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Steroid receptor coactivators, HER-2 and HER-3
expression is stimulated by tamoxifen treatment
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Abstract

Background: Steroid receptor coactivators (SRCs) may modulate estrogen receptor (ER) activity and the response
to endocrine treatment in breast cancer, in part through interaction with growth factor receptor signaling
pathways. In the present study the effects of tamoxifen treatment on the expression of SRCs and human epidermal
growth factor receptors (HERs) were examined in an animal model of ER positive breast cancer.

Methods: Sprague-Dawley rats with DMBA-induced breast cancer were randomized to 14 days of oral tamoxifen
40 mg/kg bodyweight/day or vehicle only (controls). Tumors were measured throughout the study period. Blood
samples and tumor tissue were collected at sacrifice and tamoxifen and its main metabolites were quantified using
LC-MS/MS. The gene expression in tumor of SRC-1, SRC-2/transcription intermediary factor-2 (TIF-2), SRC-3/amplified
in breast cancer 1 (AIB1), ER, HER-1, -2, -3 and HER-4, as well as the transcription factor Ets-2, was measured by
real-time RT-PCR. Protein levels were further assessed by Western blotting.

Results: Tamoxifen and its main metabolites were detected at high concentrations in serum and accumulated in
tumor tissue in up to tenfolds the concentration in serum. Mean tumor volume/rat decreased in the tamoxifen treated
group, but continued to increase in controls. The mRNA expression levels of SRC-1 (P= 0.035), SRC-2/TIF-2 (P=0.002),
HER-2 (P= 0.035) and HER-3 (P= 0.006) were significantly higher in tamoxifen treated tumors compared to controls, and
the results were confirmed at the protein level using Western blotting. SRC-3/AIB1 protein was also higher in tamoxifen
treated tumors. SRC-1 and SRC-2/TIF-2 mRNA levels were positively correlated with each other and with HER-2
(P≤ 0.001), and the HER-2 mRNA expression correlated with the levels of the other three HER family members
(P< 0.05). Furthermore, SRC-3/AIB1 and HER-4 were positively correlated with each other and Ets-2 (P< 0.001).

Conclusions: The expression of SRCs and HER-2 and -3 is stimulated by tamoxifen treatment in DMBA-induced breast
cancer. Stimulation and positive correlation of coactivators and HERs may represent an early response to endocrine
treatment. The role of SRCs and HER-2 and -3 should be further studied in order to evaluate their effects on response
to long-term tamoxifen treatment.
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Background
Breast cancer is the most frequent malignancy and a major
cause of cancer deaths in women. It is well established that
estrogen has pro-carcinogenic effects in mammary epithe-
lium by stimulating proliferation and leaving the cells
prone to mutations during cell cycle progression [1]. The
selective estrogen receptor modulator (SERM) tamoxifen
is widely used in ER positive breast cancer where it
improves disease-free and overall survival [2]. Tamoxifen
would normally function as an ER antagonist in breast
cancer by binding to the ER and inducing conformational
changes which favor corepressor recruitment and inhibit
ER mediated gene transcription. However, tamoxifen
demonstrates ER agonistic effects in other tissues such as
bone and liver. The expression and activity of nuclear re-
ceptor coactivators have been pointed out as the main
determinants of tissue- and cell specific effects of tamoxi-
fen [3].
The SRC family includes SRC-1, SRC-2/TIF-2 and SRC-

3/AIB1. The SRCs have similar structural and functional
properties, but are genetically distinct, exhibit tissue-
specific differences in expression profiles and are suggested
to be involved in various diseases, including human cancers
[4]. All three SRCs are expressed in normal and malignant
breast tissue [5,6]. SRC-3/AIB1 is now considered to be an
oncogene [7], which is overexpressed in more than 30%
and genetically amplified in 5 – 10% of breast tumors [8-
11]. In cellular assays, overexpression of SRC-3/AIB1 has
been associated with a shift toward ER agonistic effects of
tamoxifen and growth of malignant cells during endocrine
treatment [12], whereas dissociation of SRC-3/AIB1 from
ER has been shown to restore sensitivity in tamoxifen
resistant cells [13]. SRC-1 has also been shown to contrib-
ute to the agonistic properties of 4-hydroxytamoxifen
(4OHtam) [14]. At the clinical level, overexpression of
SRC-1 or SRC-3/AIB1 has been associated with resistance
to endocrine treatment and reduced disease-free survival,
especially when overexpressed together with HER-2, also
known as HER-2/neu or erbB2 [15-17]. HER-2 signaling is
targeted in breast cancer therapy using specific antibodies
such as trastuzumab or tyrosine kinase inhibitors. Studies
of coactivators and HER-2 levels in breast tumor tissue
during endocrine treatment may reveal important regula-
tory mechanisms of relevance to endocrine sensitivity,
treatment response and patient outcome over time.
We have previously reported that 4 weeks of preopera-

tive treatment with tamoxifen in the 1-20 mg dose range
led to significant upregulation of SRC-1, SRC-2/TIF-2 and
SRC-3/AIB1 mRNA in human breast cancer tissue [6].
SRC-3/AIB1 and HER-2 mRNA levels did correlate, and
higher SRC-3/AIB1 mRNA levels in tumor at surgery
were associated with reduced disease-free survival after a
median follow-up time of 8 years. During estrogen
deprivation using aromatase inhibitors we found SRC-1
and HER-2 mRNA to be upregulated [18]. Interestingly,
this upregulation was particularly evident among therapy
responders, again underlining a potential relationship be-
tween endocrine treatment, SRCs, HER-2 and treatment
response that should be further explored.
In the present study we used an animal model of

hormone dependent breast cancer induced by 7,12-
dimethylbenz(a)anthracene (DMBA) [19] to study the
effect of tamoxifen therapy on expression levels of SRC-
1, SRC-2/TIF-2, SRC-3/AIB1 and HER-2 in tumor tis-
sue. We also analyzed the mRNA expression of HER-1
(also known as epidermal growth factor receptor EGFR),
HER-3 and HER-4, known to share functional proper-
ties with HER-2 [20], but much less studied in breast
cancer. We also analyzed the expression of the tran-
scription factor Ets-2, that is known to interact with the
SRCs, and ERα. We found tamoxifen and its main meta-
bolites at high concentrations in serum and accumu-
lated in tumor tissue with a clear treatment response in
the tamoxifen treated tumors. The mRNA and protein
expression levels of SRCs, HER-2 and HER-3 were sig-
nificantly higher in tamoxifen treated tumors compared
to controls. Interestingly, SRC-1 and SRC-2/TIF-2
mRNA levels were correlated with each other and with
HER-2. SRC-3/AIB1 and HER-4 were positively corre-
lated with each other and with Ets-2.

Methods
Animal model
Non-immunized female SPF Sprague-Dawley rats of stock
NTac:SD from Taconic M&B (Borup, Denmark) were
administered a single dose of 20 mg DMBA (D-3254;
Sigma-Aldrich Norway AS, Oslo, Norway) at age three
weeks. After ten weeks all rats had developed palpable
tumors, and a total of 16 Sprague-Dawley rats were rando-
mized into two different experimental groups according to
treatment. The tamoxifen group received tamoxifen dis-
solved in peanut oil once daily by gastric tube at a dose of
40 mg/kg bodyweight whereas control rats were adminis-
tered vehicle only (peanut oil) in corresponding amounts
(2.8 ml/kg body weight). The rats were weighed every third
day for calculations of treatment dosage, and treated for
13 days before being sacrificed on day 14. A longer treat-
ment period would result in a higher proportion of deaths
among the controls and was not considered ethically ac-
ceptable. Tumors were counted and measured by calliper
throughout the study period, and tumor volumes calcu-
lated using the formula: (length) x (width2)/2. The relative
tumor volumes were calculated as the ratio of the tumor
volume on day n divided by the tumor volume on day 0.
On day 14, the rats were anaesthetized with 2 – 5%

isoflurane (Forene: Abbott Scandinavia AB, Solne, Sweden)
mixed with oxygen and nitrous oxide. Blood was collected
from the heart in BD Vacutainer tubes with no additive
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(Becton Dickinson and Co., Plymouth, UK). Tumor tissue
was collected immediately post mortem and freeze-
clamped before storage at -80 °C until further analyses. The
study model is presented in Figure 1.
The rats received a standard diet from B & K Uni-

versal (Nittedal, Norway), had free access to tap water
and feed, and were kept in a room with 12 h light/
dark cycles and a constant temperature of 20 °C ± 3 °C
throughout the experiment. The study was approved
by the Norwegian State Board of Biological Experi-
ments with Living Animals.
RNA extraction, reverse transcription and real-time PCR
Tumor tissue was homogenized manually using mini-
pestils and RNA extracted using Trizol (Invitrogen,
Carlsbad, CA, USA) according to the manufacturer’s
instructions. The quality and quantity of total RNA in each
sample was analyzed using the NanoDrop (Saveen Werner,
Copenhagen, Denmark) and 1 μg total RNA used for re-
verse transcription with the Transcriptor First Strand cDNA
Synthesis kit (Roche, Mannheim, Germany).
Sprague-Daw
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Figure 1 Schematic presentation of the study model. 16 Sprague-Daw
randomized to treatment with oral tamoxifen or vehicle only for 14 days. T
dosage and the tumors were counted and measured. Blood was sampled
metabolites, and tumor tissue was collected for gene expression measurem
tissue was also used for protein analyses of SRCs and HERs by Western blo
Real-time PCR-reactions were performed according to
the protocol on a LightCycler 480 instrument (Roche)
using gene specific primers (Biomers.net, Ulm, Germany),
Universal ProbeLibrary probes and the kit LightCycler 480
Probes Master (Roche). The primer sequences and probe
numbers were as follows: SRC-1 tgctcccgaggaggttaaa (s)
and atcaaactggtcaaggtcagc (as), probe #21; SRC-2/TIF-2
ctgtgaaggaggaggtgagc (s) and tccaaaatctcttccaagttgtc (as),
probe #64; SRC-3/AIB1 ctggtgctgctgtgatgag (s) and
gccatttgggcattaaagaa (as), probe #3; HER-2 tgtggatctggat-
gaacgag (s) and cactacagttgcaatgatgaatgt (as), probe #3;
HER-1 cagagctgaaaaggactgcaa (s) and cacattctggcaggaga-
cac (as), probe #3; HER-3 caacccccataccaagtatca (s) and
acgtctggtccaccacaaa (as), probe #25; HER-4 caataggagt-
gaaattggacaca (s) and ccatcctggtacacaaactgac (as), probe
#63; ERα tttctttaagagaagcattcaagga (s) and ttatcgatggtg-
cattggttt (as), probe #130; Ets-2 gccctacgccttcgtctc (s) and
ttgattccaaaatcattcatcg (as), probe #70; TATA-box binding
protein (TBP) cccaccagcagttcagtagc (s) and caattctgggttt-
gatcattctg (as), probe #129.
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from a cDNA-stock made by pooling all study samples.
mRNA expression levels were calculated relative to that
of the housekeeping gene TBP.

Protein extraction and western blot analysis
Protein was extracted from tumor tissue after homo-
genization of tissue twice at 25 Hz for 2 minutes using a
TissueLyser (Qiagen, Düsseldorf, Germany) in RIPA lysis
buffer (Thermo Scientific, Belgium) containing 2 mM
EDTA, 0.5 mM phenylmethylsulfonyl fluoride (PMSF,
Sigma Aldrich, St. Louis, MO) and protease inhibitors
(Complete mini-EDTA free protease inhibitor cocktail tab-
let, Roche). Lysates were incubated on ice for 10 minutes
prior to centrifugation at 12.000 x g for 20 min at 4 °C, and
the supernatant was collected and stored at -80 °C. Protein
concentrations were determined by the Lowry method
using RC DC Protein Assay (BioRad, Hercules, CA, USA).
145 ug total protein per sample was resolved on 4-20%
TXD Mini protean RGX precast gels (Biorad) and trans-
ferred to nitrocellulose membranes using the Trans-Blot
Turbo transfer system (Biorad) for 9 minutes at 2.5 A con-
stant up to 25 V. Membranes were incubated for 1 h at
room temperature in blocking solution containing 5%
skimmed milk in Phosphate-buffered saline with Tween-20
(PBS-T), followed by rinsing in PBS-T before incubation for
1 h in room temperature with specific primary antibodies
for HER-2 (anti-erbB-2, Millipore, Billerica, MA, USA;
1:500), HER-3 (ErbB-3, Santa Cruz; 1:200), SRC-1 (BD Bio-
science, San Joes, CA, USA; 1:500), SRC-2/TIF-2 (BD Bio-
science; 1:500) and SRC-3/AIB1 (Cell Signaling, Boston,
MA, USA; 1:500). Membranes were rinsed in PBS-T before
incubation for 40 minutes with either goat-anti-mouse sec-
ondary antibody (BD Bioscience, 1:5000) or goat-anti-rabbit
secondary antibody (Thermo Science, 1:10000). Membranes
were washed in PBS-T and proteins were detected by
SuperSignal West Femto (Thermo Scientific, Rockford, IL,
US) using a ChemiDoc System (BioRad). Membranes were
stripped using Restore Western Blot Stripping buffer
(Thermo Scientific) for 45 minutes, washed in PBS-T for
detection of reference protein using primary antibody to β-
actin (Abcam, Cambridge, UK; 1:5000) and secondary anti-
body donkey-anti-mouse (Santa Cruz, 1:5000) following the
protocol above.

Tamoxifen and metabolite concentrations
Tamoxifen and its metabolites 4OHtam, N-desmethylta-
moxifen (NDtam), N-desdimethyltamoxifen (NDDtam),
tamoxifen-N-oxide (tamNox) and 4-hydroxy-N-desmethyl-
tamoxifen (4OHNDtam) were measured in serum by high-
pressure liquid chromatography-tandem mass spectrometry
(LC-MS/MS) as previously published [21]. Before measur-
ing tamoxifen and metabolites in tumor, about 0.4 g tissue
was homogenized in ice-cold 50 mM Tris-HCl buffer (1:5,
(w/v)) with pH 7.4 at 26,000 rev/min. The homogenates
were mixed with an equal volume of 100% acetonitrile and
the precipitated proteins were removed by centrifugation at
15.000× g for 20 min prior to LC-MS/MS analyses [22].
Using this procedure, we have earlier observed a recovery
for tamoxifen, 4OHtam, NDtam, NDDtam and 4OHND-
tam in the range 69-110% in seven different rat tissues [23].

Statistics
Since the mRNA expression levels are not normally dis-
tributed, differences between the treatment groups were
analyzed using non-parametric Mann-Whitney U test.
Any correlation between expression levels of the different
target genes, between target genes mRNA and tumor
volume measurements and correlations between tamoxi-
fen metabolites were investigated using Spearman’s correl-
ation. The level of statistical significance was set at
P< 0.05. The SPSS software package version 18.0 (SPSS,
Chicago, USA) was used for all statistical analyses.

Results
Animal weights, tumor measurements and treatment
response to tamoxifen
The animals in the control group increased in weight from
a mean (± SD) of 263 g (± 21) on day 0 to 272 g (± 24) on
day 12. In the tamoxifen treated animals, the mean weight
fell from 265 g (± 25) to 256 g (± 18) (Figure 2A). Corres-
pondingly, mean tumor volume during tamoxifen treat-
ment dropped from 2750 to 1923 mm3/rat (Figure 2B),
and the mean relative tumor volume on day 13 was 0.9 in
tamoxifen treated rats (Figure 2C). In contrast, the con-
trols experienced an increase in average tumor volume in
the same time period, from 1611 to 3488 mm3/rat, and
the mean relative tumor volume was 4.6 on day 13
(Figure 2B and C). The variation in mean tumor volume
per rat was considerable in both tamoxifen treated and
control rats (Figure 2B). It should also be noted that one
of the rats in the control group had to be euthanized on
day 3 of treatment due to severe illness and was excluded
from the study after study start.
At the start of the treatment period, the tumors were

equally distributed between the treatment groups with an
average number of 2.4 tumors/rat (± 1.8) in the group
which received tamoxifen treatment compared to 2.5
tumors/rat (± 2.3) in the control group. Of the 19 tumors
in the tamoxifen treated rats, one tumor disappeared, 13
tumors demonstrated regression whereas five tumors
increased in size. Four out of the 20 tumors in control rats
demonstrated a reduction in size, whereas the remaining
16 tumors increased in size and additional eight tumors
appeared during the study period. We observed new
tumors during tamoxifen treatment, but the mean num-
ber of tumors per rat leveled out and reached 3.0 (± 3.6)
during the treatment period whereas the control animals
experienced a continuous increase also in tumor number



Figure 2 Animal weight and tumor volume during tamoxifen
treatment. Rats with DMBA-induced ER positive breast cancers were
orally treated with either tamoxifen at a dose of 40 mg/kg bodyweight/
day or received vehicle only for 14 days. Animals were weighed every
third day for calculation of treatment dosage. Mean weights (± SD) are
presented in the graph (A). Tumor number and size were measured
every second day and the tumor volumes were calculated according to
the formula (LxW2)/2. The mean tumor volume/rat (B) and mean
relative tumor volume/rat compared to day 0 (C) during the treatment
period are presented according to treatment group.
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to 4.0 (± 1.9) at the end of the study. However, we
observed that growing tumors could confluence, whereas
tumors in regression could disintegrate into several smal-
ler tumors, making the number of tumors a poor marker
of treatment response.
mRNA expression of SRCs, HER growth factor receptors,
ERα and Ets-2
Tumors too small for RNA extraction according to proto-
col had to be excluded from further analyses. Thus, 13
representative tumors from the seven remaining control
animals were analyzed for mRNA expression. For one of
the tamoxifen treated animals, no tumors were observed
at the end of the study and for an additional two animals
the remaining tumor was too small for RNA extraction,
leaving a representative selection of nine tumors from five
tamoxifen treated animals for gene expression analyses.
Gene expression analysis by real-time RT-PCR demon-
strated a significant upregulation of SRC-1 during tamoxi-
fen treatment. The geometric mean (with 95% confidence
interval) of the SRC-1 mRNA levels relative to the house-
keeping gene TBP in tamoxifen treated tumors was 1.69
(1.14 – 2.51) compared to control animals 1.19 (0.79 –
1.81) (P=0.035, Figure 3A). SRC-2/TIF-2 was also signifi-
cantly higher in tamoxifen treated tumors with mRNA
levels of 1.21 (0.92 – 1.59) compared to 0.81 (0.57 – 1.16)
in control tumors (P= 0.002). The geometric mean of
SRC-3/AIB1 mRNA levels during tamoxifen treatment
was 0.98 (0.56 – 1.69) which was higher, but not signifi-
cantly different from levels in tumors from control ani-
mals. However, the mRNA levels of SRC-3/AIB1 were
significantly positively correlated with SRC-2/TIF-2
(P=0.023). SRC-1 and SRC-2/TIF-2 expression levels
were highly positively correlated (P< 0.001, Table 1).
We also observed a significant upregulation of HER-2

and HER-3 mRNA levels during endocrine treatment.
HER-2 mRNA levels had a geometric mean of 1.15 (0.80 –
1.67) in tamoxifen treated tumors compared to 0.70 (0.50 –
0.99) in controls (P=0.035, Figure 3A) and HER-3 mRNA
was 1.12 (0.85 – 1.48) during tamoxifen treatment and 0.67
(0.52 – 0.87) in tumors from controls (P=0.006). HER-2
and HER-3 were also significantly positively correlated
(P=0.005, Table 1). There were no significant differences in
HER-1 and HER-4 mRNA levels between tamoxifen treated
and control tumors (Figure 3A). However, the mRNA levels
of HER-2 correlated with HER-1 (P=0.025), HER-3
(P=0.005), HER-4 (P=0.023), and most clearly with SRC-1
and SRC-2/TIF-2 (P≤0.001). Although expression of SRC-
3/AIB1 and HER-4 did not increase significantly during
tamoxifen treatment, the respective mRNA levels were
highly positively correlated (P< 0.001, Table 1).
The transcription factor Ets-2 mRNA levels were not

found to be different in tamoxifen treated tumors com-
pared to controls (Figure 3A). Interestingly, however,
Ets-2 was positively correlated with the mRNA expres-
sion of SRC-3/AIB1 and HER-4 (Table 1). ERα mRNA
expression was lower in tamoxifen treated tumors with a
geometric mean of 0.73 (0.48 – 1.11), but not signifi-
cantly different from the levels in control tumors of 0.77
(0.50 – 1.18) (P= 0.65) (Figure 3A).
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Figure 3 SRCs and HERs expression during tamoxifen treatment. SRC-1, -2 and -3 and HER-1, -2, -3 and -4 mRNA expression levels as well as the
levels of Ets-2 and ERα mRNA after 14 days of oral tamoxifen treatment are presented compared to controls receiving vehicle only in DMBA-induced
breast cancer. The mRNA levels of our target genes were calculated relative to the expression of the housekeeping gene TBP and the data presented as
geometric means with error bars indicating 95% confidence intervals. Differences in mRNA levels between the treatment groups were evaluated using
Mann Whitney U test and statistical significance indicated in the figure (* = P < 0.05, ** = P < 0.01) (A). The protein levels of the SRCs (B) and HER-2
and HER-3 (C) in tamoxifen treated tumors compared to controls were analyzed using Western blots. Representative blots of the tumor response to
tamoxifen treatment are presented, using β-actin as control for protein load.
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SRC-2/TIF-2 tended to be higher in the tumors with the
largest volume at the end of the study (P=0.059). Overall,
we did not find any significant correlation between tumor
volume/rat, relative tumor volume and the expression of
the individual mRNAs in tumor (Table 2).

Protein expression of steroid receptor coactivators, HER-2
and HER-3
The ability of tamoxifen treatment to induce the expres-
sion of SRC-1, SRC-2/TIF-2, SRC-3/AIB1, HER-2 and
Table 1 Correlations between the mRNA expression of coactiv

SRC-1 SRC-2/TIF-2 SRC-3/AIB1 HER-

r P r P r P r

SRC-2/TIF-2 0.741 <0.001** - -

SRC-3/AIB1 0.141 0.53 0.483 0.023* - -

HER-1 0.260 0.242 0.335 0.128 0.293 0.186 -

HER-2 0.659 0.001** 0.714 <0.001** 0.355 0.105 0.477

HER-3 0.395 0.069 0.467 0.028* 0.071 0.755 0.354

HER-4 0.475 0.026* 0.596 0.003** 0.717 <0.001** 0.224

Ets-2 0.313 0.156 0.495 0.019* 0.778 <0.001** 0.214

ERα 0.320 0.146 0.338 0.124 -0.015 0.946 0.099

Spearman’s nonparametric test. Correlation coefficients (r) with P-values are present
or ** = P< 0.01
HER-3 in tumor tissue was also determined at the pro-
tein level, using Western blotting on protein extracts
from tamoxifen treated tumors and controls. SRC-1,
SRC-2/TIF-2 and SRC-3/AIB1 proteins were found to
be expressed at higher levels in tamoxifen treated
tumors compared to controls, as demonstrated in
Figure 3B.
Moreover, HER-3 expression was clearly induced by

tamoxifen at the protein level confirming the results above
at the mRNA level (Figure 3C). Although the Western
ators, HER growth factor receptors, Ets-2 and ERα
1 HER-2 HER-3 HER-4 Ets-2

P r P r P r P r P

-

0.025* - -

0.106 0.579 0.005** - -

0.316 0.482 0.023* 0.280 0.208 - -

0.339 0.554 0.007** 0.149 0.510 0.789 <0.001** - -

0.662 0.389 0.074 0.088 0.699 0.235 0.291 0.264 0.236

ed in the table. Significant correlations are indicated by italics and * = P< 0.05



Table 2 Correlations between the mRNA expression of
coactivators, HER growth factor receptors, Ets-2 and ERα
and tumor volume

Tumor volume Relative tumor volume

r P r P

SRC-1 0.210 0.513 −0.168 0.602

SRC-2/TIF-2 0.559 0.059 −0.084 0.795

SRC-3/AIB1 0.497 0.101 −0.154 0.633

HER-1 −0.070 0.829 −0.322 0.308

HER-2 0.301 0.342 −0.273 0.391

HER-3 0.280 0.379 −0.203 0.527

HER-4 0.350 0.265 −0.063 0.846

Ets-2 0.329 0.297 0.112 0.729

ERα 0.175 0.587 0.259 0.417

Spearman’s nonparametric test. Correlation coefficients (r).
with P-values are presented in the table.

Table 3 Tamoxifen and metabolites in serum and tumor
tissue during oral tamoxifen treatment

Serum# Tumor* Ratio {

(n = 8) (n = 5) (n = 5)

Median (q1-q3) Median (q1-q3) Median (q1-q3)

Tam 203 (184-229) 11750 (7000-15475) 50 (36-74)

4OHtam 372 (319-499) 18850 (8625-25775) 36 (23-72)

4OHNDtam 552 (427-593) 48850 (26550-76750) 92 (45-136)

NDtam 371 (335-417) 33200 (18225-49825) 93 (46-136)

NDDtam 4.7 (4.4-6.5) 376 (152-688) 84 (36-164)

TamNox 159 (127-180) 49 (29-685) 0.3 (0.2-3.9)

4OHtam/tam† 1.9 (1.7-2.2) 1.5 (1.2-1.7) -

NDtam/tam† 1.7 (1.5-2.0) 2.8 (2.5-3.2) -

NDDtam/tam† 0.02 (0.02-0.04) 0.04 (0.02-0.05) -
# Tamoxifen and metabolite measurements are presented as ng/ml serum.
*Tamoxifen and metabolite measurements are presented as ng/g tumor tissue.
{ Tumor/serum ratios of concentrations of tamoxifen and metabolites.
† Concentration ratios of metabolite/tamoxifen.
Tam=tamoxifen; 4OHtam=4-hydroxytamoxifen; 4OHNDtam=4-hydroxy-
N-desmethyltamoxifen; NDtam=N-desmethyltamoxifen; NDDtam=N-
desdimethyltamoxifen; TamNox= tamoxifen-N-oxide; q1-q3=quartile 1 – quartile 3
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blots suggested a variable degree of HER-2 expression
after tamoxifen treatment, several of the tamoxifen treated
tumors also demonstrated higher protein levels of HER-2
compared to untreated controls (Figure 3C).

Tamoxifen and metabolites in serum and tumor tissue
Tissue from five tamoxifen treated tumors was used for
measurements of tamoxifen and its metabolites. Note-
worthy, two tumors and two serum samples from control
animals were also analyzed for tamoxifen and metabolites
as control. Tamoxifen and the five metabolites 4OHtam,
NDtam, 4OHNDtam, NDDtam and tamNox were detect-
able in all serum samples from tamoxifen treated rats, but
were not detectable in the negative controls. The median
tamoxifen concentration was 203 ng/ml with interquartile
range (quartile 1 - quartile 3) of 184 - 229 ng/ml.
The pharmacologically active metabolite of tamoxifen,
4OHtam, had a median concentration of 372 (319 - 499)
ng/ml, but the dominating metabolite in serum was the
other hydroxylated tamoxifen metabolite, 4OHNDtam,
with a median concentration of 552 (427 - 593) ng/ml.
NDDtam was found to have the lowest level in serum with
median concentration of 4.7 (4.4 - 6.5) ng/ml (Table 3).
Tamoxifen and its hydroxylated and demethylated meta-

bolites accumulated in tumor tissue with median tumor to
serum concentration ratios ranging from 36 to 93 (Table 3).
As opposed to the other metabolites, both NDDtam and
tamNox were detected at lower concentrations than the
parent drug in serum samples and tumor tissue.
The serum levels of the demethylated metabolites

NDtam and 4OHNDtam were significantly positively corre-
lated in serum (P=0.002, Table 4). With only tumor tissue
from five tumors available for metabolite measurements,
the results have to be interpreted with caution. However, a
significant positive correlation between the concentration
of tamoxifen and the main metabolites identified in tumor
tissue was observed: 4OHtam, 4OHNDtam and NDtam
(P <0.001, Table 4). TamNox was the only metabolite
whose concentrations in serum and tumor correlated
(P=0.04).
Discussion
In rats with DMBA-induced breast cancer, tamoxifen
treatment was associated with a significant increase in the
expression levels of steroid receptors coactivators as well
as the growth factor receptors HER-2 and HER-3. The
upregulation of SRCs observed in the present study is in
line with previous observations from a clinical trial on
preoperative tamoxifen treatment in human breast cancer
where tumors expressed significantly higher levels of espe-
cially SRC-3/AIB1, but also SRC-1 and SRC-2/TIF-2
mRNA compared to controls after 4 weeks of tamoxifen
treatment [6]. In a clinical study on neoadjuvant treatment
with aromatase inhibitors for 12-16 weeks, we have
also found a significant increase of SRC-1 mRNA levels
during endocrine treatment [18]. The observed effects of
endocrine treatment on SRC expression in different model
systems in vivo suggest that induction of coactivators is an
early response to the blockage of ER mediated signaling in
breast tissue. This concept is supported by data from
in vitro experiments in which estrogen suppressed the
mRNA and protein levels of SRC-3/AIB1 in MCF-7 cells
by negatively regulating the transcription of SRC-3/AIB1,
whereas 4OHtam increased SRC-3/AIB1 mRNA and pro-
tein level by inducing the transcription of the SRC-3/AIB1
gene and stabilizing the protein [24,25].



Table 4 Correlations between tamoxifen metabolite concentrations in tumor tissue and serum.

Tam 4OHtam 4OHNDtam NDtam NDDtam TamNox

Tumor Serum Tumor Serum Tumor Serum Tumor Serum Tumor Serum Tumor Serum

Tam

Tumor r -

n -

Serum r 0.70 -

n 5 -

4OHtam

Tumor r 1.00** 0.70 -

n 5 5 -

Serum r −0.70 −0.19 −0.70 -

n 5 8 5 -

4OHNDtam

Tumor r 1.00** 0.70 1.00** −0.70 -

n 5 5 5 5 -

Serum r −0.60 0.41 −0.60 −0.31 −0.60 -

n 5 8 5 8 5 -

NDtam

Tumor r 1.00** 0.70 1.00** −0.70 1.00** −0.60 -

n 5 5 5 5 5 5 -

Serum r −0.70 0.14 −0.70 0.00 −0.70 0.91** −0.70 -

n 5 8 5 8 5 8 5 -

NDDtam

Tumor r 0.40 0.60 0.40 −0.10 0.40 −0.20 0.40 −0.60 -

n 5 5 5 5 5 5 5 5 -

Serum r −0.50 −0.12 −0.50 −0.24 −0.50 −0.52 −0.50 −0.48 0.40 -

n 5 8 5 8 5 8 5 8 5 -

TamNox

Tumor r 0.80 0.50 0.80 −0.50 0.80 −0.60 0.80 −0.50 −0.10 −0.70 -

n 5 5 5 5 5 5 5 5 5 5 -

Serum r 0.90* 0.41 0.90* 0.24 0.90* 0.43 0.90* 0.55 0.30 −0.21 0.90* -

n 5 8 5 8 5 8 5 8 5 8 5 -

Spearman’s nonparametric test. Correlation coefficients (r) are presented in the table.
Significant correlations are indicated by italics and * = P< 0.05 or ** = P< 0.01.
Tam= tamoxifen; 4OHtam=4-hydroxytamoxifen; 4OHNDtam=4-hydroxy-N-desmethyltamoxifen; NDtam=N-desmethyltamoxifen; NDDtam=N-desdimethyltamoxifen;
TamNox= tamoxifen-N-oxide.
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In the present study we also found an upregulation of
HER-2 and -3 during tamoxifen treatment in DMBA-
induced tumors which are sensitive to tamoxifen
treatment. This is in line with the significant upregulation
of HER-2 mRNA observed during aromatase inhibition in
human breast cancer [18], although no significant differ-
ence in HER-2 mRNA expression was found in human
breast cancer after neoadjuvant tamoxifen [6]. In vitro
assays indicate that estrogen potentially downregulates
HER-2 mRNA and protein expression [26-28] whereas
estrogen deprivation could lead to increased HER-2 ex-
pression, possibly by competition between the ER and
HER-2 enhancer for the same coactivator [29]. When
SRC-1 is released from ER, the coactivator can instead fa-
cilitate transcription of HER-2 [29]. Conversely, the paired
box 2 (PAX2) gene product has been shown to compete
with SRC-3/AIB1 for the HER-2 enhancer. Silencing of
PAX2 led to an increase in SRC-3/AIB1 bound to the
HER-2 enhancer and significantly higher levels of HER-2
mRNA levels during tamoxifen treatment in breast cancer
cell lines [30]. Higher mRNA levels of HER-1 and HER-2,
but not HER-3, have been observed at the time of resist-
ance in MCF-7 cells treated with tamoxifen for a pro-
longed period of time. Interestingly, the increase in mRNA
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levels could not be related to genetic amplification, but ra-
ther to changes in gene transcription [31].
The HER family members form homo- or heterodi-

mers when activated, where the choice of dimerization
partner in part is dictated by the ligand and the cellular
levels of the different HER receptors. HER-2 is the pre-
ferred dimerization partner for the other HER members
[32]. We found HER-2 mRNA levels to correlate with
the mRNA levels of the other HER family members in
endocrine sensitive breast cancer. Transgenic mice over-
expressing HER-2 or mutant forms of HER-2 with cap-
acity to malignant transformation of cells exhibit high
levels of endogenous HER-1 or HER-3 compared to con-
trols [33,34], suggesting a concomitant overexpression
of the HER family members. Cooperation between the
different HER family members has been shown to con-
tribute to carcinogenesis, both in vitro and in human
cancers, and they are co-expressed in several human ma-
lignancies, including breast cancer [20,34,35]. Interest-
ingly, HER-2 and HER-3, which in this study were found
upregulated during tamoxifen treatment, have been
identified as a functional unit in experimental breast
cancer models, where they cooperate to deregulate the
G1 to S transition during cell cycle and thus stimulate
mitosis [36]. Dimerization with HER-3 has been shown
to be essential to the activation of HER-2 where downre-
gulation of HER-3 inhibited the procarcinogenic effects
of HER-2 by inactivating the PI-3 K/Akt pathway [37].
In line with the procarcinogenic effects of HER-2 and

SRC-3/AIB1, clinical studies indicate that overexpression
of HER-2 and SRC-1 or SRC-3/AIB1 is associated with
tamoxifen resistance and reduced disease-free and overall
survival [15,17,38]. A significant correlation between the
mRNA levels of SRCs and HER-2 was observed, both in
the present animal model and in previous clinical studies
on endocrine responsive breast cancer [6,18]. It has been
shown that the mitogen activated protein kinase (MAPK)
dependent transcription factor Ets-2 downstream of HER-
2, may regulate the transcription of HER-2 through inter-
action with SRC-1 [39]. We did not observe any signifi-
cant change in the level of Ets-2 mRNA during two weeks
of tamoxifen treatment. However, Ets-2 and SRC-3/AIB1
were correlated with each other and HER-4. Ets-2 and
SRC-3/AIB1 have been found to be coexpressed in human
breast cancer samples [38]. It has been shown in vitro that
growth factors can upregulate the interaction between the
coactivator SRC-1, SRC-3/AIB1 and Ets-2, leading to
increased protein expression of HER-2 [38]. Hence, the
increased expression of coactivators induced by tamoxifen
treatment, as found in this and a previous clinical study
[6], can through increased interaction with Ets-2 contrib-
ute to the induction of HER expression, as observed for
HER-2 and HER-3 in this study. Work in cell lines has
also demonstrated that overexpression of HER-2 in ER
positive cells can result in resistance to tamoxifen [40] and
that tamoxifen assumes estrogen agonistic properties in
ER-positive breast cancer cells that express high levels of
SRC-3/AIB1 and HER-2 [12]. The SRCs are recruited to
the ER in presence of tamoxifen and an activated HER-2/
MAPK system [41], which could lead to tamoxifen resist-
ance [42,43]. Silencing of SRC-3/AIB1 with siRNA can
significantly reduce the HER-2 stimulated cell growth, and
restore tamoxifen sensitivity [44]. In the light of such data,
interplay between the HER family receptors and SRCs
represents a possible biological mechanism by which ER
signaling may be preserved within cells during antiestro-
genic treatment.
Observations of increasing SRCs mRNA levels in tumors

sensitive to endocrine treatment, and association between
high SRC levels and endocrine resistance may appear
contradictory. However, induction of coactivator expres-
sion may represent an early response to endocrine therapy,
whereas endocrine resistance normally develops over
years. Changes in the intracellular environment and/or
genetic instability could lead to constitutive activation
of signaling pathways by which post-translational modifi-
cations of both ER and SRCs could affect molecular
conformation, activation, intracellular localization and
degradation. This would in turn influence the efficacy of
tamoxifen. The activity of the tamoxifen-ER complex can
be modulated by phosphorylation of ER and/or coactiva-
tors by kinases such as MAPKs found downstream of
HER-2 [45]. Both SRC-1 and SRC-3/AIB1 are phosphory-
lated and transcriptionally activated by MAPKs that stimu-
late the recruitment of the cointegrator CBP/p300 and
enhance the histone acetyltransferase activity of the SRCs
in vitro [46,47]. It has been shown that phosphorylation is
crucial for regulation of SRC-3/AIB1 mediated activity on
steroid and growth factor signaling and malignant cell
transformation [47-49].
Tamoxifen is a prodrug which is hydroxylated, demethy-

lated and N-oxidated by the cytochrome P450 enzymes
(CYPs) and flavin-containing monooxygenases in liver and
other tissues. The hydroxylated metabolites 4OHtam and
4OHNDtam, the latter also known as endoxifen, have the
strongest affinity for the ER [50,51] and are now consid-
ered to be tamoxifen’s main metabolites and effector deri-
vatives [52,53]. However, tamoxifen metabolism varies
substantially between species and strains [22]. Thus, as
the effect of tamoxifen is dependent on its metabolism, it
is important to characterize the tamoxifen metabolism in
this animal model of tamoxifen treatment. The concentra-
tion of tamoxifen and some of its metabolites in tumor in
this study are in line with previous studies in man and rats
showing up to tenfolds higher concentrations in tissues
[23]. Using LC-MS/MS technology we were now able also
to measure tamNox. As opposed to the other metabolites,
both NDDtam and tamNox were detected at lower
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concentrations than the parent drug in serum samples
and tumor tissue. Interestingly, tamNox was the only me-
tabolite with higher concentrations found in serum com-
pared to tumor tissue. This may be explained by the
in vitro observation that tamNox can easily be reduced
back to tamoxifen in tissues [54]. This reduction of tam-
Nox is catalyzed by numerous CYPs without major select-
ivity. In this animal model, 4OHNDtam was found at
higher concentration than the other hydroxylated metabo-
lites in both tumor and serum. Also in humans 4OHND-
tam is the hydroxylated metabolite with the highest
concentration in serum and tissues [23,55,56]. A limitation
to the present study is the high concentration of tamoxi-
fen and its metabolites observed compared to previous
studies using rats [23,57,58]. The variability in drug and
metabolite concentrations between studies can be
explained by factors such as tamoxifen dose, duration of
treatment and interstrain variability in uptake, deposition
and metabolism of tamoxifen as related to the variability
in expression and inducibility of CYPs during tamoxifen
treatment [57]. However, it should be noted that the me-
tabolite/parent drug ratios of NDtam and NDDtam and
the accumulation of tamoxifen and metabolites in tumor
tissue are in line with previous findings from clinical
tamoxifen trials [59].

Conclusions
We observed an induction of the SRCs, HER-2 and HER-3
expression during tamoxifen treatment in DMBA-induced,
endocrine responsive breast cancer. There were signifi-
cantly positive correlations between SRC-1, SRC-2/TIF-2
and HER-2, and between SRC-3/AIB1, HER-4 and Ets-2
mRNA levels in tumor tissue. Further, HER-2 mRNA was
correlated with the gene expression of the other HERs, an
observation which indicates the importance of studying all
the HERs in breast cancer. DMBA-induced breast cancer
may be a suitable model for studies on the cross-talk
between HERs, ER and SRCs in vivo.
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