Open Access
Open Peer Review

This article has Open Peer Review reports available.

How does Open Peer Review work?

Decreased mitochondrial DNA content in blood samples of patients with stage I breast cancer

  • Peng Xia1, 2,
  • Han-Xiang An3Email author,
  • Cheng-Xue Dang1Email author,
  • Ramin Radpour2,
  • Corina Kohler2,
  • Emmanouil Fokas3,
  • Rita Engenhart-Cabillic3,
  • Wolfgang Holzgreve4 and
  • Xiao Yan Zhong2
BMC Cancer20099:454

DOI: 10.1186/1471-2407-9-454

Received: 19 November 2008

Accepted: 21 December 2009

Published: 21 December 2009

Abstract

Background

Alterations of mitochondrial DNA (mtDNA) have been implicated in carcinogenesis. We developed an accurate multiplex quantitative real-time PCR for synchronized determination of mtDNA and nuclear DNA (nDNA). We sought to investigate whether mtDNA content in the peripheral blood of breast cancer patients is associated with clinical and pathological parameters.

Methods

Peripheral blood samples were collected from 60 patients with breast cancer and 51 age-matched healthy individuals as control. DNA was extracted from peripheral blood for the quantification of mtDNA and nDNA, using a one-step multiplex real-time PCR. A FAM labeled MGB probe and primers were used to amplify the mtDNA sequence of the ATP 8 gene, and a VIC labeled MGB probe and primers were employed to amplify the glyceraldehyde-3-phosphate-dehydrogenase gene. mtDNA content was correlated with tumor stage, menstruation status, and age of patients as well as lymph node status and the expression of estrogen receptor (ER), progesterone receptor (PR) and Her-2/neu protein.

Results

The content of mtDNA in stage I breast cancer patients was significantly lower than in other stages (overall P = 0.023). Reduced mtDNA was found often in post menopausal cancer group (P = 0.024). No difference in mtDNA content, in regards to age (p = 0.564), lymph node involvement (p = 0.673), ER (p = 0.877), PR (p = 0.763), and Her-2/neu expression (p = 0.335), was observed.

Conclusion

Early detection of breast cancer has proved difficult and current detection methods are inadequate. In the present study, decreased mtDNA content in the peripheral blood of patients with breast cancer was strongly associated with stage I. The use of mtDNA may have diagnostic value and further studies are required to validate it as a potential biomarker for early detection of breast cancer.

Background

More than 75 years since Warburg described how tumor cells avidly consume glucose and produce lactic acid under aerobic conditions, it still remains unclear how this metabolic shift provides tumor cells with a growth advantage[1, 2]. Recent evidence has shown that tumor cells adapt their metabolism to the microenvironment by suppressing mitochondrial function rather than increasing glycolysis [3]. In patients with mitochondrial disease, mitochondrial function is vulnerable to damages due to deletions, mutations or replication abnormalities of mitochondrial DNA (mtDNA) resulting in energy depletion and increased susceptibility to apoptosis [4]. Additionally, mtDNA alterations are correlated with various cancer types, suggesting that the mitochondrial genome may be a critical contributing factor in carcinogenesis. mtDNA content has been implicated as a potential biomarker for several cancer types [5]. Decreased mtDNA content had been reported for renal [6], gastric [7], breast [5, 8], previously-treated head and neck [9], ovarian [10] and hepatic cancer [1113]. In contrast, several studies have revealed an increased mtDNA content in prostate [14], untreated head and neck [15], thyroid [5], endometrial [16], and pancreatic cancer [17]. Interestingly, mtDNA alterations were also detected in bodily fluids, suggesting that mtDNA changes might serve as sensitive early biomarker for non-invasive detection of several types of solid cancer including breast cancer [18].

Similarly to previous reports [5], we have shown that mtDNA content was decreased in 82% of cancerous breast tissues, as compared with the normal ones[19]. However, to our best knowledge, no data exist regarding mtDNA content in peripheral blood of breast cancer patients and its correlation with clinical-pathological parameters. In the present study, we measured mtDNA content from peripheral blood samples of patients with breast cancer using a novel multiplex quantitative real-time PCR, as previously described [20]. The association between peripheral blood mtDNA content and clinical-and pathological parameters was analyzed and compared with the healthy donors.

Methods

Sample collection

Blood samples from 60 patients with breast cancer were taken before primary surgery. All patients were diagnosed between 2005 and 2007 and underwent surgery at the First Affiliated Hospital of Medical School of Xi'an Jiao Tong University of China. 51 control samples were randomly selected among individuals visiting hospitals for regular health checks. All patients gave informed consent for retention and analysis their blood for research purpose according to institutional guidelines and the study was approved by the research ethics committee of the Medical School of Xi'an Jiao Tong University, China. Tumors were staged according to the TNM classification (Union Internationale Contre le Cancer, UICC). None of patients received neoadjuvant treatment or have distant metastases as the time of primary surgery. Hematoxylin and eosin staining was used for routine pathological evaluation. Expression of estrogen receptor (ER), progesterone receptor (PR) and Her-2/neu protein was determined by immunohistochemistry. Clinical-pathological data (age, histological grade, tumor size, lymph node status, ER-, PR-, and Her-2/neu expression) are summarized in Table 1. The median ages of the cancer and the control group were 49.5 ± 1.6 years and 51.0 ± 2.0 years, respectively.
Table 1

Patient's data and correlation between levels of mtDNA in peripheral blood of patients with breast cancer and clinical-pathological parameters

Variable

Number

mtDNA content

Median (Range)

P value

Age (years)

   

   <50

30

525.96 (0.47 - 35241.80)

*0.564

   ≥50

30

660.59 (0.39 - 27175.14)

 

Menopausal status

   

   pre

37

1365.30 (0.47 - 35241.80)

*0.024

   post

23

262.29 (0.39 - 5166.60)

 

Lymph-node status

   

   negative

29

668.60 (4.23 - 27175.14)

*0.673

   positive

31

436.55 (0.39 - 35241.80)

 

Stage

   

   I

20

196.94 (0.47 - 6841.04)

**0.023

   II

20

1656.18 (10.89 - 35241.80)

 

   III-IV

20

572.71 (0.39 - 4956.14)

 

ER

   

   positive

29

657.11 (0.39 - 35241.80)

*0.877

   negative

31

376.11 (0.47 - 27175.14)

 

PR

   

   positive

36

654.85 (4.23 - 27175.14)

*0.763

   negative

24

669.09 (0.39 - 35241.80)

 

Her2/neu protein

   

   positive

32

242.96 (0.39 - 35241.80)

*0.335

   negative

28

824.78 (10.89 - 27175.14)

 

*P values are obtained by using the Mann-Whitney U test. ** P values are obtained by using one-way ANOVA on the rank followed by the Tukey test.

DNA isolation and multiplex quantitative real-time PCR

DNA was subsequently isolated from whole blood by phenol-chloroform extraction and ethanol precipitation [21]. The DNA samples were divided into aliquots of 100 μl and were stored in -80°C. The ABI PRISM 7000 Sequence Detection System (Applied Biosystems, ABI) was used to amplify the GAPDH housekeeping gene and the mitochondrial DNA encoded ATPase (MTATP) 8 gene. Primers and probes used for detection of GAPDH and MTATP 8 gene sequences were: GAPDH (forward): 5'-CCC CAC ACA CAT GCA CTT ACC; (reverse): 5'-CCT AGT CCC AGG GCT TTG ATT; probe 5'-(MGB)-TAG GAA GGA CAG GCA AC (VIC). Mitochondrial DNA (forward): 5'-AAT ATT AAA CAC AAA CTA CCA CCT ACC; (reverse): 5'-TGG TTC TCA GGG TTT GTT ATA; probe: 5'-(MGB)-CCT CAC CAA AGC CCA TA (FAM). The real-time RT-PCR was carried out in 25 μl of total reaction volume containing 5 μl (40 ng) of DNA, 12.5 μl of TaqMan® Universal PCR Master Mix, 4 primers and 2 probes using a 2 minute incubation at 50°C, followed by an initial denature step at 95°C for 10 minutes and 40 cycles of 1 minute at 60°C and 15 seconds at 95°C. All samples were analyzed in triplicate. To determine the quantities of mtDNA and nDNA present in blood samples, the average threshold cycle number (Ct) values of the nDNA and mtDNA were obtained from each case. The level of mtDNA was calculated using the delta Ct (ΔCt) of average Ct of mtDNA and nDNA (ΔCt = CtmtDNA-CtnDNA) in the same well as an exponent of 2 (2ΔCt).

Statistical analysis

Contents of mtDNA and nDNA are given as the median, the range and the fold difference. Receiver operating characteristic (ROC) curves were generated to estimate the sensitivity and specificity of mtDNA content. The Shapiro-Wilk test was used to analyze the data distribution. It showed that our data set was not normally distributed (p = 0.000 and 0.010 for the mtDNA- and the GAPDH assay, respectively). The two-sample Kolmogorov-Smirnov (K-S) test was used to compare the content of mtDNA in blood between the control- and breast cancer group. The Spearman's rho analysis was applied to analyze the relationship of mtDNA content in peripheral blood between the two groups. The Mann-Whitney U Test and Kruskal-Wallis test were employed to compare mtDNA content with clinical-pathological parameters in breast cancer group. We converted the mtDNA content values to ranks, and then did one-way ANOVA on the ranks in order to use the Tukey post-hoc procedure for the pairwise comparions of mtDNA content in relation to tumor stage. Differences were considered significant when p < 0.05. All statistical analyses were performed using the SPSS version 15.0 software (SPSS Inc., Chicago, IL).

Results

Measurements of the efficiency of multiplex Assays

The specificity of the assay for detecting the mtDNA was assessed using the mtDNA depleted 143b rho0cell line. No positive amplification of nucleus-embedded mtDNA sequences was obtained from the cell line using the assay for mtDNA (data not shown). To determine the quantities of mtDNA and nDNA present in blood samples, standard dilution curves were generated from a human genomic DNA with known concentrations, ranging from 3.125 × 104 to 10 pg/μl (including 31250, 6250, 1250, 250, 50 and 10 pg/μl). We used experimental serial dilutions to examine the amplification efficiencies for the MTAPT-8-gene amplicon (79 bp) for representing total mtDNA, and the GAPDH-gene amplicon (97 bp) for representing total nDNA. The amplifications of mtDNA and nDNA on serial dilutions showed a good correlation with comparable efficiencies of close to 99%.

Co-extraction of mtDNA and nDNA from peripheral blood samples of breast cancer patients

The average Ct values of GAPDH ranged from 20.16 to 24.71 in blood samples of patients with breast cancer and from 21.73 to 25.73 in whole blood samples of the control group, respectively. The average Ct values of MTATP 8 gene ranged from 10.65 to 21.54 in blood samples of patients with breast cancer and from 11.78 to 14.88 in whole blood samples of the control group, respectively. In breast cancer patients, mtDNA content was higher than nDNA (Table 2).
Table 2

Level of mtDNA content in peripheral blood of the control- and breast cancer groups

 

Normal

N = 50

Breast Cancer

N = 60

Change

(ΔΔ Ct)

P value

ΔCt (CtnDNA - CtmtDNA)

    

   Median

10.43

9.36

  

   Range

6.07-12.03

-1.37-15.11

1.07

 

mtDNA content

    

   Median

1374.79

654.85

 

*p = 0.009

   Range

66.95-4182.07

0.39-35241.80

2.10

 

Correlation

    

(CtnDNA vs CtmtDNA)

r = 0.496

**p = 0.000

r = 0.148

**p = 0.259

  

* Kolmogorov-Smirnov (K-S) test; ** Spearman's rho test.

The average Ct values of GAPDH amplicon in the normal group were correlated with those of MTATP8 gene amplicon (Spearman's rho Test: p < 0.001, r = 0.496) (Figure 1). In contrast, no significant correlation was detected in cancerous group (p > 0.05, r = 0.148) (Figure 2), suggesting an alteration of the relationship between nDNA and mtDNA in blood samples of breast cancer patients.
https://static-content.springer.com/image/art%3A10.1186%2F1471-2407-9-454/MediaObjects/12885_2008_Article_1788_Fig1_HTML.jpg
Figure 1

Correlation of nDNA content and mtDNA content in peripheral blood in normal group. Scatter plot illustrates the Ct values of GAPDH amplicon (X axis) against the Ct values of MTATP 8 amplicon (Y axis) in blood samples of normal group (n = 50). The correlation rate is highly significant (p = 0.0001) according the Spearman' rho test.

https://static-content.springer.com/image/art%3A10.1186%2F1471-2407-9-454/MediaObjects/12885_2008_Article_1788_Fig2_HTML.jpg
Figure 2

Correlation of nDNA content and mtDNA content in peripheral blood in breast cancer group. Scatter plot illustrates the Ct values of GAPDH amplicon (X axis) against the Ct values of MTATP 8 amplicon (Y axis) in blood samples of breast cancer group (n = 60). The correlation rate is not significant (p = 0.259) according the Spearman' rho test.

mtDNA in whole blood samples from the normal and breast cancer group

We used a formula of 2ΔCt to calculate the content of mtDNA in whole blood. The area under the ROC curve for the mtDNA content was 0.76 (95% confidence interval, 0.67-0.87) with sensitivity of 73 and specificity of 78%. A 10.43 cycle difference in normal group and a 9.36 cycle difference in cancerous group were found by calculating the ΔCt values between GAPDH amplicon and MTATP 8 gene amplicon. The ΔCt values between normal and cancerous group showed a 1.07 cycle difference (ΔΔCt) (p < 0.01) as shown in Table 2.

Relationship between decreased content of mtDNA and clinical parameters

mtDNA content was compared with various clinical and pathological parameters of breast cancer patients such as age, menopause, TNM stage, lymph node status, ER-, PR- and Her-2/neu expression (Table 1). No significant difference in mtDNA content of peripheral blood was observed in regards to age, lymph node involvement, ER-, PR- and Her-2/neu expression (Table 1). However, the mtDNA content was significantly lower in stage 2 than in the other stages (Table 1 and Figure 3, overall P = 0.023, I vs II, P = 0.018). The decreased mtDNA content in breast cancer patients was also correlated to menopausal status of beast cancer patients (Table 3 and Figure 4, P = 0.024). Significant decreased mtDNA content of peripheral blood was found in postmenopausal patients with cancer compared with that in postmenopausal normal group (Figure 4, P = 0.019).
Table 3

The correlation between the menopausal status and the levels of mtDNA in peripheral blood of breast cancer and normal groups

Variable

Number

mtDNA content

Median (Range)

P value

Cancer

   

   Menopausal status

   

pre

37

1365.30 (0.47-35241.80)

0.024

post

23

262.29 (0.39-5166.60)

 

Normal

   

   Menopausal status

   

pre

31

1443.15 (136.71-4182.07)

0.396

post

20

1097.52 (66.95-3808.48)

 

P values are obtained by using the Mann-Whitney U Test.

https://static-content.springer.com/image/art%3A10.1186%2F1471-2407-9-454/MediaObjects/12885_2008_Article_1788_Fig3_HTML.jpg
Figure 3

Box plot analysis illustrating levels of mtDNA in peripheral blood of normal group and breast cancer groups according the stage ofcarcinomas. The quantitative mtDNA content (as described in the text) is shown on the Y axis. The mtDNA content in peripheral blood of stage I breast cancers is significant lower than in the other stages according the One-way ANOVA on the ranks (*P = 0.018). Horizontal lines: group medians; boxes: 25--75% quartiles,, range, peak and minimum.

https://static-content.springer.com/image/art%3A10.1186%2F1471-2407-9-454/MediaObjects/12885_2008_Article_1788_Fig4_HTML.jpg
Figure 4

Box plot analysis illustrating levels of mtDNA in peripheral blood of breast cancer patients according the menopausal status. The quantitative mtDNA content is shown on the Y axis. The mtDNA content in peripheral blood of postmenopausal patients is significant lower than premenopausal patients according the Mann-Whitney U Test (* P = 0.024, NS: not significant); Horizontal lines: group medians; boxes: 25--75% quartiles, range, peak and minimum.

Discussion

mtDNA is vulnerable to DNA damage due to: a) the lack of protective histones; b) insufficient DNA repair capacity; c) a high rate of reactive oxygen species generation in mitochondria [22]. Mitochondria play an essential role in cellular energy metabolism, free radical generation and programmed cell death [23]. According to these characteristics and functions of mtDNA, it has been noted that alterations found in mtDNA could be involved at the early stage of carcinogenesis [24] and may play an important role in mitochondrial dysregulation and cancer development [9]. In addition, previous studies have suggested the potential use of mtDNA as biomarker for the early detection of cancer [25]. Low mtDNA content was identified in tumors specimens of breast cancer at an early stage, suggesting that it might be essential in early progression of breast cancer, most probably by impairing the oxidative phosphorylation or mitochondrial bioenergetics [8]. Jiang et al. showed a significantly increased mtDNA content in the saliva with advanced stage [15]. The change of mtDNA may therefore be important for cancer initiation and progression [14]. However, few studies have addressed the deletion and mutation of mtDNA in tumor tissues and blood of patients with breast cancer and the published results were inconsistent. Recent studies did not detect mtDNA mutations and deletions in the blood of women with breast cancer, implying that the mtDNA deletion and mutation play a minor role in breast carcinogenesis [2628]. Furthermore, no previous data exist regarding the content of mtDNA in peripheral blood of breast cancer patients. In our study, we used MTATP 8 gene, a mitochondrial DNA encoded ATPase, to analyze the quantities of mtDNA in peripheral blood. We show that mtDNA content in whole blood from breast cancer patients significantly decreased in stage I breast cancer samples as compared with more advanced stages. This suggests that breast cancer cells depleted a high amount of mtDNA in the circulating system. mtDNA depletion could affect progression and metastasis of cancer cells by preventing apoptosis and generating cancer-related proteins [22]. The high frequency of mtDNA alterations in cancer and their presence in the stages I disease could possibly be exploited as clinical markers for early cancer detection [29]. Interestingly, Barrientos et al. reported that an increase in mtDNA content might be a compensatory response for decline in respiratory function [30]. So, that was why our results showed that mtDNA content firstly decreased at stage I and subsequently increased by the normal levels at stage II and stage III-IV.

A previous quantitative analysis suggested that the mtDNA content did not change with age of patients [31]. Similarly, our results displayed no significant difference between the decreased mtDNA content and age of patients. However, a recent report showed that the reduced copy number in mtDNA was more frequent in patients older than 50 years of age [8]. The relationship, therefore, between mtDNA content and patient's age needs further investigation. mtDNA circulates in peripheral blood not only in a cell-free form but also in a particle-associated form [32]. Mehra et al. showed that circulating concentrations of genomic DNA and mtDNA were not correlated with each other in plasma, probably due to the different compartmentalization and degradability of mtDNA and nDNA in cancers [33]. In line to this report, our results revealed no significant association between mtDNA content and nDNA content in peripheral blood from breast cancer patients.

The association between mtDNA content in peripheral blood and patients' age or clinical-pathological parameters was determined. No correlations between mtDNA content in peripheral blood and those parameters of breast cancer could be observed. Yu et al. have previously shown reduced mtDNA content to have a significant correlation with ER or PR status [8, 19]. Endocrine treatment is essential for premenopausal as well as postmenopausal breast cancer patients [34]. Several studies showed that mitochondria respiration varies during the menstrual cycle and is correlated with pregnancy[35, 36]. In our study, reduced mtDNA content inclined to have a significant correlation with menopausal status of breast cancer patients. However, whether reduced mtDNA in peripheral blood of breast cancer patients could potentially affect the outcome of endocrine treatment of breast cancer remains unknown.

Conclusion

Our data suggest that the decrease of mtDNA content in peripheral blood of patients with breast cancer may have diagnostic and prognostic value. Decreased mtDNA content is associated with the menopausal status of patients and TNM stage of cancers. The use of mtDNA may have diagnostic and prognostic value and further studies are required to validate it as a potential biomarker for early detection of breast cancer.

Declarations

Acknowledgements

We would like to thank Mrs. Vivian Kiefer and Mrs. Nicole Chiodetti for their expert technical help and continued support. We are very grateful to Dr. Lei Meng and Dr. Hua Xu for collecting samples. We are thankful to Mrs. Regan Geissmann for proofreading the text.

Authors’ Affiliations

(1)
Department of Surgical Oncology, First Affiliated Hospital of Medical College, Xi'an Jiaotong University
(2)
Laboratory for Prenatal Medicine and Gynecological Oncology, Women's Hospital and Department of Biomedicine, University of Basel
(3)
Department of Radiotherapy and Radiation Oncology, Philipps-University Marburg
(4)
Medical Center, Abert-Ludwigs-University-Freiburg

References

  1. Warburg O: the metabolism of tumors. London Constable Co Ltd. 1931Google Scholar
  2. Warburg O: On the origin of cancer cells. Science. 1956, 123: 309-314. 10.1126/science.123.3191.309.View ArticlePubMedGoogle Scholar
  3. Denko NC: Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer. 2008, 8: 705-713. 10.1038/nrc2468.View ArticlePubMedGoogle Scholar
  4. Zeviani M, Antozzi C: Mitochondrial disorders. Mol Hum Reprod. 1997, 3: 133-148. 10.1093/molehr/3.2.133.View ArticlePubMedGoogle Scholar
  5. Mambo E, Chatterjee A, Xing M, Tallini G, Haugen BR, Yeung SC, Sukumar S, Sidransky D: Tumor-specific changes in mtDNA content in human cancer. Int J Cancer. 2005, 116: 920-924. 10.1002/ijc.21110.View ArticlePubMedGoogle Scholar
  6. Selvanayagam P, Rajaraman S: Detection of mitochondrial genome depletion by a novel cDNA in renal cell carcinoma. Lab Invest. 1996, 74: 592-599.PubMedGoogle Scholar
  7. Wu CW, Yin PH, Hung WY, Li AF, Li SH, Chi CW, Wei YH, Lee HC: Mitochondrial DNA mutations and mitochondrial DNA depletion in gastric cancer. Genes Chromosomes Cancer. 2005, 44: 19-28. 10.1002/gcc.20213.View ArticlePubMedGoogle Scholar
  8. Yu M, Zhou Y, Shi Y, Ning L, Yang Y, Wei X, Zhang N, Hao X, Niu R: Reduced mitochondrial DNA copy number is correlated with tumor progression and prognosis in Chinese breast cancer patients. IUBMB Life. 2007, 59: 450-457. 10.1080/15216540701509955.View ArticlePubMedGoogle Scholar
  9. Jiang WW, Rosenbaum E, Mambo E, Zahurak M, Masayesva B, Carvalho AL, Zhou S, Westra WH, Alberg AJ, Sidransky D, Koch W, Califano JA: Decreased mitochondrial DNA content in posttreatment salivary rinses from head and neck cancer patients. Clin Cancer Res. 2006, 12: 1564-1569. 10.1158/1078-0432.CCR-05-1471.View ArticlePubMedGoogle Scholar
  10. Wang Y, Liu VW, Xue WC, Cheung AN, Ngan HY: Association of decreased mitochondrial DNA content with ovarian cancer progression. Br J Cancer. 2006, 95: 1087-1091. 10.1038/sj.bjc.6603377.View ArticlePubMedPubMed CentralGoogle Scholar
  11. Lee HC, Li SH, Lin JC, Wu CC, Yeh DC, Wei YH: Somatic mutations in the D-loop and decrease in the copy number of mitochondrial DNA in human hepatocellular carcinoma. Mutat Res. 2004, 547: 71-78.View ArticlePubMedGoogle Scholar
  12. Yin PH, Lee HC, Chau GY, Wu YT, Li SH, Lui WY, Wei YH, Liu TY, Chi CW: Alteration of the copy number and deletion of mitochondrial DNA in human hepatocellular carcinoma. Br J Cancer. 2004, 90: 2390-2396.PubMedPubMed CentralGoogle Scholar
  13. Morten KJ, Ashley N, Wijburg F, Hadzic N, Parr J, Jayawant S, Adams S, Bindoff L, Bakker HD, Mieli-Vergani G, Zeviani M, Poulton J: Liver mtDNA content increases during development: a comparison of methods and the importance of age- and tissue-specific controls for the diagnosis of mtDNA depletion. Mitochondrion. 2007, 7: 386-395.View ArticlePubMedGoogle Scholar
  14. Mizumachi T, Muskhelishvili L, Naito A, Furusawa J, Fan CY, Siegel ER, Kadlubar FF, Kumar U, Higuchi M: Increased distributional variance of mitochondrial DNA content associated with prostate cancer cells as compared with normal prostate cells. Prostate. 2008, 68: 408-417. 10.1002/pros.20697.View ArticlePubMedPubMed CentralGoogle Scholar
  15. Jiang WW, Masayesva B, Zahurak M, Carvalho AL, Rosenbaum E, Mambo E, Zhou S, Minhas K, Benoit N, Westra WH, Alberg A, Sidransky D, Koch W, Califano J: Increased mitochondrial DNA content in saliva associated with head and neck cancer. Clin Cancer Res. 2005, 11: 2486-2491. 10.1158/1078-0432.CCR-04-2147.View ArticlePubMedGoogle Scholar
  16. Wang Y, Liu VW, Xue WC, Tsang PC, Cheung AN, Ngan HY: The increase of mitochondrial DNA content in endometrial adenocarcinoma cells: a quantitative study using laser-captured microdissected tissues. Gynecol Oncol. 2005, 98: 104-110. 10.1016/j.ygyno.2005.04.015.View ArticlePubMedGoogle Scholar
  17. Jones JB, Song JJ, Hempen PM, Parmigiani G, Hruban RH, Kern SE: Detection of mitochondrial DNA mutations in pancreatic cancer offers a "mass"-ive advantage over detection of nuclear DNA mutations. Cancer Res. 2001, 61: 1299-1304.PubMedGoogle Scholar
  18. Fliss MS, Usadel H, Caballero OL, Wu L, Buta MR, Eleff SM, Jen J, Sidransky D: Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science. 2000, 287: 2017-2019. 10.1126/science.287.5460.2017.View ArticlePubMedGoogle Scholar
  19. Fan AX-C, R R, Haghighi MM, Kohler C, Xia P, Hahn S, Holzgreve W, Zhong XY: Mitochondrial DNA content in paired normal and cancerous breast tissue samples from patients with breast cancer. J Cancer Res Clin Oncol. 2008,Google Scholar
  20. Poe BG, Navratil M, Arriaga EA: Absolute quantitation of a heteroplasmic mitochondrial DNA deletion using a multiplex three-primer real-time PCR assay. Anal Biochem. 2007, 362: 193-200. 10.1016/j.ab.2006.12.035.View ArticlePubMedGoogle Scholar
  21. Kochl S, Niederstatter H, Parson W: DNA extraction and quantitation of forensic samples using the phenol-chloroform method and real-time PCR. Methods Mol Biol. 2005, 297: 13-30.PubMedGoogle Scholar
  22. Higuchi M: Regulation of mitochondrial DNA content and cancer. Mitochondrion. 2007, 7: 53-57. 10.1016/j.mito.2006.12.001.View ArticlePubMedGoogle Scholar
  23. Chan DC: Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol. 2006, 22: 79-99. 10.1146/annurev.cellbio.22.010305.104638.View ArticlePubMedGoogle Scholar
  24. Gatenby RA, Gillies RJ: Why do cancers have high aerobic glycolysis?. Nat Rev Cancer. 2004, 4: 891-899. 10.1038/nrc1478.View ArticlePubMedGoogle Scholar
  25. Modica-Napolitano JS, Kulawiec M, Singh KK: Mitochondria and human cancer. Curr Mol Med. 2007, 7: 121-131. 10.2174/156652407779940495.View ArticlePubMedGoogle Scholar
  26. Losanoff JE, Z W, Qin W, Mannello F, Sauter ER: Can mitochondrial DNA mutations in circulating white blood cells and serum be used to detect breast cancer?. Breast. 2008, 17: 540-542. 10.1016/j.breast.2008.04.005.View ArticlePubMedGoogle Scholar
  27. Ye C, Shu XO, Wen W, Pierce L, Courtney R, Gao YT, Zheng W, Cai Q: Quantitative analysis of mitochondrial DNA 4977-bp deletion in sporadic breast cancer and benign breast diseases. Breast Cancer Res Treat. 2008, 108: 427-434. 10.1007/s10549-007-9613-9.View ArticlePubMedGoogle Scholar
  28. Tseng LM, Yin PH, Chi CW, Hsu CY, Wu CW, Lee LM, Wei YH, Lee HC: Mitochondrial DNA mutations and mitochondrial DNA depletion in breast cancer. Genes Chromosomes Cancer. 2006, 45: 629-638. 10.1002/gcc.20326.View ArticlePubMedGoogle Scholar
  29. Modica-Napolitano JS, Singh KK: Mitochondria as targets for detection and treatment of cancer. Expert Rev Mol Med. 2002, 4: 1-19. 10.1017/S1462399402004453.View ArticlePubMedGoogle Scholar
  30. Barrientos A, Casademont J, Cardellach F, Estivill X, Urbano-Marquez A, Nunes V: Reduced steady-state levels of mitochondrial RNA and increased mitochondrial DNA amount in human brain with aging. Brain Res Mol Brain Res. 1997, 52: 284-289. 10.1016/S0169-328X(97)00278-7.View ArticlePubMedGoogle Scholar
  31. Miller FJ, Rosenfeldt FL, Zhang C, Linnane AW, Nagley P: Precise determination of mitochondrial DNA copy number in human skeletal and cardiac muscle by a PCR-based assay: lack of change of copy number with age. Nucleic Acids Res. 2003, 31: e61-10.1093/nar/gng060.View ArticlePubMedPubMed CentralGoogle Scholar
  32. Chiu RW, Chan LY, Lam NY, Tsui NB, Ng EK, Rainer TH, Lo YM: Quantitative analysis of circulating mitochondrial DNA in plasma. Clin Chem. 2003, 49: 719-726. 10.1373/49.5.719.View ArticlePubMedGoogle Scholar
  33. Mehra N, Penning M, Maas J, van Daal N, Giles RH, Voest EE: Circulating mitochondrial nucleic acids have prognostic value for survival in patients with advanced prostate cancer. Clin Cancer Res. 2007, 13: 421-426. 10.1158/1078-0432.CCR-06-1087.View ArticlePubMedGoogle Scholar
  34. Lin NU, Winer EP: Advances in adjuvant endocrine therapy for postmenopausal women. J Clin Oncol. 2008, 26: 798-805. 10.1200/JCO.2007.15.0946.View ArticlePubMedGoogle Scholar
  35. Buffenstein R, Poppitt SD, McDevitt RM, Prentice AM: Food intake and the menstrual cycle: a retrospective analysis, with implications for appetite research. Physiol Behav. 1995, 58: 1067-1077. 10.1016/0031-9384(95)02003-9.View ArticlePubMedGoogle Scholar
  36. Webb P: 24-hour energy expenditure and the menstrual cycle. Am J Clin Nutr. 1986, 44: 614-619.PubMedGoogle Scholar
  37. Pre-publication history

    1. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1471-2407/9/454/prepub

Copyright

© Xia et al; licensee BioMed Central Ltd. 2009

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Advertisement