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Abstract

The Notch signaling pathway is highly conserved from Drosophila to humans and plays an important role in the
regulation of cellular proliferation, differentiation and apoptosis.
Constitutive activation of Notch signaling has been shown to result in excessive cellular proliferation and a wide
range of malignancies, including leukemia, glioblastoma and lung and breast cancers. Notch can also act as a
tumor suppressor, and its inactivation has been associated with an increased risk of spontaneous squamous cell
carcinoma. This minireview focuses on recent advances related to the mechanisms and roles of activated Notch1,
Notch2, Notch3 and Notch4 signaling in human lymphocytic leukemia, myeloid leukemia and B cell lymphoma, as
well as their significance, and recent advances in Notch-targeted therapies.

Review
Canonical and noncanonical activation of the Notch
signaling pathway
The Notch gene was first described following the observa-
tion of Notches on the wings of fruit flies (Drosophila mel-
anogaster) caused by partial loss of function of the Notch
gene. Notch signaling is involved in many biological pro-
cesses, ranging from embryonic development to cell prolif-
eration and survival. It has been demonstrated that the
Notch signaling pathway is involved in vascular formation
and morphogenesis during vascular development. Notch1,
Notch2 and Notch4 and its ligands (Jagged1, Jagged2, Dll1
and Dll4) are expressed in vascular endothelium, whereas
Notch3 is expressed in vascular smooth muscle cells.
Mutations in Notch3 are associated with CADASIL syn-
drome (cerebral autosomal dominant arteriopathy with
subcortical infarcts and leukoencephalopathy), the human
degenerative vascular disease.
The human Notch family includes four receptors and

five ligands [1,2]. All four Notch receptors are synthe-
sized as a single transmembrane polypeptide in the endo-
plasmic reticulum and transported to the cell surface
trough the trans-Golgi network. Notch receptors are
expressed as heterodimeric proteins with extracellular,
transmembrane and intracellular domains (Figure 1).
When a ligand of the Delta/Serrate/LAG-2 family

(located on the surface of neighboring cells) binds to the
extracellular domain of the Notch receptor, it triggers
proteolytic cleavage by a metalloprotease (a disintegrin
and metalloprotease (ADAM)). ADAM cleavage pro-
duces a substrate for a second cleavage by the presenilin-
containing g-secretase complex, releasing the Notch
intracellular domain (NICD) [2,3] (Figure 2). NCID cor-
responds to the activated form of Notch, which translo-
cates to the nucleus and forms complexes with specific
DNA-binding proteins (CBF1/Suppressor of Hairless/
LAG-1 and Mastermind/SEL-8) and transcriptionally
activates target genes [4] (Figure 2). In the absence of
receptor activation and NICD, CBF1 acts as a transcrip-
tional repressor through interactions with the corepres-
sors SMRT (silencing mediator of retinoid and thyroid
receptors), KyoT2, CIR (CBF1-interacting corepressor)
and SHARP (SMRT/HDAC1 (histone deacetylase 1)-
associated repressor protein) [5]. In addition to canonical
intracellular signaling pathways, there are other types of
noncanonical Notch signaling (Figure 3). The first one
involves Notch ligation and translocation of activation
signals independent of CBF1 (NICD-dependent), the sec-
ond involves activation of Notch target genes that are
independent of g-secretase cleavage (NICD- and CBF1-
independent) and the third involves CBF1-dependent
gene activation without receptor cleavage and NICD
release. Termination of Notch signaling can occur at or
downstream of the Notch receptor. The Notch receptor
can be degraded through the lysosomes by the ubiquitin
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ligase Itch/AIP4 [6] or another ubiquitin ligase, Nedd4
[7], which act together with Numb [8] and Itch/AIP4 to
stimulate endocytosis and lysosomal degradation of the
Notch receptor [9]. Finally, NICD1 phosphorylation by
GSK3 regulates its interaction with the E3 ubiquitin
ligase CDC4/FBW7, thereby controlling NICD1 ubiquiti-
nation and proteasome-mediated degradation [10]. This
multifaceted control of Notch expression underscores its
critical functions in cellular homeostasis.
The role of the microenvironment in the activation of

Notch in leukemia is increasingly recognized. Recently,
cis-inhibition of Notch signaling by the DLL1 ligand has
been described in Drosophila and mice [11]. These inves-
tigations have suggested that while expression of ligands
on neighboring cells stimulates Notch activation, expres-
sion on the same cell as the Notch receptor may have an
inhibitory effect [11]. Along these lines, activation of
Notch signaling in B-cell malignancies might result from

interactions between tumor cells as well as between the
tumor cell and the microenvironment. There is evidence
suggesting the importance of Notch signaling in the
cross-talk between multiple myeloma (MM) cells and
their environment. Bone marrow stromal cells express
both Notch ligands, Jagged and δ, and are able to activate
Notch signaling in MM cells [12,13].

Mechanisms leading to constitutive activation of Notch
signaling
Notch1 was discovered in humans through a t(7;9)(q34;
q34.3) chromosomal translocation observed in some
patients with T-cell acute lymphoblastic leukemia (T-
ALL) [14,15]. However, a direct role of Notch activation in
T-ALL remained obscure, since only 1% to 3% of patients
with T-ALL were found to carry this translocation. It was
only after the discovery of a high rate of activating muta-
tions that it became clear that Notch1 expression is linked
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Figure 1 Structure of the four human Notch receptors. NEC: extracellular subunit; NTM: transmembrane subunit; EGF: epidermal growth
factor; HD: heterodimerization domain; ICN: intracellular domain; LNR: cysteine-rich LNR repeats; TM: transmembrane domain; RAM: RAM domain;
NLS: nuclear localizing signals; ANK: ankyrin repeat domain; NCR: cysteine response region; TAD: transactivation domain; PEST: region rich in
proline (P), glutamine (E), serine (S) and threonine (T) residues.
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to the development of T-ALL [16]. Activating mutations
identified in the T-ALL cluster at the heterodimerization
domain (HD) and the proline, glutamine, serine and threo-
nine (PEST) domain led to ligand-independent cleavage of
the Notch receptor and a reduced degradation of NICD1,

respectively. Recently, activating mutations in Notch were
identified in more than 30% of human T-lymphotropic
virus type I (HTLV-I)-associated adult T-cell leukemia
(ATL) patients, suggesting an important role for Notch
signaling in HTLV-I-associated ATL [17]. Activating
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Figure 2 The Notch signaling pathway. The initiation of the Notch signaling pathway begins when the Notch ligand binds to the Notch
receptor. This action triggers two proteolytic cleavages by ADAM-type protease (S2) and g-secretase (S3), respectively. Following cleavages, the
activated form of Notch is released (NICD) and is translocated to the nucleus, where NICD forms complexes with specific DNA-binding proteins
(CBF1/Suppressor of Hairless/LAG-1 and Mastermind/SEL-8). Afterward the transcriptional process of target genes is initiated. MAML1:
Mastermind-like 1 protein; CBF1: DNA-binding transcription factor.
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mutations found in ATL patients are different from those
previously reported in patients with T-ALL and mostly
involve single-substitution mutations in the PEST domain
that do not create an early stop codon, but rather lead to
reduced CDC4/Fbw7-mediated degradation and stabiliza-
tion of NICD1 [17].
Additional mechanisms have also been reported to lead

to increased Notch expression in cancer cells. Mutations
and internal duplication insertions in exon 28 of NICD
[18], as well as mutations in CDC4/Fbw7 [10,19], have
been reported, but they seem to occur at a very low fre-
quency. The Wnt/b-catenin and Notch1 signaling path-
ways play an important role in a variety of biological
processes, including cell proliferation and survival. Stu-
dies have shown that b-catenin can regulate the level and
transcriptional activity of Notch1 [20]. b-catenin can pre-
vent NICD degradation, possibly by competing with
CDC4/Fbw7-dependent degradation [20]. Moreover, b-
catenin increases the transcriptional activity of NICD,

and the effects of b-catenin on Notch1 are noticeably
reduced by overexpression of the lymphocyte enhancer-
binding factor 1, LEF1.

Implication of Notch signaling in various hematological
disorders
Notch1
Notch1 has been reported to play a role in T-ALL and
ATL, with approximate mutation rates of 50% and 30%,
respectively [16,17,21,22]. Notch1 is required for the prolif-
eration and survival of leukemia cells, and its role has been
described in recent reviews [23-26]. The high prevalence
of activating mutations found in Notch1 in T-ALL and
ATL patients (Table 1) might suggest that this event plays
a role in promoting the emergence of a particular sub-
clone. Whether a mutation in Notch is a primary or sec-
ondary event in tumor cells is unclear. Mansour et al. [27]
reported low-level Notch1 despite high blast counts in T-
ALL patients, suggesting that these mutations were
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acquired as a secondary event in a preselected subclone.
On the other hand, it has also been reported that mutation
of Notch1 can be an early or initiating event in T-ALL
arising prenatally, to be complemented by a postnatal SIL-
TAL1 fusion gene and emergence of tumor clones [28].
Notch2
Increasing evidence suggests that Notch2 may play a role
in leukemia and lymphoma. Early studies showed that
feline leukemia virus recombinant genomes isolated from
lymphomas captured Notch2, which included the intra-
cellular ankyrin repeat functional domain in the envelope
gene [29]. Later it was found that Notch2 plays a role in
CD8 thymocyte maturation and that enforced expression
of activated Notch2 invariably resulted in T-cell leukemia
in mice [30]. Table 1 shows that approximately 8% of dif-
fuse large B-cell lymphomas (DLBCLs) have Notch2
mutations [31]. Similar to observations in Notch1, muta-
tions in DLCBL affected the PEST domain or a single-
amino acid substitution at the C terminus and resulted in
Notch2-reduced turnover [31]. These observations sug-
gest Notch2 gain-of-function mutations in a subset of
B-cell lymphomas. In fact, Notch2 is involved in the
development of B1 and marginal zone B cells, and
Notch2 is overexpressed in some marginal zone lympho-
mas (MZLs) [32]. Potential activating mutations of
human Notch2 presented in Table 1 were also detected
in 5% of MZL patients [32]. Notch2 may also play an
indirect role in chronic B-cell lymphocytic leukemia (B-
CLL) through upregulated expression of CD23 [33,34].
Notch3
A possible role of Notch3 in leukemia was postulated in
studies in which transgenic mice expressing the constitu-
tively active intracellular domain of Notch3 in thymocytes
and T cells developed early and aggressive T-cell neoplasia
[35]. Importantly, these results were validated in humans,
and examination of T-ALL patients demonstrated high
expression of Notch3 and pTa transcripts, whereas the
expression of these genes was considerably reduced in or

absent from patients in remission [36]. pTa and Notch3
interactions are essential for distribution of the E3 ligase
protein, c-Cbl, to the lipid rafts. This is important in the
development of leukemogenesis, since in the absence of
pTa, c-Cbl targets Notch3 for proteasome degradation
[37]. Moreover, the NF-�Β pathway may be involved in
the development of Notch3-dependent T-cell lymphoma
in humans, and there is genetic and biochemical evidence
that Notch3 triggers multiple NF-�Β activation pathways
[38]. Recently, Notch3 was found to control expression of
mitogen-activated protein kinase phosphatase 1 and plays
a role in the survival of T-ALL cells [39].
Notch4
Notch4 is expressed in human bone marrow cells and in
CD34+ and CD34- populations [40]. Notch4 intracellular
domain-transduced cord cells transplanted into mice
showed remarkably elevated levels of engraftment of an
immature T-cell population, while B-cell development
was inhibited. Taken together, these results suggest that
activation of Notch4 leads to enhanced stem cell activity,
reduced differentiation and altered lymphoid develop-
ment [41].

Clinical relevance and therapeutic approaches aimed at
targeting Notch signaling
The molecular pathogenesis of Notch has recently been
reviewed [24]. Targeting Notch receptor cleavage through
g-secretase inhibitors (GSIs) is an attractive approach, as
GSI treatment inhibits proliferation of T-ALL and ATL
tumor cells in vitro and in vivo [42,43]. The use of GSIs,
however, poses several challenges. Current GSIs have been
shown to have significant intestinal toxicity in patients
because of the dual inhibition of Notch1 and Notch2. In
addition, high levels of IL-6 and IL-8 have been reported
to abrogate or significantly reduce the efficacy of the GSI
(RO4929097) [44]. GSIs may not be useful in patients with
a Notch1 mutation in the HD, as this results in weakened
association or complete dissociation of the receptor

Table 1 Mutation of Notch1 and Notch2 in human leukemia and/or lymphomaa

Leukemia and/or lymphoma type Notch mutations in PEST/HD domain, % Studies

Notch1

T-ALL 50% PEST/HD [16,49]

B-CLL 4.6% PEST [50,51]

CLL 12.2% PEST [52]

AML 8.3% PEST [53]

T-NHL 42.9% PEST/HD [49]

ATL 30% PEST [17]

Notch2

DLBCL 8% PEST [31]

MZL 5% PEST [32]
aPEST: proline, glutamine, serine, and threonine; HD: heterodimerization domain; T-ALL: T-cell acute lymphoblastic leukemia; B-CLL: B-cell chronic lymphocytic
leukemia; CLL: chronic lymphocytic leukemia; AML: acute myeloid leukemia; T-NHL: T-cell non-Hodgkin lymphoma; ATL: adult T-cell leukemia; DLBCL: diffuse large
B-cell lymphoma; MZL: marginal zone lymphoma.
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subunits and thus leads to ligand-independent activation.
Finally, recent studies have also shown that T-ALL
patients with loss of PTEN are resistant to GSI effects [45].
Together these results highlight the need for new targeted
therapies.
Recently, the use of therapeutic antibodies that selec-

tively block Notch1 receptor signaling has been reported
to inhibit tumor growth in mouse models [46]. Rather
than targeting receptor processing, alternative strategies
may also focus on blocking NICD functions and tran-
scriptional activities. Along these lines, the use of a
stapled peptide to inhibit the Notch transcription factor
complex has been reported to result in Notch-specific
antiproliferative effects in cultured cells and in a mouse
model of Notch1-driven T-ALL [47].

Conclusions
Increased Notch signaling is linked to hematological
malignancies. Overexpression of activated the Notch1,
Notch2 or Notch3 genes in bone marrow progenitor
cells reliably induces T-ALL at high frequency in murine
models. Activating mutations in Notch1 is frequent in
both T-ALL and ATL. It has been proposed that a frac-
tion of T-ALLs that present as leukemia without evi-
dence of thymic involvement may originate from bone
marrow progenitors that have acquired a Notch1 muta-
tion, suggesting that constitutive active Notch1 could, in
some cases, be an initial event driving tumor develop-
ment. On the other hand, animal model studies have
indicated that Notch can also play a secondary role dur-
ing T-ALL development. The role played by Notch1 in
other human leukemias is less clear, as is the potential
role of other Notch genes. Although inhibition of Notch
signaling in xenograft tumors in animal models effec-
tively prevents tumor cell growth, clinical outcomes in
humans do not seem to be significantly associated with
Notch status, which has an impact on early response to
treatment but not on general outcomes in pediatric
patients with T-ALL [48]. This may be related to acqui-
sition of additional mutations in patients who have
received several therapies and may relieve tumor cells
from Notch1 addiction. As is the case with many tar-
geted therapies, resistance to single drugs emerges
rapidly, suggesting that a multidrug chemotherapy tar-
geting Notch and connected pathways is needed.
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