transferred to nitrocellulose membranes (Bioead)
and incubated with -catenin (Santa Cruz Technologies),
P-GSK3a/B (Cell signaling) and «-tubulin (Sigma) anti-
bodies. Antibody binding was detected using enhanced
chemiluminescence ECL Plus Western Blotting detec-
tion Reagents (GE).

Immunofluorescence staining and confocal laser
microscopy

Cytospin preparations of K562 and Lucena cells were
fixed with methanol, permeabilized with 0.2% triton X-
100 PBS, and incubated for 1 h at room temperature with
1% bovine serum albumin (BSA) and 2.0% FBS blocking
buffer under shaking. Slides were rinsed once with PBS
and 0.05% Tween 20 and then incubated with appropri-
ately diluted primary antibodies in PBS. Cells were incu-
bated with anti-B-catenin polyclonal antibody (Sigma)
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overnight at 4 °C. After incubation, the slides were rinsed
three times and incubated with Alexa® 546 conjugated
anti-rabbit I1gG (Molecular Probes) for 1 h at room
temperature. Sections from each sample were incubated
with secondary antibody and served as negative isotype
control. The slides were rinsed three times, air-dried and
mounted in an antifading medium containing 4',6-diami-
dino-2-phenylindole (DAPI) (Vector Labs). Expression and
localization of the proteins were observed with a Leica
TCS-SP5 AOBS confocal laser scanning microscope
(Leica), for capturing representative images of each sample.

Reporter vectors design

The ABCBI reporter constructs were synthesized by
Gene Art (Germany) and cloned into the firefly pGL3-
Basic vector (Promega) upstream of the Luciferase re-
porter gene. The constructs named pGL3a, containing
just the basal promoter (-1019/+1); pGL3p, containing
the basal promoter and one TCF binding site (-1067/+1)
and pGL3y, containing the basal promoter and three
TCF binding sites (-3187/+1) were inserted into Kpnl
and BgLII restriction sites of pGL3-basic.

Transient transfection and luciferase reporter assay

For the transient assays, 1.0 x 10° cells from both cell
lines (with or without LiCl 10 mM treatment) were co-
transfected using Lipofectamine LTX 2000 (Invitrogen)
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with 1pug of each Luciferase construct and 100 ng of
pRL-SV40 vector (Promega), according to the manufac-
turer’s instructions. Firefly and Renilla Luciferase activ-
ities were measured in cell lysates 48 hours after
transfection using the DualGlo Luciferase Assay System
(Promega) on a Veritas TM Microplate Luminometer
(Turner Biosystems), following the manufacturer’s
protocol. All experiments were performed in triplicate.
Ratios of Renilla luciferase readings to firefly luciferase
readings were taken for each experiment and triplicates
were averaged. The average values of the tested con-
structs were normalized to the activity of the empty
pGL3-basic vector, which was arbitrarily set at value 1.

Statistical analysis

Comparison between K562 and Lucena results from
different assays was performed by an unpaired t-test.
P- Values less than 0.05 were considered as statistically
significant (*p < 0.05,**p < 0.01, and ***p < 0.001). Stat-
istical analyses and graphical representations were per-
formed using GraphPad Prism™ software (GraphPad).

Results

B-catenin binds to the ABCB1 promoter at the
TCF-binding site

Protein binding to the seven oligonucleotides contain-
ing TCF consensus binding sites (S1, S2, S3, S4, S5, S6
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Figure 1 EMSA using oligonucleotides of different TCF consensus binding sites in the ABCB1 promoter and protein extracts from K562
and Lucena cells. EMSAs to verify specific binding using the S4 and S5 oligonucleotides and protein extracts from K562 and Lucena cells. The
specificity of the DNA-protein complex is demonstrated by competition reactions with 200-fold excess unlabeled oligonucleotide and by
supershift assays. SL — Migration of the probe alone. “+C"- Competition reactions with 200-fold excess unlabeled probe. “+Opt” - Competition
reactions with 200-fold excess unlabeled wild-type oligonucleotide for the TCF consensus binding site. EXT K — protein extract from K562 cells.
EXT L - protein extract from Lucena cells. “+Smad 8" Supershift reactions using Smad8 antibody. . “+ Bcat” - Supershift reactions using 3-catenin
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Figure 2 ChIP assay for in vivo quantification of -catenin binding to the ABCBT promoter. (A) RT-qPCR quantification of 3-catenin binding
in K562 and Lucena cells. DNA amplification was quantified in bound and unbound fractions after normalization with protein A unspecific
amplification. Normalized fractions were used to calculate the bound/input ratio. (B) Representative agarose gel - qualitative analysis — of ABCB1
promoter amplification for B-catenin ChIP assay. Input: bound and unbound fractions; B: bound; UB: unbound.

Lucena

and S7) was determined by EMSA (see additional file
1 for all EMSAs for TCF binding sites). We also per-
formed competition assays to verify whether protein
complex binding was specific for the TCF consensus
binding site. Competition analyses using a 200-fold ex-
cess of unlabeled S4, S5 and Opt oligonucleotides
demonstrated that the specific binding was reduced
(Figure 1). In addition, we investigated the presence of
[B-catenin in the protein complexes formed at the TCF
consensus binding site in both S4 and S5 oligonucleo-
tides as these TCF binding sites showed the clearer
and stronger signal in EMSA analysis. Supershift assays
were performed using human B-catenin antibody, and
these assays demonstrated that p-catenin was present
in the protein complexes (Figure 1). These results sug-
gest that the TCF consensus binding site is important
for the formation of a protein complex. The appear-
ance of a shifted band in the supershift assay with
both the S4 and S5 oligonucleotides ensures the pres-
ence of B-catenin among protein complexes binding at
the ABCBI promoter.

To confirm the EMSA results, we performed ChIP
assays. The ChIP assay allows iz vivo analysis of nuclear
protein-DNA interactions. Chromatin fractions bound
to the B-catenin antibody in K562 and Lucena cells were
quantified by RT-qPCR using primers to amplify the
promoter region that contains TCF binding sites. A 2-
fold increase in B-catenin binding was verified in Lucena
cells compared to that in K562 cells after normalization
with unspecific binding of protein A (Figure 2A). Quali-
tative analysis of ABCBI promoter amplification is
shown in Figure 2B.

In order to investigate if the more pronounced bind
observed in ChIP assay was due to different p-catenin
expression between cell lines, we evaluated its expres-
sion by RT-qPCR, western blot, flow cytometry and im-
munofluorescence assays (Figure 3 and Figure 4). The
results show a higher expression of B-catenin in Lucena
cell line.

The Wnt/B-catenin signaling pathway regulates ABCB1
expression

To verify whether the binding of B-catenin to the ABCBI
promoter could lead to ABCBI transcriptional activation,
we activated the canonical WNT pathway in K562 and
Lucena cells by LiCl 10 mM treatment, as described by
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Figure 3 B-catenin expression levels in K562 and Lucena cells.
(A) RT-gPCR analysis of S-catenin mRNA levels. Raw expression
values were normalized to -actin expression. (B) 3-catenin
expression by FACS, represented as MRFI. Secondary antibody was
used as isotype antibody control. (C) Representative western blot
analysis of 3-catenin expression. 50 ug of protein extracts from both
cell lines were separated SDS-PAGE and probed with anti- 3-catenin
antibody. a-tubulin was used for constitutive expression. Values

represent the means of three independent determinations +s.d.
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Figure 4 Distribution of B-catenin in K562 and Lucena cells. Confocal microscopy of cytospin preparations showing the relative nuclear,
membrane and cytoplasmic distribution of B-catenin in K562 and Lucena cells exposed to LiCl 10 mM treatment for 24 h. Nuclei 3-catenin
density significantly increases upon treatment, compared to untreated cells. Nuclei are stained with DAPI (blue). Micrograph panel is

Stambolic and colleagues see reference [36]. LiCl inhibits
GSK3-B, resulting in p-catenin stabilization and its con-
sequent nuclear translocation. This treatment is cur-
rently used for this purpose in the literature [37]. The
nuclear translocation of 3-catenin was more pronounced
in K562 cell line than in Lucena cell line (Figure 4).
Moreover after LiCl treatment we demonstrated that
phosphorylated GSK3-p was abolished in both cell lines
(Figure 5) indicating that degradation of B-catenin was
prevented, enhancing its nuclear translocation (Figure 5).

We examined cell viability by FACS analysis prior to
RNA extraction (data not shown). As LiCl treatment did
not alter cell viability, we evaluated ABCBI mRNA levels
in K562 and Lucena cells treated with LiCl 10 mM by
RT-qPCR analysis at 24 h. Untreated cells were used as
a control. The increase in ABCBI mRNA levels was
more significant in K562 cells than in Lucena cells
(Figure 6).
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Figure 5 Western Blot analysis of GSK3 activation.
Representative western blot analysis of P-GSK3 from both cell lines
protein extracts, with or without LiCl 10 mM treatment. 50 ug of
protein extracts were separated SDS-PAGE and probed with
anti-P-GSK3 antibody. a-tubulin was used for constitutive expression.
For each treatment results, representative of three independent
experiments are shown.
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Figure 6 Wnt/B-catenin pathway activation increases ABCB1
expression. Increases in ABCBT mRNA levels were evaluated after
LiCl 10 mM treatment for 24 h. Total RNA was isolated and used in
RT-gPCR to determine changes in ABCBT mRNA levels after
normalization to B-actin expression. Values represent the means of
three independent determinations +s.d.

To strengthen our observations, we performed func-
tional analyses of WNTI and f-catenin depletion in
K562 and Lucena cell lines using RT-qPCR. Using a
siRNA approach after 48 h of transfection, a reduction
in WNT1I expression of more than 85% and f5-catenin of
more than70% were achieved in both cell lines when
compared to scrambled control sequence-treated cells
(Figure 7A and 8A). Thus, we used these samples to
evaluate ABCB1 mRNA levels to verify how the Wnt
pathway could be involved in ABCBI regulation. WNT1
depletion in Lucena cells resulted in an 80% reduction in
ABCBI expression (Figure 7B). Despite the 85% reduc-
tion of WNT1 expression in siRNA-treated K562 cells,
we did not find evidence of significant reductions in
ABCBI mRNA levels compared to the levels in scramble
control-treated cells, suggesting that probably other Wnt
ligands could play a role in this activation (Figure 7B).

However f3-catenin reduction in both cell lines con-
firmed that indeed the canonical WNT pathway regu-
lates ABCB1 expression as shown by 60% and 71%
reduction of ABCBI mRNA levels in K562 and Lucena
cells respectively (Figure 8B).

ABCB1 promoter TCF binding sites role in transcriptional
activity

To further evaluate the relative contribution of TCF tran-
scription factor to the regulation of ABCBI promoter ac-
tivity, we performed transient transfection assays using
K562 and Lucena cells with constructions containing
TCF binding sites (Figure 9A). These constructions were
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transfected with or without LiCl 10 mM and Luciferase
activity was measured using Luciferase assay approach.

These results showed that Luciferase activity increases
in the presence of TCF binding site in both K562 and
Lucena cell lines (Figure 9B, 9C). Even with only one
TCF binding site-pGL3p construct transfection, we
observed a higher Luciferase activity compared with
basal promoter without TCF binding sites. The Lucifer-
ase activity increases with constructions with more than
one TCF binding sites (Figure 9B, 9C).

In K562 and Lucena cells treated with LiCl we
observed a reduction in the Luciferase activity when
compared with the untreated cells. As LiCl treatment
results in the translocation of B-catenin to the nucleus
this reduction reflects the lack of cytoplasmatic p-
catenin necessary to activate TCF binding sites in the
constructs that are in the cytoplasm.
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Figure 7 Expression of ABCBT mRNA levels after Wnt1
depletion in CML cell lines. (A) WNTT siRNA in K562 and Lucena
cells. (B) Analysis of ABCBT mRNA levels after Wnt1 depletion. Total
RNA was isolated and used in RT-gPCR analysis to determine
changes in ABCBT mRNA levels after normalization to S-actin
expression. All data were presented as fold inductions relative to
control group expression (scrambled). Values represent the means of
three independent determinations + s.d.
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Figure 8 Expression of ABCBT mRNA levels after B-catenin
depletion in CML cell lines. (A) B-catenin siRNA in K562 and
Lucena cells. (B) Analysis of ABCBT mRNA levels after 3-catenin
depletion. Total RNA was isolated and used in RT-gPCR analysis to
determine changes in ABCBT mRNA levels after normalization to
B-actin expression. All data were presented as fold inductions
relative to control group expression (scrambled). Values represent
the means of three independent determinations + s.d.

Discussion

Resistance to chemotherapy is a recurrent issue in all
cancer types. Because CML has the propensity to evolve
from the CP to the AP and BC, with different responses
to targeted therapy such as TK inhibitors, the molecular
understanding of the mechanism of resistance in this
neoplasia is advancing rapidly.

IM was the first molecularly targeted therapy ration-
ally designed to specifically inhibit BCR-ABL TK activity
[38]. However, despite the effectiveness and good toler-
ability of IM, drug resistance does emerge. Although a
hematological response is observed in over 95% of CP
patients, primary resistant can occur [39]. Otherwise, AP
patients initially respond to IM but inevitably relapse
with treatment-refractory disease because they acquire
other mutations in addition to BCR-ABL amplification
or kinase domain mutations [40-42].
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Since the demonstration that IM could be extruded
from CML cells through Pgp action [43,44], ABCBI has
become an interesting subject in IM resistance studies.
Our previous results indicated that ABCBI is overex-
pressed in CML patients with intrinsic and acquired
resistance to IM therapy compared to its expression in
IM-responsive patients and healthy bone marrow donors
see reference [30]. This finding contrasts the idea that
only individuals in the BC stage can exhibit ABCBI over-
expression, as suggested in the literature. Even though
we have analyzed a small cohort of patients, our results
corroborate those of Vasconcelos and colleagues see
reference [24], ratifying the importance of ABCBI1/Pgp in
CML.

Interestingly, in CML, Jamieson and colleagues de-
monstrated that the granulocyte-macrophage progenitor
pools from patients in BC and IM-resistant patients
exhibited elevated levels of nuclear B-catenin compared
with those in granulocyte-macrophage progenitors from
healthy donors. Moreover, these progenitors acquired
self-renewal ability [45]. These data indicated the im-
portant role of the Wnt/B-catenin pathway in the self-
renewal of CML progenitors and the acquisition of
resistance. Wnt signaling involvement in TK inhibitor re-
sistance was also demonstrated through its noncanonical
pathway by Gregory and colleagues [46]. Their results
indicated that Wnt/Ca®*/NFAT signaling maintains the
survival of Ph* leukemic cells under BCR-ABL inhibition.
Altogether, we can speculate that the deregulation of
Wnt signaling leads to key modifications in the biology
of cells, allowing them to become intrinsically more re-
sistant to drug therapy. However, a link between TK in-
hibitor resistance, Wnt signaling and drug efflux
mechanisms such as MDR has never been considered.
Despite some recent findings demonstrating that TCF
consensus sites for [(-catenin were functional in the
ABCBI promoter in other types of cancer, in CML, this
regulation has not yet been investigated.

In this work, using MDR (overexpressing ABCBI) and
non-MDR cell lines (Lucena and K562, respectively) as
models of CML, we demonstrated through EMSA and
ChIP analyses that -catenin binds to the TCF/LEF con-
sensus binding site in the ABCBI promoter. RT-qPCR
analyses indicated that this binding occurred at 2-fold
higher levels in Lucena cells than in K562 cells. As it has
been demonstrated that the BCR-ABL protein can estab-
lish B-catenin expression in CML via TK-mediated phos-
phorylation [47], this finding suggests that in drug
resistance in CML, the canonical Wnt pathway could be
more strongly activated to positively regulate ABCBI
transcription, as previously evidenced in other types of
cancer. Interestingly we could demonstrate by RT-qPCR,
western blot and FACS, B-catenin higher expression in
the MDR cell line. Furthermore, it is known that BCR is
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a negative regulator of the Wnt/B-catenin pathway. The
fusion gene BCR-ABL formed in CML decreases BCR
transcription and BCR translation, and thus, there is no
more BCR available to complex with p-catenin, leading
to the translocation of B-catenin to the nucleus and
Wnt/B-catenin pathway activation [48].

To verify whether Wnt/p-catenin could regulate
ABCBI mRNA levels, we modulated the canonical path-
way in CML cell lines. We demonstrated that activation
of [B-catenin signaling by LiCl treatment resulted in
increased ABCB1 mRNA levels in both cell lines, with

higher levels observed in K562 cells. As discussed previ-
ously, K562 cells exhibited less -catenin binding to the
ABCBI1 promoter than Lucena cells. ABCBI mRNA
levels were not altered significantly in Lucena cells, sug-
gesting that these cells exhibit saturation of the Wnt
pathway. By silencing the pathway using a siRNA ap-
proach with WNT I and S-catenin knockdown, we veri-
fied the opposite—a significant decrease in ABCBI
mRNA levels in Lucena cells—indicating that when
Wnt/B-catenin signaling is downregulated, ABCBI tran-
scription is also downregulated.
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ABCBI gene promoter presents seven TCF binding
sites that have been until now poorly investigated in the
regulation of gene transcriptional activity in cancer cells.
However the more proximal TCF binding site have
already been demonstrated to be functional in some can-
cer types see references [13-15]. In this study we could
demonstrate that all the seven TCF binding sites are po-
tentially functional (supplementary material) and more-
over we showed that two of them are functional in vivo.
Transfection experiments suggest that TCF binding sites
can function in combination to enhance transcriptional
activity.

These findings suggest that the canonical pathway of
Wnt signaling regulates ABCB1 in CML. Several studies
have demonstrated that quiescent CML stem cells do
not undergo apoptosis even in the presence of high-dose
or more potent TK inhibitors. Moreover, seminal studies
demonstrated that a quiescent population of CML stem
cells with BCR-ABL kinase domain mutation that is de-
tectable before the initiation of IM therapy gives rise to
leukemic cells that persist after treatment see references
[1-7,49-52]. These findings suggest that CML stem cells
contribute to CML persistence and disease progression.
A question to be further addressed is whether ABCBI is
also regulated by the canonical Wnt pathway in CML
stem cells, as this pathway has also been correlated with
self-renewal.

CML stem cells and normal hematopoietic stem cells
(HSC) share several characteristics despite exhibiting re-
markable differences. Self-renewal is an essential stem
cell property, but self-renewal pathway activation has
also been increasingly recognized as a hallmark of can-
cer. Interestingly, HSC and CML stem cells also exhibit
increased levels of drug efflux-related molecules such as
the product of ABCBI, Pgp and decreased levels of
OCT1, a transporter involved in the uptake of IM, ren-
dering them more resistant to drugs [53,54].

Conclusion

By the data presented in this work, we provided evi-
dence that the canonical pathway of Wnt signalling is
involved in ABCBI transcriptional activation in CML.

Additional file

Additional file 1: EMSA using 7 different oligonucleotides for TCF
consensus binding sites in the ABCB1 promoter. All EMSAs were
performed in other to verify K562 and Lucena protein extracts’ binding to
all 7 (S1 to S7) oligonucleotides from ABCBT promoter. SL — Migration of
the probe alone. EXT K — protein extract from K562 cells. EXT L — protein
extract from Lucena cells.
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