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Abstract

Background: Tissue microarray (TMA) data are commonly used to validate the prognostic accuracy of tumor
markers. For example, breast cancer TMA data have led to the identification of several promising prognostic
markers of survival time. Several studies have shown that TMA data can also be used to cluster patients into
clinically distinct groups. Here we use breast cancer TMA data to cluster patients into distinct prognostic groups.

Methods: We apply weighted correlation network analysis (WGCNA) to TMA data consisting of 26 putative tumor
biomarkers measured on 82 breast cancer patients. Based on this analysis we identify three groups of patients with
low (5.4%), moderate (22%) and high (50%) mortality rates, respectively. We then develop a simple threshold rule
using a subset of three markers (p53, Na-KATPase-b1, and TGF b receptor II) that can approximately define these
mortality groups. We compare the results of this correlation network analysis with results from a standard Cox
regression analysis.

Results: We find that the rule-based grouping variable (referred to as WGCNA*) is an independent predictor of
survival time. While WGCNA* is based on protein measurements (TMA data), it validated in two independent
Affymetrix microarray gene expression data (which measure mRNA abundance). We find that the WGCNA patient
groups differed by 35% from mortality groups defined by a more conventional stepwise Cox regression analysis
approach.

Conclusions: We show that correlation network methods, which are primarily used to analyze the relationships
between gene products, are also useful for analyzing the relationships between patients and for defining distinct
patient groups based on TMA data. We identify a rule based on three tumor markers for predicting breast cancer
survival outcomes.
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Background
Breast cancer is the most common type of cancer in
women. While survival rates are improving, nearly one
in eight women is expected to acquire breast cancer.
Current knowledge of breast cancer etiology and treat-
ment protocols has benefited from the simultaneous
analysis of multiple biomarkers. At the turn of the cen-
tury, the combination of low estrogen receptor (ER),
progesterone receptor (PR) and human epidermal
growth factor receptor-2 (HER2) expression levels was
shown to identify a high risk “triple-negative” breast

cancer phenotype [1,2] that occurs in 10-20% of breast
cancers and indicates that the cancer cannot be effec-
tively treated by conventional therapies [3,4]. More
recently, a BCL2/FOS gene expression signature was dis-
covered that can delineate breast cancer patients that
have poor tamoxifen response [5]; and a Ki67, P53 and
GATA3 combination was shown to predict success of
hormonal therapy in ER positive patients [6].
High-density breast tissue microarrays (TMA) and

proteomics data have been useful for prognosticating
cancer outcomes [5,7]. The immunohistochemical stain-
ing patterns measured by TMAs allow one to determine
the cellular location and intensity of protein expression
levels. TMAs facilitate an accurate and high-throughput
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analysis of archived tumor specimens [8,9] which allows
one to analyze hundreds of patients but typically rela-
tively few markers. In comparison, gene expression
microarrays require fresh or frozen tissue, but they can
assay expression levels (messenger RNA abundances) of
thousands of genes simultaneously. Thus, a common
workflow is to identify candidate markers using gene
expression arrays and then to validate the prognostic
accuracy of corresponding protein measures using a
TMA platform. Here we reverse the direction of this
common workflow. We start with breast cancer TMA
markers that evaluate the staining patterns of 26 genes.
Next, we use correlation networks to classify patients
into distinct survival groups. We develop a prognostic
rule (referred to as WGCNA*) based on a subset of
markers that can be used to classify patients into dis-
tinct survival groups. Finally we validate the prognostic
accuracy of this rule in two independent Affymetrix
HG-U133A gene expression data sets.
While the methods for identifying a single candidate

biomarker for breast cancer prognosis are relatively
straightforward, there is a need for simple and effective
methods that can jointly analyze multiple biomarkers.
Here we propose methodology based on weighted corre-
lation network analysis for the simultaneous analysis of
multiple tumor expression array (TMA) markers [10,11].
WGCNA has been used in cancer and mouse genetic
studies for analyzing the pairwise relationships between
gene expression levels [12-16]. WGCNA has primarily
been used to identify genes with similar RNA expression
profiles across patients, but here we use WGCNA to
define groups of patients that have similar tumor
expression profiles across multiple TMA markers. While
the nodes of a gene co-expression networks are genes,
the nodes of our patient sample networks are breast
cancer patients. We use the breast cancer sample net-
work to identify groups of patients that have similar
expression profiles, resulting in a “patient network”. Sec-
ond, the patient network is related to survival informa-
tion to identify cancer subtypes, or WGCNA mortality
groups. We then apply classification and regression
trees to identify representative TMA markers, p53, Na-
KATPase-b1, and TGF b receptor II that best predict
these patient subtypes. Finally, we compare our
WGCNA method to a traditional step-wise multimarker
Cox regression analysis approach (referred to as the
“COX” approach).
We show that both WGCNA and the COX approach

identify candidate biomarkers that have a significant
association with cancer survival time. However, step-
wise methods are notorious for over-fitting the data,
yielding results that are not reproducible in other data
sets. To compare the validation success of our WGCNA
markers (p53, Na-KATPase-b1, and TGF b receptor II)

with those of the COX approach, we use three indepen-
dent gene expression data sets. We find that the
WGCNA groups and markers have superior validation
success.

Methods
Breast Tissue Microarray
A high-density breast TMA was constructed using cores
from formalin-fixed, paraffin embedded breast tissue
donor blocks, consisting of 242 breast surgical cases of
210 patients who underwent surgery at the UCLA Medi-
cal Center between 1995 and 2000, as previously
described [17,18]. Archival samples were obtained from
the UCLA Department of Pathology and Laboratory
Medicine with oversight and approval from the UCLA
institutional review board. Such samples were consented
for use in biomedical research projects at the time of
surgery. At least three cores of each available histologic
type were arrayed from the donor blocks. Of the 242
surgical cases, 179 cases (from 157 patients) were of
invasive breast cancers of various histologic types. For
our multimarker analysis, we selected 82 primary surgi-
cal cases, each belonging to a unique patient with inva-
sive cancer who did not receive neoadjuvant therapy,
had disease-specific survival outcome, and were infor-
mative for expression in most of our protein markers.

Immunohistochemistry
Immunohistochemical staining of the breast TMA was
performed using a standard two-step indirect avidin-bio-
tin complex method (Vector Laboratories, Burlingame,
CA) or a two-step polymer detection method (DakoCy-
tomation, Inc., Carpinteria, CA) as previously described
[19-22]. The following primary antibodies were used:
BS106, BU101, Mammaglobin (Abbot Laboratories,
Abbott Park, IL), prolactin-inducible protein (Signet
Laboratories, Inc., Dedham, MA), S100A7 (Imgenex
Corp., San Diego, CA), 14-3-3 s (Research Diagnostics,
Inc., Concord, MA), Her-2/neu (Zymed Laboratories,
Inc., South San Francisco, CA), progesterone receptor,
estrogen receptor alpha, p53 (DakoCytomation, Inc.,
Carpinteria, CA), RIN1, annexin A1, beta-catenin (BD
Biosciences Transduction Laboratories, Lexington, KY),
Na-KATPase-b1, Na-KATPase-a, GATA3, Smad2
(Santa Cruz Biotechnology, Inc., Santa Cruz, CA),
Smad4 (Millipore, Billerica, MA), YY1 (Geneka Biotech-
nology, Inc., Montreal, Quebec, Canada), TGF b recep-
tor II (Abcam, Inc., Cambridge, MA), H3K4 and H3K18
(Upstate, Lake Placid, NY), and MED28 (gift from Dr.
Mai Brooks). Briefly, 4 μm sections were deparaffinized,
treated with 0.3% hydrogen peroxide in methanol,
blocked with 5% serum, and incubated with primary and
secondary antibodies. Diaminobenzidine was used for
color detection. A concentration-matched isotype
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control IgG was used for negative controls. Note that
the 26 markers analyzed here were originally chosen for
other oncogenic studies conducted in our laboratory.
The level of protein expression in glandular epithelial

cells was quantitatively assessed by a pathologist blinded
to all clinico-pathological variables. We used the percen-
tage of cells staining, referred to as “pos”, as the quanti-
tative measure of protein expression. To arrive at a
single staining measure per patient (referred to as “pos.
mean”), we averaged the pos measures of multiple can-
cer spots per patient as described in [23].

Validation data analysis
To validate our WGCNA* and COX mortality group
definitions, we selected all Affymetrix HG-U133A gene
expression data sets from the Gene Expression Omnibus
(GEO) that were published in 2005 or later. This
resulted in three independent data sets published in
2005-2006, that had the following GEO identifiers:
Miller 2005 - GSE3494 (251 arrays), Pawitan 2005
-GSE1456 (159 arrays), Sotiriou 2006 - GSE2990 (189
arrays) [24-26]. Data sets were pre-processed as
described in [27]. Briefly, within each data set we evalu-
ated array quality by comparing inter-array correlations.
Arrays with low inter-array correlation were removed
according to default recommendations [27]. When
expression analysis was distributed across multiple cen-
ters, we checked for center-related batch effects. If batch
effects were present we removed them using the combat
function [28]. The pre-processing steps removed 3-12%
of arrays in an unbiased fashion resulting in 222, 146
and 183 arrays for the Miller 2005, Pawitan 2005 and
Sotiriou 2006 data sets, respectively. Finally, we removed
all samples with missing survival data, resulting in a
total of 207, 146 and 173 patients for the Miller, Pawi-
tan and Sotiriou data sets, respectively.
Univariate Cox proportional-hazards models were

constructed for the WGCNA* patient groups and COX
rule patient groups for each of the three data sets. We
used a moderate significance level of 0.1 to allow for
expected expression differences between genes and
proteins.

Results
In this section we present steps for conducting a
Weighted Correlation Network Analysis (WGCNA) of
tumor expression data to identify patient groups that
have high, moderate, and low survival. We then present
results from applying WGCNA to a breast cancer data
set consisting of 26 markers measured on 82 patients.
We compare the WGCNA results to a more conven-
tional multimarker analysis approach and then show
that the WGCNA results validated in two of three Affy-
metrix gene expression HG133A array data sets.

Steps for conducting a Weighted Correlation Network
Analysis (WGCNA) of patients
In the following, we outline the analysis steps for con-
ducting a WGCNA of the TMA patient data. An over-
view diagram is provided in Figure 1. R software for
WGCNA and accompanying software tutorials are freely
available at: http://www.genetics.ucla.edu/labs/horvath/
CoexpressionNetwork/.
1. Create a patient correlation network from tumor marker
expression data
We used WGCNA to identify clusters of patients whose
tumor marker profiles were positively correlated. In this
analysis, patients are considered “nodes” of the network,
and edges between them are determined by correlations
across the set of tumor markers. WGCNA was per-
formed using R software functions (indicated in courier
font) provided in the WGCNA R package [10,11,29-31].
There are two types of weighted correlation networks,

“unsigned” and “signed”. An unsigned network is based
on the absolute value of the Pearson correlation coeffi-
cient, while the signed network is based on the conven-
tional Pearson correlation coefficient ("cor”). Specifically,
the network adjacency (connection) between a pair of
samples xi and xj is defined as a(i,j) = (0.5 + 0.5cor(xi,
xj))^ b where the power b facilitates a soft thresholding
approach that emphasizes high positive correlations at
the expense of low or negative correlations. We recom-
mend a signed correlation network approach for com-
paring patient expression profiles since it is unlikely that
negatively correlated samples are molecularly similar. In
practice, we find that patients have moderate to high
positive expression correlations across protein markers.
Based on the network adjacency matrix, we define the
following dissimilarity measure between the samples:
dissA= 1-adjacency. While other network dissimilarities
have been used in correlation network analysis (e.g. the
topological overlap based measure [32,33]) we recom-
mend dissA since it leads to clusters of positively corre-
lated samples.
2. Define patient groups (modules) from the patient
network
The sample network dissimilarity dissA can be used as
input of a clustering procedure. Here we used average
linkage hierarchical clustering using the flashClust
WGCNA function. Clusters of patients were defined as
branches of the resulting cluster tree. To “cut” the
branches of the tree, we used the cutreeDynamic R
function since it affords more flexibility than traditional
approaches and has been carefully evaluated in several
simulation studies where it was shown to retrieve the
true simulated module structure [34-36]. By construc-
tion, the resulting clusters of patients (also referred to
as groups or “modules” of patients) have positively cor-
related expression profiles across the tumor marker set.
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The molecular profiles of each module can be repre-
sented using the first principal component (referred to
as an eigensample). The module eigensample (ME) is a
vector of length equal to the number of tumor markers,
that captures the maximum amount of expression varia-
tion in a given module. It can also be interpreted as a
weighted average of the expression values across the
patients belonging to the module. The MEs of different
modules can be correlated with each other to determine
whether two highly correlated clusters should be
merged. ME’s with high correlation can be merged to
reduce the patient network to a manageable number of
modules using the mergeCloseModules function.
Clinical variables can be visualized using color-bands

underneath the dendrogram (cluster tree) to visually
evaluate or refine merging parameters using plotDen-
droAndColors (see Figure 2A for an example). We opti-
mized the module merging process to correspond with

patient mortality. As a result, we identified three patient
clusters with low, moderate and high mortality rates.
Since our optimized module merging process may have
overfit the data, we evaluated the prognostic accuracy of
the resulting clusters in three independent data sets as
described below.
3. Evaluate the utility of WGCNA groups for survival
prediction
To understand the clinical meaning of the three patient
clusters (referred to as WGCNA groups) we studied the
relationships between the groups and clinical variables.
Conventional survival analysis methods such as Kaplan-
Meier plots and log-rank tests were used to assess survi-
val prediction, and we used a Kruskal-Wallis and Fish-
er’s exact test to relate the WGCNA mortality groups to
continuous and categorical clinical variables, respec-
tively. We used a log rank test to confirm that the
WGCNA patient groups were highly related to cancer
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Figure 1 Overview for conducting a Weighted Correlation Network Analyses (WGCNA) of patient TMA data (Steps 1-4) and follow up
analyses (Steps 5-7). Steps 1-4 are numbered to correspond with the WGCNA methods section in the text. After defining WGCNA and
WGCNA* patient groups, we compare these results to a more conventional variable selection approach (Steps 5-6). Finally, we validate the
WGCNA* and conventional results in independent Affymetrix gene expression data sets (Step 7).
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survival, and then checked that these patient groups
could not be exclusively defined by clinical variables
(stage, grade, Her2+, ER+, PR+, tumor size, lymph node
involvement and metastasis). We also evaluated survival
prediction of the WGCNA groups while controlling for
other predictive clinical variables in a multivariate Cox
proportional-hazards model.
4. Use classification trees to identify key markers for
defining WGCNA groups
Depending on the number of markers analyzed, it may
be practical to reduce the full marker set to a few key
markers that would be more manageable in a diagnostic
setting or validation analysis. After confirming that the

WGCNA patient groups were predictive of survival in
both univariate and multivariate analyses, we used
recursive partitioning (or classification tree methodol-
ogy) implemented in the rpart R function to identify a
few markers that could approximate our WGCNA
patient groups. The resulting approximate patient
groups, or “WGCNA*” were related to clinical variables
and evaluated in a multivariate Cox proportional-
hazards model (as in step 3).
In summary, WGCNA and WGCNA* are both catego-

rical grouping variables that attempt to classify low,
moderate and high mortality risk groups according to
their TMA marker expression data. The WGCNA
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Figure 2 Results of a WGCNA of 82 breast cancer patients and 26 markers. A. Markers were clustered according to their expression levels
across patient samples, so that each branch of the tree indicates a patient. The first row of white, grey and black colors below the tree indicates
WGCNA patient groups that correspond to clusters of patients that have similar marker expression profiles. The second row consists of WGCNA*
groups which is an approximation to WGCNA that relies on only three of the 26 markers. Subsequent rows consist of clinical variable data,
where black matches with unfavorable prognostic factors, white is favorable, grey is intermediate, and yellow indicates missing data. Stage was
coded as 1-3 with stage 1 colored white (there was one stage 4 patient that we re-coded as stage 3). Grade was coded as 1-3 with grade 1
colored white. Her2+, ER- and PR- were colored black. The presence of lymph node involvement (LNI) and metastasis were colored black. Tumor
size was re-coded as quantiles, where tumors smaller than the 25th percentile were colored white, tumors between the 25th-75th percentiles
were colored grey, and sizes greater than or equal to the 75th percentile were colored black. B-C. WGCNA patient groups correspond to low,
moderate (mod.) and high mortality. D. An approximation to the WGCNA groups “WGCNA*” that uses a subset of three markers (rather than the
full marker set) is also highly related to patient survival.
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variable uses data from the complete set of markers, and
the WGCNA* variable approximates the WGCNA cate-
gories by identifying optimal thresholds for a small sub-
set of these markers. Since a threshold can be defined in
relation to its parent distribution, i.e. as a percentile, the
WGCNA* classifier or “rule” can easily be evaluated in
additional independent data sets.

Application of WGCNA to a tumor expression array breast
cancer data set
We applied the WGCNA methodology outlined above
to a high-density TMA platform consisting of 26 puta-
tive tumor biomarkers measured on 82 breast cancer
patients (Tables 1, 2). The patients were clustered by
their expression profiles, which were transformed to
adjacencies using the soft threshold (power) b = 10 and
the signed network option for calculating adjacency in
the WGCNA R package. The cutreeDynamic function
was used (with options minClusterSize = 2 and deepS-
plit = 3) to generate 16 modules (not shown). Since we
did not expect that these modules were robustly defined
given the relatively small data set, we merged similar
modules using the mergeCloseModules R function with
the “cutHeight” parameter set to 0.15, which was

optimal for obtaining fewer but more robustly defined
modules that were significantly associated with survival
(p-value = 3.9 × 10-4). Since the groups were defined with
respect to the survival outcome, the p-value is overfit and
should be interpreted as a descriptive (not inferential)
measure. To arrive at an unbiased evaluation of the patient
groups, we used independent gene expression data sets as
described below. The WGCNA groups corresponded to
mortality rates of 5.4%, 22%, and 50% (colored white, grey
and black, respectively in Figure 2A, 2B, 2C).
To test whether the median values of ordinal variables

differed between WGCNA patient groups, we used the
Kruskal Wallis test, which is a non-parametric multi-
group comparison test. Boxplots were used to visualize
the distribution for each group. Lymph node involve-
ment, stage, metastasis and estrogen receptor positivity
were significant at the 0.05 level, but none of these vari-
ables could completely define one or more of our

Table 1 Summary statistics for trait data on 82 patients

Trait Description

Tumor Size in cm 78 (5%)

Median (Range) 2.3 (0.2 - 9.0)

25th - 75th Quartile 1.5 - 3.0

Clinical Stage 82 (0%)

I 29 (35%)

II 36 (44%)

III-IVa 17 (21%)

Tumor Grade 79 (4%)

I 22 (27%)

II 23 (28%)

III 34 (41%)

Lymph Node+ 29 (35%)

ER+ 61 (74%)b

PR+ 58 (71%)

HER-2/neu+ 20 (24%)c

Metastasis+ 32 (39%)d

# Deaths 13 (16%)

Time in months 82 (0%)

Median (Range) 97 (5, 121)

25th - 75th Quartile 70 - 110
aThere was one stage IV patient.
b1, c2 and d14 missing observations.

Median and inter-quartile range (25th - 75th percentiles) are reported for
skewed continuous variables. Categorical variables are reported as counts and
percent total. The total number of observations and percentage of missing
values are indicated adjacent to the variable name for continuous variables
and categorical variables with more than two levels. Other missing values are
indicated with footnotes.

Table 2 Summary statistics for TMA markers on 82
patients

TMA Marker 25th Median 75th # (%
NA)

14-3-3 s 5 33 63 79 (4%)

Annexin A1 0 0 6 82 (0%)

Beta-catenin 73 90 98 76 (7%)

BS106 0 3 30 79 (4%)

BU101 67 95 100 78 (5%)

MED28 expressed in the cytoplasm
(cyt)

42 67 90 77 (6%)

MED28 expressed in the nucleus
(nuc)

40 60 80 77 (6%)

Estrogen Receptor a (ER a) 2 18 50 78 (5%)

GATA3 27 79 100 82 (0%)

HER-2/neu 15 37 77 77 (6%)

Histone H3, acetylated on K4 (H3K4) 80 87 95 74 (10%)

Histone H3, acetylated on K18
(H3K18)

84 90 97 74 (10%)

Mammaglobin 17 57 83 80 (2%)

Na-K ATPase-a 33 58 80 75 (9%)

Na-K ATPase-b1 40 70 92 74 (10%)

p53 0 4 23 80 (2%)

Progesterone Receptor (PR) 0 15 57 78 (5%)

Prolactin inducible protein 0 0 1 79 (4%)

RIN-1 85 93 100 79 (4%)

Smad2 83 97 100 79 (4%)

Smad4 cyt 63 90 97 78 (5%)

Smad4 nuc 50 79 88 78 (5%)

TGF-b receptor II cyt 3 10 35 78 (5%)

TGF-b receptor II nuc 32 53 73 78 (5%)

S100A7 0 0 0 74 (10%)

Ying Yang 1 (YY1) 90 95 100 76 (7%)

Marker distributions are summarized by the median and inter-quartile range
(25th - 75th percentiles). Number of observations and the percentage of
missing values “% NA” are also provided.
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patient groups (data not shown). Furthermore, an ordi-
nal multivariate regression model predicting our patient
groups from these four variables resulted in a McFadden
pseudo R-square of only 0.068 (SPSS v16.0). After veri-
fying that our WGCNA groups were distinct from our
clinical variables, we evaluated its utility for survival pre-
diction in the presence of other predictive variables.
Variables that were significant at the 0.05 level in uni-
variate Cox proportional-hazards models included
lymph node involvement, stage, metastasis and Her2
positivity. A multivariate Cox proportional-hazards
model that included these variables and our WGCNA
variable found all predictors to be non-significant (p >
0.05) except the WGCNA mortality groups, where the
high mortality group had a p-value of 0.037. These
results suggest that the WGCNA mortality groups have
distinct molecular characteristics that predict breast can-
cer survival independently of prognostic clinical vari-
ables. However, the WGCNA cluster variable was
defined with respect to the 26 markers, which is cum-
bersome to validate. Therefore, we aimed to develop a
simple classification rule (referred to as WGCNA*)
which assigns each patient to its respective WGCNA
cluster. Toward this end, we used classification trees
implemented in the rpart R package, which automati-
cally selects significant markers and corresponding
thresholds. The classification tree led to a WGCNA*
rule based on three markers p53, Na-KATPase-b1, and
TGF b receptor II; with optimal thresholds correspond-
ing to the 75th, 33rd and 66th percentiles, respectively
(Figure 3A). Due to missing data in the p53, Na-KAT-
Pase-b1, and TGF b receptor II markers (2, 4 and 8
missing values, respectively), the WGCNA* rule initially
resulted in only 66 patients with mortality group assign-
ments. As a result, we confirmed that the missingness
pattern of each marker was unrelated to survival and
then replaced missing values by the median (rather than
the average due to skewed distributions), so that all 82
patients were assigned to a WGCNA* mortality group.
By construction, the WGCNA* mortality groups closely
matched the original WGCNA groups, differing by only
10 patients (Table 3). As a result, the WGCNA* patient
groups were highly predictive of patient survival (p-
value = 9.1 × 10-5, Table 4), with mortality rates of
5.4%, 24%, and 67% (Figure 2D, 3A). The WGCNA*
rule suggests that breast cancer patients with high p53
and low Na-KATPase-b1 have a high risk of death in
comparison to other molecular profiles. Furthermore,
patients with low p53 and high TGF b receptor II have
a moderate mortality risk.
To elucidate the clinical meaning of the WGCNA*

groups, we related them to clinical variables. We found
that the WGCNA* groups are significantly related to
stage, metastasis and estrogen receptor positivity (p <

0.05, Figure 4A). A multivariate Cox proportional-
hazards model that included the prognostic clinical vari-
ables (lymph node involvement, stage, metastasis and
Her2+) had a slightly lower R2 (0.306 versus 0.326) and
hazard ratio (3.8 versus 5.9) for the high mortality group
when WGCNA* was used as a predictor rather than the
original WGCNA grouping variable based on all 26
markers (Table 5). However, these differences are negli-
gible given that WGCNA* substantially reduced the
number of markers needed for validation.
We verified that no single marker could define the

WGCNA groups (Figure 4B). Cox proportional-hazards
models that included WGCNA* and each marker indivi-
dually (dichotomized at its optimal survival prediction
threshold) found WGCNA* to be the top predictor in
all cases (data not shown).

Comparison of WGCNA* patient groups with a
conventional step-wise analysis
While WGCNA defines patient mortality groups that
predict survival independently of other clinical variables,
it is interesting to know how this approach compares
with a more conventional stepwise variable selection
approach [37-39]. We analyzed the same TMA data by
first dichotomizing each marker at an optimal threshold
for survival prediction. Ten markers could be dichoto-
mized at a level that achieved a minimum of five
patients per group and a univariate Cox proportional-
hazards model p < 0.05. We included these 10 markers
in a multivariate Cox proportional-hazards model and
removed the least significant predictor in a step-wise
manner, until all remaining variables achieved signifi-
cance at the 0.05 level. Four markers: MED28 expressed
in the cytoplasm, p53, Smad4 expressed in the cyto-
plasm and Her2 were retained. The resulting model had
an R2 of 0.321. We then used classification trees (rpart
with complexity parameter 0.1) to identify a subset of
markers and their thresholds for defining low, moderate
and high mortality patient groups. This was achieved
with two markers MED28 and Smad4, dichotomized at
their 75th percentiles, where high MED28 resulted in
high mortality and low MED28 in conjunction with high
Smad4 resulted in moderate mortality (Figure 3B). The
resulting “COX” patient groups were significantly related
to survival (p = 1.6 × 10-4) and had mortality rates of
4.1%, 33% and 50%. While the COX variable had similar
mortality rates to WGCNA and WGCNA*, there was a
substantial 35% difference in the assignment of patients
to mortality groups (Table 3, Additional File 1). A mul-
tivariate Cox proportional-hazards model that included
the COX variable and the prognostic clinical variables,
found the COX variable to be the best predictor with p-
values of 0.016 and 0.036 for the moderate and high
mortality groups, respectively (Table 5). Finally, to
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directly compare the WGCNA* and COX variables, we
included both in a Cox proportional-hazards model with
and without the prognostic clinical variables. The
WGCNA* high mortality group was the most significant
predictor (p = 0.017) in the absence of clinical variable
data, but when prognostic clinical variables were
included, the COX moderate and high mortality groups
were the only significant predictors in the model.
In summary, the WGCNA* and COX mortality groups

are distinct from each other and are both important
predictors of breast cancer survival in our TMA data.
While COX outperforms WGCNA* in the presence of
prognostic clinical variables, it was also created by opti-
mizing the significance of its underlying markers in a
Cox proportional-hazards model. Thus, the COX vari-
able’s superior performance could possibly be explained

by over-fitting in our TMA data set and may not vali-
date in other data sets. To test this, we attempted to
validate the WGCNA* and COX mortality group rules
in independent gene expression data sets.

Validation analysis of WGCNA* and COX groups in gene
expression data sets
We applied the WGCNA* and COX rules to three inde-
pendent Affymetrix HG-U133A data sets (GSE3494,
GSE1456, GSE2990) [24-26]. After data cleaning (as
described in the Methods section) the data sets con-
sisted of 207, 146 and 173 breast cancer patients for the
Miller 2005, Pawitan 2005 and Sotiriou 2006 data sets,
respectively (Additional File 2A). The data sets had mor-
tality rates ranging from 17%-27%, with the Pawitan
2005 and Sotiriou 2006 data sets being most similar to

A. WGCNA* mortality groups
Is p53 

NO YES

NO YES YES NO 

s p53
>75th percentile?

Is Na-KATPase- 1 
>33rd percentile?

Is TGF  RII cyt
>66th percentile? 

High:
9 patients
67% died

Moderate:
17 patients
24% died

Low:
12 patients
17% died

Low:
44 patients
2.3% died

YESNO 

High:

Is MED28 cyt 
>75th percentile?

B. COX model mortality groups

Moderate:
12 ti t

Low:
49 ti t

High:
14 patients
50% died

YES NO
Is SMAD4 cyt 

>75th percentile?

12 patients
33% died

49 patients
4.1% died

Figure 3 The WGCNA* and COX mortality group definitions. A. Classification trees were used to identify a subset of markers (3 out of 26
total) and their optimal thresholds for approximating the WGCNA groups. Nearly 88% (72 matches out of 82) of the mortality group
assignments matched between WGCNA* and WGCNA. The markers and approximate thresholds included: p53 (dichotomized at the 75th

percentile), Na-KATPase-b1 (33rd percentile) and TGF b receptor II (66th percentile). High mortality was defined by high p53 and low Na-KATPase-
b1. The group with a 17% mortality rate is called “low” because 10 of these 12 patients were assigned to the low mortality group by WGCNA. B.
We also conducted a more traditional multimarker analysis by dichotomizing each of the 26 markers at an optimal threshold for survival
prediction and then using a step-wise marker selection approach to achieve low, moderate and high mortality “COX” patient groups. This
approach defined high mortality as high MED28, and moderate mortality as low MED28 and high Smad4. In both diagrams “cyt” indicates
expression in the cytoplasm.
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the 16% rate in our TMA data. Other than survival,
grade was the only clinical variable common to all three
data sets, and it appeared fairly consistent across the
gene expression and TMA data sets. The probe set dis-
tributions were also consistent, where the interquartile
ranges overlapped for all Miller 2005 and Pawitan 2005
probe sets; which overlapped with Sotiriou 2006 in most
cases (Additional File 2B). There were no anomalies to
disqualify a data set or probe set for validation analysis.
On the Affymetrix HG-U133A array, the protein Na-

KATPase-b1 was represented by gene ATP1B1 which
had two probe sets 201242_s_at and 201243_s_at. Simi-
larly, p53 corresponded to the TP53 gene (201746_at
and 211300_s_at); and TGF b receptor II corresponded
to TGFBR2 (207334_s_at and 208944_at). Thus there
were eight versions of the WGCNA* rule corresponding
to each probe set combination (2 × 2 × 2). Similarly for
the COX rule, the proteins MED28 cyt and Smad4 cyt
were represented by genes MED28 (214831_at,
218438_s_at) and SMAD4 (202526_at, 202527_s_at)
resulting in four versions of the COX rule per validation
data set. The strongest WGCNA* validation was
achieved in the Pawitan 2005 data set, where all eight
probe set combinations validated for the high mortality
group (p < 0.1, Table 6, Figure 5). In the Miller 2005
data set, two probe set combinations validated. No

probe sets combinations validated in the Sotiriou 2006
data set. Applying the same validation criteria (p < 0.1),
the COX rule did not validate in any data set for any
probe set combination (data not shown). In summary,
the WGCNA* high mortality group validated in two of
three Affymetrix breast cancer data sets, suggesting that
patients with high TP53 and low ATP1B1 may have a
worse prognosis than patients with other profiles. Since
high p53/TP53 is a well known indicator of poor prog-
nosis, the following section verifies that the combination
of Na-KATPase-b1/ATP1B1 and p53/TP53 in both the
protein and gene expression data sets is a stronger sur-
vival predictor than p53/TP53 alone.

A comparison of p53 and the WGCNA* high mortality
group
Since the WGCNA* high mortality group was defined
by low Na-KATPase-b1 and high p53, we checked
whether p53 alone would be a sufficient or possibly
superior survival predictor. In our TMA data, the opti-
mal dichotomized threshold for p53 was the 75th per-
centile. In a Cox proportional-hazards model that
included both the WGCNA* high mortality group
(coded as high versus moderate and low combined) and
the dichotomized p53 marker, the hazards ratio for the
WGCNA* high mortality group was more than two-fold
higher at 4.5 (p = 0.07) versus a hazards ratio of 2.1 (p
= 0.38) for the dichotomized p53 marker. In the gene
expression data, the continuous form of the TP53 vari-
able was not significant while the WGCNA* high mor-
tality group maintained significance at the 0.05 level for
all 8 of the Pawitan 2005 models. The dichotomized
TP53 marker did achieve significance at the 0.05 level in
two of the Miller 2005 models, but high TP53 indicated
a protective effect, which is inconsistent with current
(protein-level) findings (HR = 0.35 and p = 0.04 for
both models). In summary, low Na-KATPase-b1 (< 33rd

percentile) in combination with high p53 (>75th percen-
tile) is a stronger predictor of mortality than p53 alone
in both our TMA data and the Pawitan 2005 gene
expression data set.

Analysis of the WGCNA* high mortality group in the
Pawitan 2005 data set
Since the WGCNA* high mortality group consistently
validated in the Pawitan 2005 data set, we explored the
relationship between this group and the available Pawi-
tan 2005 variables: subtype (Basal, ERBB2, luminal A,
luminal B and normal like) and grade (I-III). In this data
set, the high mortality group consisted of 11 patients, 7
of which were luminal B, one luminal A, one basal, and
two were missing subtypes. Thus, subtype was signifi-
cantly related to WGCNA* high mortality (Fisher’s
exact test p = 1.5 × 10-4). Similarly, seven of the high

Table 3 Comparison of WGCNA* mortality group
assignments to WGCNA and COX

WGCNA*
Groups

WGCNA Groups COX Groups

Low Moderate High Low Moderate High

Low 51 1 4 40 7 3

Moderate 4 13 0 7 4 6

High 1 0 8 2 1 5

Totals N Agree Disagree N Agree Disagree

82 72 (88%) 10 (12%) 75 49 26 (35%)

WGCNA* patient mortality group designations are compared with WGCNA
and the COX definition, where diagonal elements indicate the number
matches. Only 10 patients (12%) differed between WGCNA and WGCNA* in
terms of their group designations, but 26 patients (out of 75, due to 7
unclassified patients by the COX definition) differed between WGCNA* and
COX.

Table 4 Mortality comparison between WGCNA*, WGCNA
and COX groups

Mortality Group # Deaths/# Patients (% Mortality)

WGCNA WGCNA* COX

Low 3/56 (5.4%) 3/56 (5.4%) 2/49 (4.1%)

Moderate 4/14 (22%) 4/17 (24%) 4/12 (33%)

High 6/12 (50%) 6/9 (67%) 7/14 (50%)

Log rank p 3.9 × 10-4 9.1 × 10-6 1.6 × 10-4

The number of patients and their mortality rates were similar across WGCNA,
WGCNA* and COX groups. The log rank test p-values were also similar,
ranging from 3.9 × 10-4 to 9.1 × 10-6.
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Figure 4 Variable and marker boxplots by WGCNA* mortality group. Kruskal-Wallis p-values are reported for the comparison of each
variable and marker to the WGCNA* patient groups, where the WGCNA* patient groups are color coded to indicate low (white), moderate
(grey) and high (black) mortality. A. Metastasis, stage, ER+ and death are significantly related to the WGCNA* groups (p < 0.05). B. The top 10
markers related to survival that achieved significance at p < 0.05 in a univariate Cox proportional-hazards model when dichotomized at an
optimal cut-point. The boxplots indicate that no variable or marker by itself can define the WGCNA* groups. Abbreviations are as follows, “LNI”
stands for Lymph Node Involvement, “cyt” indicates the TMA marker was expressed in the cytoplasm and “nuc” indicates nuclear expression.

Table 5 Survival prediction of WGCNA, WGCNA* and COX groups in a multivariate Cox proportional-hazards (CPH)
model

CPH Model Predictors WGCNA WGCNA* COX

HR (CI) p-value HR (CI) p-value HR (CI) p-value

Moderate Mortality 3.1 (0.5,19) 0.220 1.5 (0.3,7.3) 0.635 17.5 (1.7,178) 0.016

High Mortality 5.9 (1.1,31) 0.037 3.8 (0.8,18) 0.094 11.0 (1.2,102) 0.036

Lymph Node Involvement 0.9 (0.3,3.3) 0.900 1.1 (0.3,4.0) 0.879 1.2 (0.3,5.0) 0.767

Metastases 5.5 (0.4,72) 0.200 4.4 (0.3,58) 0.261 3.1 (0.2,59) 0.446

Stage 1.9 (0.5,7.7) 0.370 2.2 (0.5,8.9) 0.284 2.7 (0.4,17) 0.296

Her2+ 2.9 (0.8,11) 0.120 3.0 (0.8,10) 0.091 1.7 (0.5,6.0) 0.433

# Observations 66 66 60

Model R2 (p-value) 0.326 (1.2 × 10-4) 0.306 (1.1 × 10-4) 0.386 (4.7 × 10-5)

Hazard ratios (HR) and their 95% confidence intervals (CI) are reported for each model along with coefficient p-values. WGCNA and COX patient mortality groups
predicted survival at p < 0.05, and the overall model R2 and p-values were similar across all three models. The COX model achieved the strongest hazards ratios
for the moderate and high mortality groups. Her2+ was the strongest variable predictor but did not achieve significance at the 0.05 level. Variables were selected
for multivariate analysis if they were significantly related to survival in a univariate CPH model (p < 0.05).
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mortality group patients were grade 3, two were grade 2,
and two were grade 1, although this relationship did not
achieve significance (Fisher’s exact test p = 0.194). In a
multivariate Cox proportional-hazards model with sub-
type coded as luminal B versus other types and grade
coded as an ordinal variable, the WGCNA* high mortal-
ity group was the strongest predictor with a hazards
ratio of 4.22 (95% CI: 1.3, 14.1, p = 0.019). See Addi-
tional File 3 for characteristics of the WGCNA* mortal-
ity groups.

Discussion
TMA data are typically used to test hypotheses regard-
ing the prognostic value of tumor markers. Here we use
breast cancer TMA data to demonstrate that TMA data
are also valuable for tumor class discovery. We show
that using weighted correlation networks analysis for
clustering patients across 26 TMA markers identifies
patient groups that have distinct molecular profiles asso-
ciated with mortality. The WGCNA mortality groups
were significantly associated with survival even after
controlling for stage, metastasis, lymph node involve-
ment and Her2 positivity in a multivariate Cox regres-
sion model. Since measuring 26 tumor markers may be
impractical, we used a classification tree predictor to
find a close approximation (referred to as “WGCNA*”)
of the WGCNA mortality groups. The resulting classifi-
cation rule “WGCNA*” relied on only three TMA mar-
kers: p53, Na-KATPase-b1, and TGF b receptor II. The
WGCNA* mortality groups with low (5.4%), moderate

(24%) and high (67%) mortality rates differed by 35%
from a mortality classification developed by a more tra-
ditional step-wise Cox regression approach. The
WGCNA* mortality classification validated in two out of
three independent Affymetrix gene expression data sets,
while the traditional Cox regression classification did
not validate.
Our three markers are not included in major commer-

cial gene expression marker sets that predict breast
tumor recurrence such as MammaPrint (70 markers) or
Oncotype DX (16 markers) [40,41], although TGF b
receptor II (TGFBR2) was among the initial set of 250
candidate genes considered by Oncotype DX. To our
knowledge there are no additional reports of these three
markers in combination (or pair-wise combinations) in
the breast cancer literature. Turning to single marker
studies, our major low mortality group defined by p53 ≤
75th percentile and TGF b receptor II ≤ 66th percentile
is consistent with literature results for p53, as increased
p53 expression has been implicated in poor breast can-
cer prognosis [42], but potentially inconsistent with
results for TGF b receptor II since loss of TGF b recep-
tor II function has been implicated in breast cancer
metastasis [43]. There is limited breast cancer literature
on Na-KATPase-b1, but elevated levels were found in
African American breast cancer cells in comparison to
Caucasian, where the former cancer is typically more
aggressive [44]. If one interprets this to mean that ele-
vated Na-KATPase-b1 expression is associated with
poorer prognosis, it would be inconsistent with our

Table 6 Validation results for WGCNA* mortality groups in three Affymetrix data sets

# Data Set Marker Probeset Hazard Ratio P-values Validates at 0.1

ATP1B1 TP53 TGFBR2 Mod. High Mod. High Model

1 Miller 2005 1 1 1 0.88 2.35 0.693 0.053 0.173 yes

2 Miller 2005 1 1 2 0.94 2.39 0.853 0.049 0.184 yes

3 Miller 2005 1 2 1 1.10 0.93 0.777 0.884 0.944 no

4 Miller 2005 1 2 2 1.17 0.94 0.611 0.914 0.865 no

5 Miller 2005 2 1 1 0.82 1.18 0.538 0.750 0.754 no

6 Miller 2005 2 1 2 0.88 1.20 0.676 0.727 0.840 no

7 Miller 2005 2 2 1 1.05 0.32 0.873 0.258 0.371 no

8 Miller 2005 2 2 2 1.12 0.32 0.709 0.265 0.351 no

9 Pawitan 2005 1 1 1 0.64 3.17 0.429 0.024 0.062 yes

10 Pawitan 2005 1 1 2 0.41 2.91 0.158 0.036 0.026 yes

11 Pawitan 2005 1 2 1 0.93 4.89 0.894 0.001 0.014 yes

12 Pawitan 2005 1 2 2 0.41 4.05 0.156 0.004 0.004 yes

13 Pawitan 2005 2 1 1 0.64 3.22 0.430 0.023 0.060 yes

14 Pawitan 2005 2 1 2 0.41 2.95 0.159 0.034 0.025 yes

15 Pawitan 2005 2 2 1 0.92 4.37 0.880 0.002 0.022 yes

16 Pawitan 2005 2 2 2 0.41 3.62 0.152 0.008 0.007 yes

The Pawitan 2005 data set validated at the 0.1 level for all eight probe set combinations for the high mortality group. The Miller 2005 data set validated for two
probe set combinations. The WGCNA* moderate mortality group did not validate. None of the probe set combinations validated for the Sotiriou 2006 data set
(not shown). The rows highlighted bold indicate probe set combinations with Kaplan-Meier plots in Figure 5. Probe set abbreviations are as follows ATP1B1:
1 = 201242_s_at, 2 = 201243_s_at; TP53: 1 = 201746_at, 2 = 211300_s_at; TGFBR2: 1 = 207334_s_at, 2 = 208944_at.
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finding that the high mortality group has low Na-KAT-
Pase-b1 (p53 > 75th percentile and Na-KATPase-b1 ≤
33rd percentile). While the limited congruence between
our multimarker mortality rule and the single marker
studies may be partly explained by differences in
patients, outcome variables, and high/low expression
definitions; it is also likely due to the additional infor-
mation gained by analyzing marker combinations. Thus,
a validation of our results would best be achieved in an
analogous multimarker setting.

Our study has several strengths and limitations. Here
we have shown that correlation network methodology is
useful for defining patient groups based on multiple
tumor markers. The methods described here handle
10’s to 10000’s of tumor markers, and should be useful
for other multimarker TMA studies. Furthermore, we
have identified three tumor markers, p53, Na-KATPase-
b1, and TGF b receptor II that predict breast cancer
survival in our TMA data set and in two independent
gene expression data sets. However, we acknowledge

A Miller 2005: WGCNA* (ATP1B1 TP53 TGFBR2 = 1 1 2) p=0 049
.6

0.
8

1.
0

A. Miller 2005: WGCNA (ATP1B1,TP53,TGFBR2 1, 1, 2), p 0.049

ra
te

0.
0

0.
2

0.
4

0

S
ur

vi
va

l 

Low:  138 (67%)
Mod.: 58 (28%)
High: 11 (5%)

0 50 100 150

Survival time (mos)

0.
8

1.
0

B. Pawitan 2005:  WGCNA* (ATP1B1,TP53,TGFBR2 = 1, 2, 1), p=0.001

e

0.
2

0.
4

0.
6

S
ur

vi
va

l r
at

e

Low:  104 (71%)
Mod.: 31 (30%)
High: 11 (11%)

0 20 40 60 80 100

0.
0

Survival time (mos)

High: 11 (11%)

Figure 5 Validation of the WGCNA* high mortality group in two independent gene expression data sets (A-B). A. Results for the Miller
2005 data set are shown for the following probe sets ATP1B1: 201242_s_at, TP53: 201746_at, and TGFBR2: 208944_at. The Pawitan 2005 data set
validated for all probe set combinations, but results for ATP1B1: 201242_s_at, TP53: 211300_s_at, and TGFBR2: 207334_s_at are shown in B. Data
set information can be found in Additional File 2, and additional validation results can be found in Table 6.
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the following limitations. First, our three marker mortal-
ity rule was developed on only one TMA data set, and
it should be validated in other TMA data sets. Second,
our analysis was restricted to 26 available prognostic
markers. These markers neither represented a compre-
hensive set of tumor markers, nor were randomly
selected from a comprehensive tumor marker set.
Rather, they had been acquired for use in other oncol-
ogy studies. As more markers become available, the
mortality group definition could improve and the
WGCNA* definition may change. However, it would be
easy to incorporate additional data as WGCNA can
handle large data sets with thousands of markers and/or
samples. Finally, the moderate WGCNA* mortality
group did not validate in the gene expression data.
While this could be due to RNA and protein expression
level differences, additional data is needed to support
TGF b receptor II as a prognostic marker.

Conclusions
Weighted correlation network analysis identifies patient
mortality groups that cannot be defined by a single mar-
ker or clinical variable and are highly related to breast
cancer survival. The p53, Na-KATPase-b1, and TGF b
receptor II markers may be useful in a clinical setting
for predicting breast cancer survival.

Additional material

Additional File 1: Patients clustered by 26 biomarkers and colored
by WGCNA, WGCNA* and COX groups. The WGCNA and WGCNA*
groups are similar in terms of their assignments of patients to low
(white), moderate (grey) and high mortality (black) groups. In
comparison, the COX groups defined by a more traditional approach
(step-wise cox model selection) were quite different. Yellow indicates
missing values.

Additional File 2: Summary statistics for traits and markers from
three gene expression data sets. A. The Pawitan 2005 and Sotiriou
2006 data sets were most similar to our TMA data in terms of the
percent mortality and survival times, which was 16% and 8 years in our
TMA data and 17-22% and 7 years in the Pawitan 2005 and Sotiriou 2006
data sets. The Miller 2005 data set had a longer follow-up time which
may explain its higher mortality rate (27%). Estrogen receptor positivity
was similar across studies (74%-87%) while progesterone receptor
positivity differed by 37% between the Miller 2005 data set and our TMA
data. B. Marker expression data for HG-U133A probe sets that best
matched our TMA marker data, where each of our TMA markers were
represented by two probe set IDs. Medians are plotted with interquartile
range (IQR) error bars. Distributions were similar (IQR’s overlapped) for at
least one of the two probe sets for each marker.

Additional File 3: Summary statistics for variables by WGCNA*
mortality group. Median and inter-quartile range (25th - 75th percentiles)
are reported for skewed continuous variables. Categorical variables are
reported as counts and percent total. The total number of observations
and percentage of missing variable data are indicated adjacent to the
variable name for continuous variables and categorical variables with
more than two levels. Other missing variable data are indicated with
footnotes.

Abbreviations
TMA: tissue microarray; ER: estrogen receptor; PR: progesterone receptor; LVI:
lymphovascular invasion; HR: hazard ratio; CI: confidence interval; WGCNA:
weighted gene correlation network analysis.
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